1
|
Woods KJP, Sampaio G, James T, Przysinda E, Hewett A, Spencer AE, Morillon B, Loui P. Rapid modulation in music supports attention in listeners with attentional difficulties. Commun Biol 2024; 7:1376. [PMID: 39443657 PMCID: PMC11499863 DOI: 10.1038/s42003-024-07026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Background music is widely used to sustain attention, but little is known about what musical properties aid attention. This may be due to inter-individual variability in neural responses to music. Here we find that music with amplitude modulations added at specific rates can sustain attention differentially for those with varying levels of attentional difficulty. We first tested the hypothesis that music with strong amplitude modulation would improve sustained attention, and found it did so when it occurred early in the experiment. Rapid modulations in music elicited greater activity in attentional networks in fMRI, as well as greater stimulus-brain coupling in EEG. Finally, to test the idea that specific modulation properties would differentially affect listeners based on their level of attentional difficulty, we parametrically manipulated the depth and rate of amplitude modulations inserted in otherwise-identical music, and found that beta-range modulations helped more than other modulation ranges for participants with more ADHD symptoms. Results suggest the possibility of an oscillation-based neural mechanism for targeted music to support improved cognitive performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea E Spencer
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Benjamin Morillon
- Aix Marseille Université Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Psyche Loui
- Wesleyan University, Middletown, CT, USA
- Department of Music, College of Arts, Media, and Design, Northeastern University, Boston, MT, USA
| |
Collapse
|
2
|
Townsend PH, Jones A, Patel AD, Race E. Rhythmic Temporal Cues Coordinate Cross-frequency Phase-amplitude Coupling during Memory Encoding. J Cogn Neurosci 2024; 36:2100-2116. [PMID: 38991125 DOI: 10.1162/jocn_a_02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549-1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat [Hickey, P., Merseal, H., Patel, A. D., & Race, E. Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. Neuroimage, 213, 116693, 2020]. We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.
Collapse
Affiliation(s)
- Paige Hickey Townsend
- Massachusetts General Hospital, Charlestown, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | | | - Aniruddh D Patel
- Tufts University, Medford, MA
- Canadian Institute for Advanced Research
| | | |
Collapse
|
3
|
Terranova S, Botta A, Putzolu M, Bonassi G, Cosentino C, Mezzarobba S, Ravizzotti E, Pelosin E, Avanzino L. Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1386-1398. [PMID: 38147293 DOI: 10.1007/s12311-023-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.
Collapse
Affiliation(s)
- Sara Terranova
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | | | - Martina Putzolu
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
5
|
Séguin P, Maby E, Fouillen M, Otman A, Luauté J, Giraux P, Morlet D, Mattout J. The challenge of controlling an auditory BCI in the case of severe motor disability. J Neuroeng Rehabil 2024; 21:9. [PMID: 38238759 PMCID: PMC10795353 DOI: 10.1186/s12984-023-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The locked-in syndrome (LIS), due to a lesion in the pons, impedes communication. This situation can also be met after some severe brain injury or in advanced Amyotrophic Lateral Sclerosis (ALS). In the most severe condition, the persons cannot communicate at all because of a complete oculomotor paralysis (Complete LIS or CLIS). This even prevents the detection of consciousness. Some studies suggest that auditory brain-computer interface (BCI) could restore a communication through a « yes-no» code. METHODS We developed an auditory EEG-based interface which makes use of voluntary modulations of attention, to restore a yes-no communication code in non-responding persons. This binary BCI uses repeated speech sounds (alternating "yes" on the right ear and "no" on the left ear) corresponding to either frequent (short) or rare (long) stimuli. Users are instructed to pay attention to the relevant stimuli only. We tested this BCI with 18 healthy subjects, and 7 people with severe motor disability (3 "classical" persons with locked-in syndrome and 4 persons with ALS). RESULTS We report online BCI performance and offline event-related potential analysis. On average in healthy subjects, online BCI accuracy reached 86% based on 50 questions. Only one out of 18 subjects could not perform above chance level. Ten subjects had an accuracy above 90%. However, most patients could not produce online performance above chance level, except for two people with ALS who obtained 100% accuracy. We report individual event-related potentials and their modulation by attention. In addition to the classical P3b, we observed a signature of sustained attention on responses to frequent sounds, but in healthy subjects and patients with good BCI control only. CONCLUSIONS Auditory BCI can be very well controlled by healthy subjects, but it is not a guarantee that it can be readily used by the target population of persons in LIS or CLIS. A conclusion that is supported by a few previous findings in BCI and should now trigger research to assess the reasons of such a gap in order to propose new and efficient solutions. CLINICAL TRIAL REGISTRATIONS No. NCT02567201 (2015) and NCT03233282 (2013).
Collapse
Affiliation(s)
- Perrine Séguin
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
- University Hospital of Saint-Etienne, 42000, Saint-Etienne, France
- Jean Monnet University, 42000, Saint-Etienne, France
| | - Emmanuel Maby
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| | - Mélodie Fouillen
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| | - Anatole Otman
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| | - Jacques Luauté
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
- Hospices Civils de Lyon, 69000, Lyon, France
| | - Pascal Giraux
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
- University Hospital of Saint-Etienne, 42000, Saint-Etienne, France
- Jean Monnet University, 42000, Saint-Etienne, France
| | - Dominique Morlet
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France
| | - Jérémie Mattout
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000, Lyon, France.
| |
Collapse
|
6
|
Coull JT, Korolczuk I, Morillon B. The Motor of Time: Coupling Action to Temporally Predictable Events Heightens Perception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:199-213. [PMID: 38918353 DOI: 10.1007/978-3-031-60183-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Timing and motor function share neural circuits and dynamics, which underpin their close and synergistic relationship. For instance, the temporal predictability of a sensory event optimizes motor responses to that event. Knowing when an event is likely to occur lowers response thresholds, leading to faster and more efficient motor behavior though in situations of response conflict can induce impulsive and inappropriate responding. In turn, through a process of active sensing, coupling action to temporally predictable sensory input enhances perceptual processing. Action not only hones perception of the event's onset or duration, but also boosts sensory processing of its non-temporal features such as pitch or shape. The effects of temporal predictability on motor behavior and sensory processing involve motor and left parietal cortices and are mediated by changes in delta and beta oscillations in motor areas of the brain.
Collapse
Affiliation(s)
- Jennifer T Coull
- Centre for Research in Psychology and Neuroscience (UMR 7077), Aix-Marseille Université & CNRS, Marseille, France.
| | - Inga Korolczuk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Benjamin Morillon
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
7
|
Khadir A, Maghareh M, Sasani Ghamsari S, Beigzadeh B. Brain activity characteristics of RGB stimulus: an EEG study. Sci Rep 2023; 13:18988. [PMID: 37923926 PMCID: PMC10624840 DOI: 10.1038/s41598-023-46450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The perception of color is a fundamental cognitive feature of our psychological experience, with an essential role in many aspects of human behavior. Several studies used magnetoencephalography, functional magnetic resonance imaging, and electroencephalography (EEG) approaches to investigate color perception. Their methods includes the event-related potential and spectral power activity of different color spaces, such as Derrington-Krauskopf-Lennie and red-green-blue (RGB), in addition to exploring the psychological and emotional effects of colors. However, we found insufficient studies in RGB space that considered combining all aspects of EEG signals. Thus, in the present study, focusing on RGB stimuli and using a data-driven approach, we investigated significant differences in the perception of colors. Our findings show that beta oscillation of green compared to red and blue colors occurs in early sensory periods with a latency shifting in the occipital region. Furthermore, in the occipital region, the theta power of the blue color decreases noticeably compared to the other colors. Concurrently, in the prefrontal area, we observed an increase in phase consistency in response to the green color, while the blue color showed a decrease. Therefore, our results can be used to interpret the brain activity mechanism of color perception in RGB color space and to choose suitable colors for more efficient performance in cognitive activities.
