1
|
Ma K, Taylor C, Williamson M, Newton SS, Qin L. Diminished activity-dependent BDNF signaling differentially causes autism-like behavioral deficits in male and female mice. Front Psychiatry 2023; 14:1182472. [PMID: 37205980 PMCID: PMC10189061 DOI: 10.3389/fpsyt.2023.1182472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. Recent human genetic studies have identified multiple high-risk genes for ASD, which produce similar phenotypes, indicating that diverse genetic factors converge to common molecular pathways. We and others have hypothesized that activity-dependent neural signaling is a convergent molecular pathway dysregulated in ASD. However, the causal link between diminished activity-dependent neural signaling and ASD remains unclear. Brain-derived neurotrophic factor (BDNF) is a key molecule mediating activity-dependent neural signaling. We therefore hypothesize that diminished activity-dependent BDNF signaling could confer autism-like behavioral deficits. Here, we investigated the effect of diminished activity-dependent BDNF signaling on autism-like behavioral deficits by using mice with genetic knock-in of a human BDNF methionine (Met) allele, which has decreased activity-dependent BDNF release without altering basal BDNF level. Compared with wild-type (WT) controls, diminished activity-dependent BDNF signaling similarly induced anxiety-like behaviors in male and female mice. Notably, diminished activity-dependent BDNF signaling differentially resulted in autism-like social deficits and increased self-grooming in male and female mice, and male mice were more severe than female mice. Again, sexually dimorphic spatial memory deficits were observed in female BDNF+/Met mice, but not in male BDNF+/Met mice. Our study not only reveals a causal link between diminished activity-dependent BDNF signaling and ASD-like behavioral deficits, but also identifies previously underappreciated sex-specific effect of diminished activity-dependent BDNF signaling in ASD. These mice with genetic knock-in of the human BDNF Met variant provide