Collapse
Affiliation(s)
- Alireza Khadir
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Maghareh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shamim Sasani Ghamsari
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
8
|
Northoff G, Daub J, Hirjak D. Overcoming the translational crisis of contemporary psychiatry - converging phenomenological and spatiotemporal psychopathology. Mol Psychiatry 2023; 28:4492-4499. [PMID: 37704861 PMCID: PMC10914603 DOI: 10.1038/s41380-023-02245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Despite all neurobiological/neurocomputational progress in psychiatric research, recent authors speak about a 'crisis of contemporary psychiatry'. Some argue that we do not yet know the computational mechanisms underlying the psychopathological symptoms ('crisis of mechanism') while others diagnose a neglect of subjectivity, namely first-person experience ('crisis of subjectivity'). In this perspective, we propose that Phenomenological Psychopathology, due to its focus on first-person experience of space and time, is in an ideal position to address the crisis of subjectivity and, if extended to the brain's spatiotemporal topographic-dynamic structure as key focus of Spatiotemporal Psychopathology, the crisis of mechanism. We demonstrate how the first-person experiences of space and time differ between schizophrenia, mood disorders and anxiety disorders allowing for their differential-diagnosis - this addresses the crisis of subjectivity. Presupposing space and time as shared features of brain, experience, and symptoms as their "common currency", the structure of abnormal space and time experience may also serve as template for the structure of the brain's spatiotemporal neuro-computational mechanisms - this may address the crisis of mechanism. Preliminary scientific evidence in our examples of schizophrenia, bipolar disorder, anxiety disorder, and depression support such clinically relevant spatiotemporal determination of both first-person experience (crisis of subjectivity) and the brain's neuro-computational structure (crisis of mechanism). In conclusion, converging Phenomenological Psychopathology with Spatiotemporal Psychopathology might help to overcome the translational crisis in psychiatry by delineating more fine-grained neuro computational and -phenomenal mechanisms; this offers novel candidate biomarkers for diagnosis and therapy including both pharmacological and non-pharmacological treatment.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
9
|
Wang P, Limanowski J. Phasic modulation of beta power at movement-related frequencies during visuomotor conflict. J Neurophysiol 2023; 130:1367-1372. [PMID: 37877188 DOI: 10.1152/jn.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Rhythmic cortical activity is thought to underlie many cognitive functions including the flexible weighting of sensory information depending on the current behavioral context. Here, we tested for potential oscillatory alignment and power modulation at behaviorally relevant frequencies in magnetoencephalography (MEG) data acquired during a virtual reality-based, rhythmic hand-target phase matching task. The task contained conditions differing in terms of visuomotor incongruence and whether or not behavior (grasping movements) had to be adapted to keep vision aligned with the target. We tested for potential oscillatory alignment with movement frequencies and cross-frequency coupling with oscillations in the alpha, beta, and gamma bands. Our results revealed local peaks at 1 Hz power, corresponding to the frequency at which hand movements alternated between open and close; thus, potentially indicating an "entrainment" of neural oscillations at key movement frequencies. We found 1 Hz power was selectively enhanced when participants needed to align incongruent vision with the target. Moreover, the phase of the "movement-entrained" 1 Hz oscillations coupled significantly with the momentary amplitude of beta band oscillations-again, this coupling was selectively enhanced when incongruent vision was task relevant. We propose that this reflected a top-down mechanism, most likely related to selective attention and rhythmic sensory sampling. Thus, phasic low-frequency (beta) power suppression likely indicated a variable (attentional) sampling of visual movement feedback; i.e., related to increased sensitivity for visually matching alternating hand movements to a phasic target at ecologically important time points, rather than continually during the grasping cycle.NEW & NOTEWORTHY Our results reveal an increased spectral power at movement frequencies in a rhythmic hand-target phase matching task under visuomotor conflict; this effect was strongest when incongruent visual movement feedback was required to guide action. Moreover, the phase of these slow frequencies coupled with the momentary power beta oscillations; again, this coupling was selectively strengthened when incongruent vision was task relevant.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Jakub Limanowski
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Gunasekaran H, Azizi L, van Wassenhove V, Herbst SK. Characterizing endogenous delta oscillations in human MEG. Sci Rep 2023; 13:11031. [PMID: 37419933 PMCID: PMC10328979 DOI: 10.1038/s41598-023-37514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Rhythmic activity in the delta frequency range (0.5-3 Hz) is a prominent feature of brain dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive recordings in awake animals, can be observed in non-invasive recordings performed in humans with magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, we additionally analysed two conditions in which participants engaged in spontaneous finger tapping and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time domain revealed that only the resting state condition warranted an interpretation of these peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive recordings of human brain dynamics.
Collapse
Affiliation(s)
- Harish Gunasekaran
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France.
| |
Collapse
|
12
|
Zhuang Q, Yao K, Wu M, Lei Z, Chen F, Li J, Mei Q, Zhou Y, Huang Q, Zhao X, Li Y, Yu X, Zheng Z. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. SCIENCE ADVANCES 2023; 9:eadg8602. [PMID: 37256954 PMCID: PMC10413659 DOI: 10.1126/sciadv.adg8602] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Implantable bioelectronics provide unprecedented opportunities for real-time and continuous monitoring of physiological signals of living bodies. Most bioelectronics adopt thin-film substrates such as polyimide and polydimethylsiloxane that exhibit high levels of flexibility and stretchability. However, the low permeability and relatively high modulus of these thin films hamper the long-term biocompatibility. In contrast, devices fabricated on porous substrates show the advantages of high permeability but suffer from low patterning density. Here, we report a wafer-scale patternable strategy for the high-resolution fabrication of supersoft, stretchable, and permeable liquid metal microelectrodes (μLMEs). We demonstrate 2-μm patterning capability, or an ultrahigh density of ~75,500 electrodes/cm2, of μLME arrays on a wafer-size (diameter, 100 mm) elastic fiber mat by photolithography. We implant the μLME array as a neural interface for high spatiotemporal mapping and intervention of electrocorticography signals of living rats. The implanted μLMEs have chronic biocompatibility over a period of eight months.
Collapse
Affiliation(s)
- Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
13
|
He D, Buder EH, Bidelman GM. Effects of Syllable Rate on Neuro-Behavioral Synchronization Across Modalities: Brain Oscillations and Speech Productions. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:344-360. [PMID: 37229510 PMCID: PMC10205147 DOI: 10.1162/nol_a_00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Considerable work suggests the dominant syllable rhythm of the acoustic envelope is remarkably similar across languages (∼4-5 Hz) and that oscillatory brain activity tracks these quasiperiodic rhythms to facilitate speech processing. However, whether this fundamental periodicity represents a common organizing principle in both auditory and motor systems involved in speech has not been explicitly tested. To evaluate relations between entrainment in the perceptual and production domains, we measured individuals' (i) neuroacoustic tracking of the EEG to speech trains and their (ii) simultaneous and non-simultaneous productions synchronized to syllable rates between 2.5 and 8.5 Hz. Productions made without concurrent auditory presentation isolated motor speech functions more purely. We show that neural synchronization flexibly adapts to the heard stimuli in a rate-dependent manner, but that phase locking is boosted near ∼4.5 Hz, the purported dominant rate of speech. Cued speech productions (recruit sensorimotor interaction) were optimal between 2.5 and 4.5 Hz, suggesting a low-frequency constraint on motor output and/or sensorimotor integration. In contrast, "pure" motor productions (without concurrent sound cues) were most precisely generated at rates of 4.5 and 5.5 Hz, paralleling the neuroacoustic data. Correlations further revealed strong links between receptive (EEG) and production synchronization abilities; individuals with stronger auditory-perceptual entrainment better matched speech rhythms motorically. Together, our findings support an intimate link between exogenous and endogenous rhythmic processing that is optimized at 4-5 Hz in both auditory and motor systems. Parallels across modalities could result from dynamics of the speech motor system coupled with experience-dependent tuning of the perceptual system via the sensorimotor interface.
Collapse
Affiliation(s)
- Deling He
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Eugene H. Buder
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
14
|
Gallina J, Marsicano G, Romei V, Bertini C. Electrophysiological and Behavioral Effects of Alpha-Band Sensory Entrainment: Neural Mechanisms and Clinical Applications. Biomedicines 2023; 11:biomedicines11051399. [PMID: 37239069 DOI: 10.3390/biomedicines11051399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Alpha-band (7-13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Vincenzo Romei
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| |
Collapse
|
15
|
Thirioux B, Langbour N, Bokam P, Renaudin L, Wassouf I, Harika-Germaneau G, Jaafari N. Microstates imbalance is associated with a functional dysregulation of the resting-state networks in obsessive-compulsive disorder: a high-density electrical neuroimaging study using the TESS method. Cereb Cortex 2023; 33:2593-2611. [PMID: 35739579 DOI: 10.1093/cercor/bhac229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/14/2022] Open
Abstract
The dysfunctional patterns of microstates dynamics in obsessive-compulsive disorder (OCD) remain uncertain. Using high-density electrical neuroimaging (EEG) at rest, we explored microstates deterioration in OCD and whether abnormal microstates patterns are associated with a dysregulation of the resting-state networks interplay. We used EEG microstates analyses, TESS method for sources reconstruction, and General Linear Models to test for the effect of disease severity on neural responses. OCD patients exhibited an increased contribution and decreased duration of microstates C and D, respectively. Activity was decreased in the Salience Network (SN), associated with microstate C, but increased in the Default Mode Network (DMN) and Executive Control Network (ECN), respectively, associated with microstates E and D. The hyperactivity of the right angular gyrus in the ECN correlated with the symptoms severity. The imbalance between microstates C and D invalidates the hypothesis that this electrophysiological pattern is specific to psychosis. Demonstrating that the SN-ECN dysregulation manifests as abnormalities in microstates C and D, we confirm that the SN deterioration in OCD is accompanied by a failure of the DMN to deactivate and aberrant compensatory activation mechanisms in the ECN. These abnormalities explain typical OCD clinical features but also detachment from reality, shared with psychosis.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Léa Renaudin
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| |
Collapse
|
16
|
A corticostriatal projection for sound-evoked and anticipatory motor behavior following temporal expectation. Neuroreport 2023; 34:1-8. [PMID: 36504042 DOI: 10.1097/wnr.0000000000001851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to form predictions based on recent sensory experience is essential for behavioral adaptation to our ever-changing environment. Predictive encoding represented by neuronal activity has been observed in sensory cortex, but how this neuronal activity is transformed into anticipatory motor behavior remains unclear. Fiber photometry to investigate a corticostriatal projection from the auditory cortex to the posterior striatum during an auditory paradigm in mice, and pharmacological experiments in a task that induces a temporal expectation of upcoming sensory stimuli. We find that the auditory corticostriatal projection relays both sound-evoked stimulus information as well as predictive signals in relation to stimulus timing following rhythmic auditory stimulation. Pharmacological experiments suggest that this projection is required for the initiation of both sound-evoked and anticipatory licking behavior in an auditory associative-learning behavioral task, but not for the general recognition of presented auditory stimuli. This auditory corticostriatal projection carries predictive signals, and the posterior striatum is critical to the anticipatory stimulus-driven motor behavior.
Collapse
|
17
|
Yu Q, Bi Z, Jiang S, Yan B, Chen H, Wang Y, Miao Y, Li K, Wei Z, Xie Y, Tan X, Liu X, Fu H, Cui L, Xing L, Weng S, Wang X, Yuan Y, Zhou C, Wang G, Li L, Ma L, Mao Y, Chen L, Zhang J. Visual cortex encodes timing information in humans and mice. Neuron 2022; 110:4194-4211.e10. [PMID: 36195097 DOI: 10.1016/j.neuron.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Despite the importance of timing in our daily lives, our understanding of how the human brain mediates second-scale time perception is limited. Here, we combined intracranial stereoelectroencephalography (SEEG) recordings in epileptic patients and circuit dissection in mice to show that visual cortex (VC) encodes timing information. We first asked human participants to perform an interval-timing task and found VC to be a key timing brain area. We then conducted optogenetic experiments in mice and showed that VC plays an important role in the interval-timing behavior. We further found that VC neurons fired in a time-keeping sequential manner and exhibited increased excitability in a timed manner. Finally, we used a computational model to illustrate a self-correcting learning process that generates interval-timed activities with scalar-timing property. Our work reveals how localized oscillations in VC occurring in the seconds to deca-seconds range relate timing information from the external world to guide behavior.
Collapse
Affiliation(s)
- Qingpeng Yu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zedong Bi
- Lingang Laboratory, Shanghai 200031, China; Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China; Department of Physics, Centre for Nonlinear Studies and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Shize Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Heming Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yizhan Miao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Kexin Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanting Xie
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xinrong Tan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodi Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hang Fu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Liyuan Cui
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Xing
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Neurology and Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanzhi Yuan
- Department of Neurology and Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Mao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China; Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai 200040, China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China; Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
18
|
Willumsen A, Midtgaard J, Jespersen B, Hansen CKK, Lam SN, Hansen S, Kupers R, Fabricius ME, Litman M, Pinborg L, Tascón-Vidarte JD, Sabers A, Roland PE. Local networks from different parts of the human cerebral cortex generate and share the same population dynamic. Cereb Cortex Commun 2022; 3:tgac040. [PMID: 36530950 PMCID: PMC9753090 DOI: 10.1093/texcom/tgac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
A major goal of neuroscience is to reveal mechanisms supporting collaborative actions of neurons in local and larger-scale networks. However, no clear overall principle of operation has emerged despite decades-long experimental efforts. Here, we used an unbiased method to extract and identify the dynamics of local postsynaptic network states contained in the cortical field potential. Field potentials were recorded by depth electrodes targeting a wide selection of cortical regions during spontaneous activities, and sensory, motor, and cognitive experimental tasks. Despite different architectures and different activities, all local cortical networks generated the same type of dynamic confined to one region only of state space. Surprisingly, within this region, state trajectories expanded and contracted continuously during all brain activities and generated a single expansion followed by a contraction in a single trial. This behavior deviates from known attractors and attractor networks. The state-space contractions of particular subsets of brain regions cross-correlated during perceptive, motor, and cognitive tasks. Our results imply that the cortex does not need to change its dynamic to shift between different activities, making task-switching inherent in the dynamic of collective cortical operations. Our results provide a mathematically described general explanation of local and larger scale cortical dynamic.
Collapse
Affiliation(s)
- Alex Willumsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Jens Midtgaard
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Bo Jespersen
- Department of Neurosurgery, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Salina N Lam
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Sabine Hansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Ron Kupers
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark,Department of Neurosurgery, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Martin E Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Minna Litman
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Lars Pinborg
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark,Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Anne Sabers
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Per E Roland
- Corresponding author: Per E. Roland, Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
19
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Swallow KM, Broitman AW, Riley E, Turker HB. Grounding the Attentional Boost Effect in Events and the Efficient Brain. Front Psychol 2022; 13:892416. [PMID: 35936250 PMCID: PMC9355572 DOI: 10.3389/fpsyg.2022.892416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
Attention and memory for everyday experiences vary over time, wherein some moments are better attended and subsequently better remembered than others. These effects have been demonstrated in naturalistic viewing tasks with complex and relatively uncontrolled stimuli, as well as in more controlled laboratory tasks with simpler stimuli. For example, in the attentional boost effect (ABE), participants perform two tasks at once: memorizing a series of briefly presented stimuli (e.g., pictures of outdoor scenes) for a later memory test, and responding to other concurrently presented cues that meet pre-defined criteria (e.g., participants press a button for a blue target square and do nothing for a red distractor square). However, rather than increasing dual-task interference, attending to a target cue boosts, rather than impairs, subsequent memory for concurrently presented information. In this review we describe current data on the extent and limitations of the attentional boost effect and whether it may be related to activity in the locus coeruleus neuromodulatory system. We suggest that insight into the mechanisms that produce the attentional boost effect may be found in recent advances in the locus coeruleus literature and from understanding of how the neurocognitive system handles stability and change in everyday events. We consequently propose updates to an early account of the attentional boost effect, the dual-task interaction model, to better ground it in what is currently known about event cognition and the role that the LC plays in regulating brain states.
Collapse
Affiliation(s)
- Khena M. Swallow
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Adam W. Broitman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Hamid B. Turker
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Keshavarzi M, Mandke K, Macfarlane A, Parvez L, Gabrielczyk F, Wilson A, Goswami U. Atypical delta-band phase consistency and atypical preferred phase in children with dyslexia during neural entrainment to rhythmic audio-visual speech. Neuroimage Clin 2022; 35:103054. [PMID: 35642984 PMCID: PMC9136320 DOI: 10.1016/j.nicl.2022.103054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Children with and without dyslexia showed consistent phase entrainment. Dyslexic children had significantly reduced delta band phase consistency. Dyslexic children had a different preferred phase in delta compared to controls. The dyslexic brain showed faster pre-stimulus delta band angular velocity.
According to the sensory-neural Temporal Sampling theory of developmental dyslexia, neural sampling of auditory information at slow rates (<10 Hz, related to speech rhythm) is atypical in dyslexic individuals, particularly in the delta band (0.5–4 Hz). Here we examine the underlying neural mechanisms related to atypical sampling using a simple repetitive speech paradigm. Fifty-one children (21 control children [15M, 6F] and 30 children with dyslexia [16M, 14F]) aged 9 years with or without developmental dyslexia watched and listened as a ‘talking head’ repeated the syllable “ba” every 500 ms, while EEG was recorded. Occasionally a syllable was “out of time”, with a temporal delay calibrated individually and adaptively for each child so that it was detected around 79.4% of the time by a button press. Phase consistency in the delta (rate of stimulus delivery), theta (speech-related) and alpha (control) bands was evaluated for each child and each group. Significant phase consistency was found for both groups in the delta and theta bands, demonstrating neural entrainment, but not the alpha band. However, the children with dyslexia showed a different preferred phase and significantly reduced phase consistency compared to control children, in the delta band only. Analysis of pre- and post-stimulus angular velocity of group preferred phases revealed that the children in the dyslexic group showed an atypical response in the delta band only. The delta-band pre-stimulus angular velocity (−130 ms to 0 ms) for the dyslexic group appeared to be significantly faster compared to the control group. It is concluded that neural responding to simple beat-based stimuli may provide a unique neural marker of developmental dyslexia. The automatic nature of this neural response may enable new tools for diagnosis, as well as opening new avenues for remediation.
Collapse
Affiliation(s)
- Mahmoud Keshavarzi
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Annabel Macfarlane
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Lyla Parvez
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Fiona Gabrielczyk
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Angela Wilson
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
22
|
Kachlicka M, Laffere A, Dick F, Tierney A. Slow phase-locked modulations support selective attention to sound. Neuroimage 2022; 252:119024. [PMID: 35231629 PMCID: PMC9133470 DOI: 10.1016/j.neuroimage.2022.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
To make sense of complex soundscapes, listeners must select and attend to task-relevant streams while ignoring uninformative sounds. One possible neural mechanism underlying this process is alignment of endogenous oscillations with the temporal structure of the target sound stream. Such a mechanism has been suggested to mediate attentional modulation of neural phase-locking to the rhythms of attended sounds. However, such modulations are compatible with an alternate framework, where attention acts as a filter that enhances exogenously-driven neural auditory responses. Here we attempted to test several predictions arising from the oscillatory account by playing two tone streams varying across conditions in tone duration and presentation rate; participants attended to one stream or listened passively. Attentional modulation of the evoked waveform was roughly sinusoidal and scaled with rate, while the passive response did not. However, there was only limited evidence for continuation of modulations through the silence between sequences. These results suggest that attentionally-driven changes in phase alignment reflect synchronization of slow endogenous activity with the temporal structure of attended stimuli.
Collapse
Affiliation(s)
- Magdalena Kachlicka
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England; Division of Psychology & Language Sciences, UCL, Gower Street, London WC1E 6BT, England
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England.
| |
Collapse
|
23
|
Flaten E, Marshall SA, Dittrich A, Trainor L. Evidence for Top-down Meter Perception in Infancy as Shown by Primed Neural Responses to an Ambiguous Rhythm. Eur J Neurosci 2022; 55:2003-2023. [PMID: 35445451 DOI: 10.1111/ejn.15671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
From auditory rhythm patterns, listeners extract the underlying steady beat, and perceptually group beats to form meters. While previous studies show infants discriminate different auditory meters, it remains unknown whether they can maintain (imagine) a metrical interpretation of an ambiguous rhythm through top-down processes. We investigated this via electroencephalographic mismatch responses. We primed 6-month-old infants (N = 24) to hear a 6-beat ambiguous rhythm either in duple meter (n = 13), or in triple meter (n = 11) through loudness accents either on every second or every third beat. Periods of priming were inserted before sequences of the ambiguous unaccented rhythm. To elicit mismatch responses, occasional pitch deviants occurred on either beat 4 (strong beat in triple meter; weak in duple) or beat 5 (strong in duple; weak in triple) of the unaccented trials. At frontal left sites, we found a significant interaction between beat and priming group in the predicted direction. Post-hoc analyses showed mismatch response amplitudes were significantly larger for beat 5 in the duple- than triple-primed group (p = .047) and were non-significantly larger for beat 4 in the triple- than duple-primed group. Further, amplitudes were generally larger in infants with musically experienced parents. At frontal right sites, mismatch responses were generally larger for those in the duple compared to triple group, which may reflect a processing advantage for duple meter. These results indicate infants can impose a top-down, internally generated meter on ambiguous auditory rhythms, an ability that would aid early language and music learning.
Collapse
Affiliation(s)
- Erica Flaten
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Sara A Marshall
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Angela Dittrich
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Laurel Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University.,McMaster Institute for Music and the Mind, McMaster University.,Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
24
|
Mosabbir AA, Braun Janzen T, Al Shirawi M, Rotzinger S, Kennedy SH, Farzan F, Meltzer J, Bartel L. Investigating the Effects of Auditory and Vibrotactile Rhythmic Sensory Stimulation on Depression: An EEG Pilot Study. Cureus 2022; 14:e22557. [PMID: 35371676 PMCID: PMC8958118 DOI: 10.7759/cureus.22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background Major depressive disorder (MDD) is a persistent psychiatric condition and one of the leading causes of global disease burden. In a previous study, we investigated the effects of a five-week intervention consisting of rhythmic gamma frequency (30-70 Hz) vibroacoustic stimulation in 20 patients formally diagnosed with MDD. In that study, the findings suggested a significant clinical improvement in depression symptoms as measured using the Montgomery-Asberg Depression Rating Scale (MADRS), with 37% of participants meeting the criteria for clinical response. The goal of the present research was to examine possible changes from baseline to posttreatment in resting-state electroencephalography (EEG) recordings using the same treatment protocol and to characterize basic changes in EEG related to treatment response. Materials and methods The study sample consisted of 19 individuals aged 18-70 years with a clinical diagnosis of MDD. The participants were assessed before and after a five-week treatment period, which consisted of listening to an instrumental musical track on a vibroacoustic device, delivering auditory and vibrotactile stimulus in the gamma-band range (30-70 Hz, with particular emphasis on 40 Hz). The primary outcome measure was the change in Montgomery-Asberg Depression Rating Scale (MADRS) from baseline to posttreatment and resting-state EEG. Results Analysis comparing MADRS score at baseline and post-intervention indicated a significant change in the severity of depression symptoms after five weeks (t = 3.9923, df = 18, p = 0.0009). The clinical response rate was 36.85%. Resting-state EEG power analysis revealed a significant increase in occipital alpha power (t = -2.149, df = 18, p = 0.04548), as well as an increase in the prefrontal gamma power of the responders (t = 2.8079, df = 13.431, p = 0.01442). Conclusions The results indicate that improvements in MADRS scores after rhythmic sensory stimulation (RSS) were accompanied by an increase in alpha power in the occipital region and an increase in gamma in the prefrontal region, thus suggesting treatment effects on cortical activity in depression. The results of this pilot study will help inform subsequent controlled studies evaluating whether treatment response to vibroacoustic stimulation constitutes a real and replicable reduction of depressive symptoms and to characterize the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, CAN
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, CAN
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, CAN
| | - Jed Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, CAN
| | - Lee Bartel
- Faculty of Music, University of Toronto, Toronto, CAN
| |
Collapse
|
25
|
Herbst SK, Stefanics G, Obleser J. Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex 2022; 149:226-245. [DOI: 10.1016/j.cortex.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
26
|
Beker S, Foxe JJ, Molholm S. Oscillatory entrainment mechanisms and anticipatory predictive processes in children with autism spectrum disorder. J Neurophysiol 2021; 126:1783-1798. [PMID: 34644178 PMCID: PMC8794059 DOI: 10.1152/jn.00329.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022] Open
Abstract
Anticipating near-future events is fundamental to adaptive behavior, whereby neural processing of predictable stimuli is significantly facilitated relative to nonpredictable events. Neural oscillations appear to be a key anticipatory mechanism by which processing of upcoming stimuli is modified, and they often entrain to rhythmic environmental sequences. Clinical and anecdotal observations have led to the hypothesis that people with autism spectrum disorder (ASD) may have deficits in generating predictions, and as such, a candidate neural mechanism may be failure to adequately entrain neural activity to repetitive environmental patterns, to facilitate temporal predictions. We tested this hypothesis by interrogating temporal predictions and rhythmic entrainment using behavioral and electrophysiological approaches. We recorded high-density electroencephalography in children with ASD and typically developing (TD) age- and IQ-matched controls, while they reacted to an auditory target as quickly as possible. This auditory event was either preceded by predictive rhythmic visual cues or was not preceded by any cue. Both ASD and control groups presented comparable behavioral facilitation in response to the Cue versus No-Cue condition, challenging the hypothesis that children with ASD have deficits in generating temporal predictions. Analyses of the electrophysiological data, in contrast, revealed significantly reduced neural entrainment to the visual cues and altered anticipatory processes in the ASD group. This was the case despite intact stimulus-evoked visual responses. These results support intact behavioral temporal prediction in response to a cue in ASD, in the face of altered neural entrainment and anticipatory processes.NEW & NOTEWORTHY We examined behavioral and EEG indices of predictive processing in children with ASD to rhythmically predictable stimuli. Although behavioral measures of predictive processing and evoked neural responses were intact in the ASD group, neurophysiological measures of preparatory activity and entrainment were impaired. When sensory events are presented in a predictable temporal pattern, performance and neuronal responses in ASD may be governed more by the occurrence of the events themselves and less by their anticipated timing.
Collapse
Affiliation(s)
- Shlomit Beker
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
27
|
Hausfeld L, Disbergen NR, Valente G, Zatorre RJ, Formisano E. Modulating Cortical Instrument Representations During Auditory Stream Segregation and Integration With Polyphonic Music. Front Neurosci 2021; 15:635937. [PMID: 34630007 PMCID: PMC8498193 DOI: 10.3389/fnins.2021.635937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous neuroimaging studies demonstrated that the auditory cortex tracks ongoing speech and that, in multi-speaker environments, tracking of the attended speaker is enhanced compared to the other irrelevant speakers. In contrast to speech, multi-instrument music can be appreciated by attending not only on its individual entities (i.e., segregation) but also on multiple instruments simultaneously (i.e., integration). We investigated the neural correlates of these two modes of music listening using electroencephalography (EEG) and sound envelope tracking. To this end, we presented uniquely composed music pieces played by two instruments, a bassoon and a cello, in combination with a previously validated music auditory scene analysis behavioral paradigm (Disbergen et al., 2018). Similar to results obtained through selective listening tasks for speech, relevant instruments could be reconstructed better than irrelevant ones during the segregation task. A delay-specific analysis showed higher reconstruction for the relevant instrument during a middle-latency window for both the bassoon and cello and during a late window for the bassoon. During the integration task, we did not observe significant attentional modulation when reconstructing the overall music envelope. Subsequent analyses indicated that this null result might be due to the heterogeneous strategies listeners employ during the integration task. Overall, our results suggest that subsequent to a common processing stage, top-down modulations consistently enhance the relevant instrument's representation during an instrument segregation task, whereas such an enhancement is not observed during an instrument integration task. These findings extend previous results from speech tracking to the tracking of multi-instrument music and, furthermore, inform current theories on polyphonic music perception.
Collapse
Affiliation(s)
- Lars Hausfeld
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Niels R Disbergen
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Brightlands Institute for Smart Society (BISS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
28
|
Poltorak A. Replicating Cortical Signatures May Open the Possibility for "Transplanting" Brain States via Brain Entrainment. Front Hum Neurosci 2021; 15:710003. [PMID: 34630058 PMCID: PMC8492906 DOI: 10.3389/fnhum.2021.710003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Brain states, which correlate with specific motor, cognitive, and emotional states, may be monitored with noninvasive techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) that measure macroscopic cortical activity manifested as oscillatory network dynamics. These rhythmic cortical signatures provide insight into the neuronal activity used to identify pathological cortical function in numerous neurological and psychiatric conditions. Sensory and transcranial stimulation, entraining the brain with specific brain rhythms, can effectively induce desired brain states (such as state of sleep or state of attention) correlated with such cortical rhythms. Because brain states have distinct neural correlates, it may be possible to induce a desired brain state by replicating these neural correlates through stimulation. To do so, we propose recording brain waves from a "donor" in a particular brain state using EEG/MEG to extract cortical signatures of the brain state. These cortical signatures would then be inverted and used to entrain the brain of a "recipient" via sensory or transcranial stimulation. We propose that brain states may thus be transferred between people by acquiring an associated cortical signature from a donor, which, following processing, may be applied to a recipient through sensory or transcranial stimulation. This technique may provide a novel and effective neuromodulation approach to the noninvasive, non-pharmacological treatment of a variety of psychiatric and neurological disorders for which current treatments are mostly limited to pharmacotherapeutic interventions.
Collapse
Affiliation(s)
- Alexander Poltorak
- Neuroenhancement Lab, Suffern, NY, United States
- The City College of New York, New York, NY, United States
| |
Collapse
|
29
|
Tada M, Kirihara K, Ishishita Y, Takasago M, Kunii N, Uka T, Shimada S, Ibayashi K, Kawai K, Saito N, Koshiyama D, Fujioka M, Araki T, Kasai K. Global and Parallel Cortical Processing Based on Auditory Gamma Oscillatory Responses in Humans. Cereb Cortex 2021; 31:4518-4532. [PMID: 33907804 PMCID: PMC8408476 DOI: 10.1093/cercor/bhab103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma oscillations are physiological phenomena that reflect perception and cognition, and involve parvalbumin-positive γ-aminobutyric acid-ergic interneuron function. The auditory steady-state response (ASSR) is the most robust index for gamma oscillations, and it is impaired in patients with neuropsychiatric disorders such as schizophrenia and autism. Although ASSR reduction is known to vary in terms of frequency and time, the neural mechanisms are poorly understood. We obtained high-density electrocorticography recordings from a wide area of the cortex in 8 patients with refractory epilepsy. In an ASSR paradigm, click sounds were presented at frequencies of 20, 30, 40, 60, 80, 120, and 160 Hz. We performed time-frequency analyses and analyzed intertrial coherence, event-related spectral perturbation, and high-gamma oscillations. We demonstrate that the ASSR is globally distributed among the temporal, parietal, and frontal cortices. The ASSR was composed of time-dependent neural subcircuits differing in frequency tuning. Importantly, the frequency tuning characteristics of the late-latency ASSR varied between the temporal/frontal and parietal cortex, suggestive of differentiation along parallel auditory pathways. This large-scale survey of the cortical ASSR could serve as a foundation for future studies of the ASSR in patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Megumi Takasago
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Kunii
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Bauer AKR, van Ede F, Quinn AJ, Nobre AC. Rhythmic Modulation of Visual Perception by Continuous Rhythmic Auditory Stimulation. J Neurosci 2021; 41:7065-7075. [PMID: 34261698 PMCID: PMC8372019 DOI: 10.1523/jneurosci.2980-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
At any given moment our sensory systems receive multiple, often rhythmic, inputs from the environment. Processing of temporally structured events in one sensory modality can guide both behavioral and neural processing of events in other sensory modalities, but whether this occurs remains unclear. Here, we used human electroencephalography (EEG) to test the cross-modal influences of a continuous auditory frequency-modulated (FM) sound on visual perception and visual cortical activity. We report systematic fluctuations in perceptual discrimination of brief visual stimuli in line with the phase of the FM-sound. We further show that this rhythmic modulation in visual perception is related to an accompanying rhythmic modulation of neural activity recorded over visual areas. Importantly, in our task, perceptual and neural visual modulations occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. As such, the results provide a critical validation for the existence and functional role of cross-modal entrainment and demonstrates its utility for organizing the perception of multisensory stimulation in the natural environment.SIGNIFICANCE STATEMENT Our sensory environment is filled with rhythmic structures that are often multi-sensory in nature. Here, we show that the alignment of neural activity to the phase of an auditory frequency-modulated (FM) sound has cross-modal consequences for vision: yielding systematic fluctuations in perceptual discrimination of brief visual stimuli that are mediated by accompanying rhythmic modulation of neural activity recorded over visual areas. These cross-modal effects on visual neural activity and perception occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. The current work shows that continuous auditory fluctuations in the natural environment can provide a pacing signal for neural activity and perception across the senses.
Collapse
Affiliation(s)
- Anna-Katharina R Bauer
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, The Netherlands
| | - Andrew J Quinn
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
31
|
Barne LC, Cravo AM, de Lange FP, Spaak E. Temporal prediction elicits rhythmic preactivation of relevant sensory cortices. Eur J Neurosci 2021; 55:3324-3339. [PMID: 34322927 PMCID: PMC9545120 DOI: 10.1111/ejn.15405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/10/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Being able to anticipate events before they happen facilitates stimulus processing. The anticipation of the contents of events is thought to be implemented by the elicitation of prestimulus templates in sensory cortex. In contrast, the anticipation of the timing of events is typically associated with entrainment of neural oscillations. It is so far unknown whether and in which conditions temporal expectations interact with feature‐based expectations, and, consequently, whether entrainment modulates the generation of content‐specific sensory templates. In this study, we investigated the role of temporal expectations in a sensory discrimination task. We presented participants with rhythmically interleaved visual and auditory streams of relevant and irrelevant stimuli while measuring neural activity using magnetoencephalography. We found no evidence that rhythmic stimulation induced prestimulus feature templates. However, we did observe clear anticipatory rhythmic preactivation of the relevant sensory cortices. This oscillatory activity peaked at behaviourally relevant, in‐phase, intervals. Our results suggest that temporal expectations about stimulus features do not behave similarly to explicitly cued, nonrhythmic, expectations, yet elicit a distinct form of modality‐specific preactivation.
Collapse
Affiliation(s)
- Louise Catheryne Barne
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), São Bernardo do Campo, Sao Paolo, Brazil.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Département Traitement de l'Information et Systèmes, ONERA, Salon-de-Provence, France
| | - André Mascioli Cravo
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), São Bernardo do Campo, Sao Paolo, Brazil
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Eelke Spaak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Riding the slow wave: Exploring the role of entrained low-frequency oscillations in memory formation. Neuropsychologia 2021; 160:107962. [PMID: 34284040 DOI: 10.1016/j.neuropsychologia.2021.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
Neural oscillations are proposed to support a variety of behaviors, including long-term memory, yet their functional significance remains an active area of research. Here, we explore a potential functional role of low-frequency cortical oscillations in episodic memory formation. Recent theories suggest that low-frequency oscillations orchestrate rhythmic attentional sampling of the environment by dynamically modulating neural excitability across time. When these oscillations entrain to low-frequency rhythms present in the environment, such as speech or music, the brain can build temporal predictions about the onset of relevant events so that these events can be more efficiently processed. Building upon this literature, we propose that entrained low-frequency oscillations may similarly influence the temporal dynamics of episodic memory by rhythmically modulating encoding across time (mnemonic sampling). Central to this proposal is the phenomenon of cross-frequency phase-amplitude coupling, whereby the amplitudes of faster (higher frequency) rhythms, such as gamma oscillations, couple to the phase of slower (lower-frequency) rhythms entrained to environmental stimuli. By imposing temporal structure on higher-frequency oscillatory activity previously linked to memory formation, entrained low-frequency oscillations could dynamically orchestrate memory formation and optimize encoding at specific moments in time. We discuss prior experimental and theoretical work relevant to this proposal.
Collapse
|
33
|
Nakatani H, Kawasaki M, Kitajo K, Yamaguchi Y. Frequency-dependent effects of EEG phase resetting on reaction time. Neurosci Res 2021; 172:51-62. [PMID: 34015393 DOI: 10.1016/j.neures.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
There is trial-to-trial variability in the reaction time to stimulus presentation. Since this variability exists even in an identical stimulus condition, it reflects the internal neural dynamics of the brain. To understand the neural dynamics that influence the reaction time, we conducted an electroencephalogram (EEG) experiment in which participants were asked to press a response button as quickly as possible when a stimulus was visually presented. Phase-locking factor analysis revealed that phase resetting in two frequency bands, which appeared 0.2 s after the stimulus presentation, characterized the reaction time. The combination of the theta band phase resetting in the left parietal region and the delta band phase resetting mainly in the posterior region was associated with the fastest reaction time, whereas delta band phase resetting without theta band phase resetting was associated with the faster reaction time. The results indicated that there were frequency-dependent effects in the relationships between the EEG phase resetting and reaction time.
Collapse
Affiliation(s)
- Hironori Nakatani
- Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, 2-3-23 Takanawa, Minato-ku, Tokyo, 108-8619, Japan; Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Masahiro Kawasaki
- Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Keiichi Kitajo
- RIKEN CBS-TOYOTA Collaboration Center (BTCC), RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Yoko Yamaguchi
- Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Applied Electronics Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa, 921-8501, Japan.
| |
Collapse
|
34
|
Erkens J, Schulte M, Vormann M, Wilsch A, Herrmann CS. Hearing Impaired Participants Improve More Under Envelope-Transcranial Alternating Current Stimulation When Signal to Noise Ratio Is High. Neurosci Insights 2021; 16:2633105520988854. [PMID: 33709079 PMCID: PMC7907945 DOI: 10.1177/2633105520988854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
An issue commonly expressed by hearing aid users is a difficulty to understand speech in complex hearing scenarios, that is, when speech is presented together with background noise or in situations with multiple speakers. Conventional hearing aids are already designed with these issues in mind, using beamforming to only enhance sound from a specific direction, but these are limited in solving these issues as they can only modulate incoming sound at the cochlear level. However, evidence exists that age-related hearing loss might partially be caused later in the hearing processes due to brain processes slowing down and becoming less efficient. In this study, we tested whether it would be possible to improve the hearing process at the cortical level by improving neural tracking of speech. The speech envelopes of target sentences were transformed into an electrical signal and stimulated onto elderly participants' cortices using transcranial alternating current stimulation (tACS). We compared 2 different signal to noise ratios (SNRs) with 5 different delays between sound presentation and stimulation ranging from 50 ms to 150 ms, and the differences in effects between elderly normal hearing and elderly hearing impaired participants. When the task was performed at a high SNR, hearing impaired participants appeared to gain more from envelope-tACS compared to when the task was performed at a lower SNR. This was not the case for normal hearing participants. Furthermore, a post-hoc analysis of the different time-lags suggest that elderly were significantly better at a stimulation time-lag of 150 ms when the task was presented at a high SNR. In this paper, we outline why these effects are worth exploring further, and what they tell us about the optimal tACS time-lag.
Collapse
Affiliation(s)
- Jules Erkens
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
| | | | | | - Anna Wilsch
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
| | - Christoph S Herrmann
- Department of Psychology, Cluster of
Excellence “Hearing4All,” European Medical School, Carl von Ossietzky University,
Oldenburg, Germany
- Research Center Neurosensory Science,
Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
35
|
Differential attention-dependent adjustment of frequency, power and phase in primary sensory and frontoparietal areas. Cortex 2021; 137:179-193. [PMID: 33636631 DOI: 10.1016/j.cortex.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/13/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
Continuously prioritizing behaviourally relevant information from the environment for improved stimulus processing is a crucial function of attention. In the current MEG study, we investigated how ongoing oscillatory activity of both sensory and non-sensory brain regions are differentially impacted by attentional focus. Low-frequency phase alignment of neural activity in primary sensory areas, with respect to attended/ignored features has been suggested to support top-down prioritization. However, phase adjustment in frontoparietal regions has not been widely studied, despite general implication of these in top-down selection of information. To investigate this, we let participants perform an established intermodal selective attention task, where low-frequency auditory (1.6 Hz) and visual (1.8 Hz) stimuli were presented simultaneously. We instructed them to either attend to the auditory or to the visual stimuli and to detect targets while ignoring the other stimulus stream. As expected, the strongest phase adjustment was observed in primary sensory regions for auditory and for visual stimulation, independent of attentional focus. We found greater differences in phase locking between attended and ignored stimulation for the visual modality. Interestingly, auditory temporal regions show small but significant attention-dependent neural entrainment even for visual stimulation. Extending findings from invasive recordings in non-human primates, we demonstrate an effect of attentional focus on the phase of the entrained oscillations in auditory and visual cortex which may be driven by phase locked increases of induced power. While sensory areas adjusted the phase of the respective stimulation frequencies, attentional focus adjusted the peak frequencies in nonsensory areas. Spatially these areas show a striking overlap with core regions of the dorsal attention network and the frontoparietal network. This suggests that these areas prioritize the attended modality by optimally exploiting the temporal structure of stimulation. Overall, our study complements and extends previous work by showing a differential effect of attentional focus on entrained oscillations (or phase adjustment) in primary sensory areas and frontoparietal areas.
Collapse
|
36
|
Beier EJ, Chantavarin S, Rehrig G, Ferreira F, Miller LM. Cortical Tracking of Speech: Toward Collaboration between the Fields of Signal and Sentence Processing. J Cogn Neurosci 2021; 33:574-593. [PMID: 33475452 DOI: 10.1162/jocn_a_01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In recent years, a growing number of studies have used cortical tracking methods to investigate auditory language processing. Although most studies that employ cortical tracking stem from the field of auditory signal processing, this approach should also be of interest to psycholinguistics-particularly the subfield of sentence processing-given its potential to provide insight into dynamic language comprehension processes. However, there has been limited collaboration between these fields, which we suggest is partly because of differences in theoretical background and methodological constraints, some mutually exclusive. In this paper, we first review the theories and methodological constraints that have historically been prioritized in each field and provide concrete examples of how some of these constraints may be reconciled. We then elaborate on how further collaboration between the two fields could be mutually beneficial. Specifically, we argue that the use of cortical tracking methods may help resolve long-standing debates in the field of sentence processing that commonly used behavioral and neural measures (e.g., ERPs) have failed to adjudicate. Similarly, signal processing researchers who use cortical tracking may be able to reduce noise in the neural data and broaden the impact of their results by controlling for linguistic features of their stimuli and by using simple comprehension tasks. Overall, we argue that a balance between the methodological constraints of the two fields will lead to an overall improved understanding of language processing as well as greater clarity on what mechanisms cortical tracking of speech reflects. Increased collaboration will help resolve debates in both fields and will lead to new and exciting avenues for research.
Collapse
|
37
|
Modulation Spectra Capture EEG Responses to Speech Signals and Drive Distinct Temporal Response Functions. eNeuro 2021; 8:ENEURO.0399-20.2020. [PMID: 33272971 PMCID: PMC7810259 DOI: 10.1523/eneuro.0399-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 11/26/2022] Open
Abstract
Speech signals have a unique shape of long-term modulation spectrum that is distinct from environmental noise, music, and non-speech vocalizations. Does the human auditory system adapt to the speech long-term modulation spectrum and efficiently extract critical information from speech signals? To answer this question, we tested whether neural responses to speech signals can be captured by specific modulation spectra of non-speech acoustic stimuli. We generated amplitude modulated (AM) noise with the speech modulation spectrum and 1/f modulation spectra of different exponents to imitate temporal dynamics of different natural sounds. We presented these AM stimuli and a 10-min piece of natural speech to 19 human participants undergoing electroencephalography (EEG) recording. We derived temporal response functions (TRFs) to the AM stimuli of different spectrum shapes and found distinct neural dynamics for each type of TRFs. We then used the TRFs of AM stimuli to predict neural responses to the speech signals, and found that (1) the TRFs of AM modulation spectra of exponents 1, 1.5, and 2 preferably captured EEG responses to speech signals in the δ band and (2) the θ neural band of speech neural responses can be captured by the AM stimuli of an exponent of 0.75. Our results suggest that the human auditory system shows specificity to the long-term modulation spectrum and is equipped with characteristic neural algorithms tailored to extract critical acoustic information from speech signals.
Collapse
|
38
|
Assaneo MF, Rimmele JM, Sanz Perl Y, Poeppel D. Speaking rhythmically can shape hearing. Nat Hum Behav 2021; 5:71-82. [PMID: 33046860 DOI: 10.1038/s41562-020-00962-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023]
Abstract
Evidence suggests that temporal predictions arising from the motor system can enhance auditory perception. However, in speech perception, we lack evidence of perception being modulated by production. Here we show a behavioural protocol that captures the existence of such auditory-motor interactions. Participants performed a syllable discrimination task immediately after producing periodic syllable sequences. Two speech rates were explored: a 'natural' (individually preferred) and a fixed 'non-natural' (2 Hz) rate. Using a decoding approach, we show that perceptual performance is modulated by the stimulus phase determined by a participant's own motor rhythm. Remarkably, for 'natural' and 'non-natural' rates, this finding is restricted to a subgroup of the population with quantifiable auditory-motor coupling. The observed pattern is compatible with a neural model assuming a bidirectional interaction of auditory and speech motor cortices. Crucially, the model matches the experimental results only if it incorporates individual differences in the strength of the auditory-motor connection.
Collapse
Affiliation(s)
- M Florencia Assaneo
- Department of Psychology, New York University, New York, NY, USA. .,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico.
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
| | - Yonatan Sanz Perl
- Department of Physics, FCEyN, University of Buenos Aires, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,University of San Andrés, Buenos Aires, Argentina
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA.,Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Lea-Carnall CA, Williams SR, Sanaei-Nezhad F, Trujillo-Barreto NJ, Montemurro MA, El-Deredy W, Parkes LM. GABA Modulates Frequency-Dependent Plasticity in Humans. iScience 2020; 23:101657. [PMID: 33163932 PMCID: PMC7599432 DOI: 10.1016/j.isci.2020.101657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Frequency-dependent reorganization of the primary somatosensory cortex, together with perceptual changes, arises following repetitive sensory stimulation. Here, we investigate the role of GABA in this process. We co-stimulated two finger tips and measured GABA and Glx using magnetic resonance (MR) spectroscopy at the beginning and end of the stimulation. Participants performed a perceptual learning task before and after stimulation. There were 2 sessions with stimulation frequency either at or above the resonance frequency of the primary somatosensory cortex (23 and 39 Hz, respectively). Perceptual learning occurred following above resonance stimulation only, while GABA reduced during this condition. Lower levels of early GABA were associated with greater perceptual learning. One possible mechanism underlying this finding is that cortical disinhibition “unmasks” lateral connections within the cortex to permit adaptation to the sensory environment. These results provide evidence in humans for a frequency-dependent inhibitory mechanism underlying learning and suggest a mechanism-based approach for optimizing neurostimulation frequency. In the context of repetitive sensory stimulation, GABA release is frequency dependent Stimulating above the resonance frequency of the somatosensory cortex reduces GABA Perceptual learning is associated with a reduction in GABA Early GABA reduction opens a window for plasticity and learning
Collapse
Affiliation(s)
- Caroline A. Lea-Carnall
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Corresponding author
| | - Stephen R. Williams
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Faezeh Sanaei-Nezhad
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nelson J. Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marcelo A. Montemurro
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Wael El-Deredy
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- Corresponding author
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
40
|
Karakaş S. A review of theta oscillation and its functional correlates. Int J Psychophysiol 2020; 157:82-99. [DOI: 10.1016/j.ijpsycho.2020.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
|
41
|
Laffere A, Dick F, Holt LL, Tierney A. Attentional modulation of neural entrainment to sound streams in children with and without ADHD. Neuroimage 2020; 224:117396. [PMID: 32979522 DOI: 10.1016/j.neuroimage.2020.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
To extract meaningful information from complex auditory scenes like a noisy playground, rock concert, or classroom, children can direct attention to different sound streams. One means of accomplishing this might be to align neural activity with the temporal structure of a target stream, such as a specific talker or melody. However, this may be more difficult for children with ADHD, who can struggle with accurately perceiving and producing temporal intervals. In this EEG study, we found that school-aged children's attention to one of two temporally-interleaved isochronous tone 'melodies' was linked to an increase in phase-locking at the melody's rate, and a shift in neural phase that aligned the neural responses with the attended tone stream. Children's attention task performance and neural phase alignment with the attended melody were linked to performance on temporal production tasks, suggesting that children with more robust control over motor timing were better able to direct attention to the time points associated with the target melody. Finally, we found that although children with ADHD performed less accurately on the tonal attention task than typically developing children, they showed the same degree of attentional modulation of phase locking and neural phase shifts, suggesting that children with ADHD may have difficulty with attentional engagement rather than attentional selection.
Collapse
Affiliation(s)
- Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom; Division of Psychology & Language Sciences, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lori L Holt
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom.
| |
Collapse
|
42
|
O'Connell MN, Barczak A, McGinnis T, Mackin K, Mowery T, Schroeder CE, Lakatos P. The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability. iScience 2020; 23:101374. [PMID: 32738615 PMCID: PMC7394914 DOI: 10.1016/j.isci.2020.101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 10/26/2022] Open
Abstract
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment.
Collapse
Affiliation(s)
- Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Kieran Mackin
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Todd Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
43
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
44
|
Kaya EM, Huang N, Elhilali M. Pitch, Timbre and Intensity Interdependently Modulate Neural Responses to Salient Sounds. Neuroscience 2020; 440:1-14. [PMID: 32445938 DOI: 10.1016/j.neuroscience.2020.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023]
Abstract
As we listen to everyday sounds, auditory perception is heavily shaped by interactions between acoustic attributes such as pitch, timbre and intensity; though it is not clear how such interactions affect judgments of acoustic salience in dynamic soundscapes. Salience perception is believed to rely on an internal brain model that tracks the evolution of acoustic characteristics of a scene and flags events that do not fit this model as salient. The current study explores how the interdependency between attributes of dynamic scenes affects the neural representation of this internal model and shapes encoding of salient events. Specifically, the study examines how deviations along combinations of acoustic attributes interact to modulate brain responses, and subsequently guide perception of certain sound events as salient given their context. Human volunteers have their attention focused on a visual task and ignore acoustic melodies playing in the background while their brain activity using electroencephalography is recorded. Ambient sounds consist of musical melodies with probabilistically-varying acoustic attributes. Salient notes embedded in these scenes deviate from the melody's statistical distribution along pitch, timbre and/or intensity. Recordings of brain responses to salient notes reveal that neural power in response to the melodic rhythm as well as cross-trial phase alignment in the theta band are modulated by degree of salience of the notes, estimated across all acoustic attributes given their probabilistic context. These neural nonlinear effects across attributes strongly parallel behavioral nonlinear interactions observed in perceptual judgments of auditory salience using similar dynamic melodies; suggesting a neural underpinning of nonlinear interactions that underlie salience perception.
Collapse
Affiliation(s)
- Emine Merve Kaya
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Huang
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA
| | - Mounya Elhilali
- Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
45
|
Javitt DC, Siegel SJ, Spencer KM, Mathalon DH, Hong LE, Martinez A, Ehlers CL, Abbas AI, Teichert T, Lakatos P, Womelsdorf T. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020; 45:1411-1422. [PMID: 32375159 PMCID: PMC7360555 DOI: 10.1038/s41386-020-0697-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies. By contrast, neuro-oscillatory responses, analyzed within the "time-frequency" domain, are relatively preserved across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory responses as translational biomarkers in neuropsychiatric treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA.
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA, 02130, USA
| | - Daniel H Mathalon
- VA San Francisco Healthcare System, University of California, San Francisco, San Francisco, CA, 94121, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Atheir I Abbas
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tobias Teichert
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Lakatos
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10954, USA
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
46
|
Manting CL, Andersen LM, Gulyas B, Ullén F, Lundqvist D. Attentional modulation of the auditory steady-state response across the cortex. Neuroimage 2020; 217:116930. [DOI: 10.1016/j.neuroimage.2020.116930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022] Open
|
47
|
Chiang CH, Lee J, Wang C, Williams AJ, Lucas TH, Cohen YE, Viventi J. A modular high-density μECoG system on macaque vlPFC for auditory cognitive decoding. J Neural Eng 2020; 17:046008. [PMID: 32498058 DOI: 10.1088/1741-2552/ab9986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A fundamental goal of the auditory system is to parse the auditory environment into distinct perceptual representations. Auditory perception is mediated by the ventral auditory pathway, which includes the ventrolateral prefrontal cortex (vlPFC). Because large-scale recordings of auditory signals are quite rare, the spatiotemporal resolution of the neuronal code that underlies vlPFC's contribution to auditory perception has not been fully elucidated. Therefore, we developed a modular, chronic, high-resolution, multi-electrode array system with long-term viability in order to identify the information that could be decoded from μECoG vlPFC signals. APPROACH We molded three separate μECoG arrays into one and implanted this system in a non-human primate. A custom 3D-printed titanium chamber was mounted on the left hemisphere. The molded 294-contact μECoG array was implanted subdurally over the vlPFC. μECoG activity was recorded while the monkey participated in a 'hearing-in-noise' task in which they reported hearing a 'target' vocalization from a background 'chorus' of vocalizations. We titrated task difficulty by varying the sound level of the target vocalization, relative to the chorus (target-to-chorus ratio, TCr). MAIN RESULTS We decoded the TCr and the monkey's behavioral choices from the μECoG signal. We analyzed decoding accuracy as a function of number of electrodes, spatial resolution, and time from implantation. Over a one-year period, we found significant decoding with individual electrodes that increased significantly as we decoded simultaneously more electrodes. Further, we found that the decoding for behavioral choice was better than the decoding of TCr. Finally, because the decoding accuracy of individual electrodes varied on a day-by-day basis, electrode arrays with high channel counts ensure robust decoding in the long term. SIGNIFICANCE Our results demonstrate the utility of high-resolution and high-channel-count, chronic µECoG recording. We developed a surface electrode array that can be scaled to cover larger cortical areas without increasing the chamber footprint.
Collapse
Affiliation(s)
- Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America. These authors contributed equally to this work
| | | | | | | | | | | | | |
Collapse
|
48
|
Erkens J, Schulte M, Vormann M, Herrmann CS. Lacking Effects of Envelope Transcranial Alternating Current Stimulation Indicate the Need to Revise Envelope Transcranial Alternating Current Stimulation Methods. Neurosci Insights 2020; 15:2633105520936623. [PMID: 32685924 PMCID: PMC7343360 DOI: 10.1177/2633105520936623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, several studies have reported beneficial effects of transcranial alternating current stimulation (tACS) in experiments regarding sound and speech perception. A new development in this field is envelope-tACS: The goal of this method is to improve cortical entrainment to the speech signal by stimulating with a waveform based on the speech envelope. One challenge of this stimulation method is timing; the electrical stimulation needs to be phase-aligned with the naturally occurring cortical entrainment to the auditory stimuli. Due to individual differences in anatomy and processing speed, the optimal time-lag between presentation of sound and applying envelope-tACS varies between participants. To better investigate the effects of envelope-tACS, we performed a speech comprehension task with a larger amount of time-lags than previous experiments, as well as an equal amount of sham conditions. No significant difference between optimal stimulation time-lag condition and best sham condition was found. Further investigation of the data revealed a significant difference between the positive and negative half-cycles of the stimulation conditions but not for sham. However, we also found a significant learning effect over the course of the experiment which was of comparable size to the effects of envelope-tACS found in previous auditory tACS studies. In this article, we discuss possible explanations for why our findings did not match up with those of previous studies and the issues that come with researching and developing envelope-tACS.
Collapse
Affiliation(s)
- Jules Erkens
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence 'Hearing4All', European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence 'Hearing4All', European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
49
|
Bauer AKR, Debener S, Nobre AC. Synchronisation of Neural Oscillations and Cross-modal Influences. Trends Cogn Sci 2020; 24:481-495. [PMID: 32317142 PMCID: PMC7653674 DOI: 10.1016/j.tics.2020.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 01/23/2023]
Abstract
At any given moment, we receive multiple signals from our different senses. Prior research has shown that signals in one sensory modality can influence neural activity and behavioural performance associated with another sensory modality. Recent human and nonhuman primate studies suggest that such cross-modal influences in sensory cortices are mediated by the synchronisation of ongoing neural oscillations. In this review, we consider two mechanisms proposed to facilitate cross-modal influences on sensory processing, namely cross-modal phase resetting and neural entrainment. We consider how top-down processes may further influence cross-modal processing in a flexible manner, and we highlight fruitful directions for further research.
Collapse
Affiliation(s)
- Anna-Katharina R Bauer
- Department of Experimental Psychology, Brain and Cognition Lab, Oxford Centre for Human Brain Activity, Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| | - Stefan Debener
- Department of Psychology, Neuropsychology Lab, Cluster of Excellence Hearing4All, University of Oldenburg, Germany
| | - Anna C Nobre
- Department of Experimental Psychology, Brain and Cognition Lab, Oxford Centre for Human Brain Activity, Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| |
Collapse
|
50
|
Song E, Li J, Won SM, Bai W, Rogers JA. Materials for flexible bioelectronic systems as chronic neural interfaces. NATURE MATERIALS 2020; 19:590-603. [PMID: 32461684 DOI: 10.1038/s41563-020-0679-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/09/2020] [Indexed: 05/03/2023]
Abstract
Engineered systems that can serve as chronically stable, high-performance electronic recording and stimulation interfaces to the brain and other parts of the nervous system, with cellular-level resolution across macroscopic areas, are of broad interest to the neuroscience and biomedical communities. Challenges remain in the development of biocompatible materials and the design of flexible implants for these purposes, where ulimate goals are for performance attributes approaching those of conventional wafer-based technologies and for operational timescales reaching the human lifespan. This Review summarizes recent advances in this field, with emphasis on active and passive constituent materials, design architectures and integration methods that support necessary levels of biocompatibility, electronic functionality, long-term stable operation in biofluids and reliability for use in vivo. Bioelectronic systems that enable multiplexed electrophysiological mapping across large areas at high spatiotemporal resolution are surveyed, with a particular focus on those with proven chronic stability in live animal models and scalability to thousands of channels over human-brain-scale dimensions. Research in materials science will continue to underpin progress in this field of study.
Collapse
Affiliation(s)
- Enming Song
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
- Center for Chronic Brain Injury, The Ohio State University, Columbus, OH, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Electrical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Computer Science, Northwestern University, Evanston, IL, USA.
- Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|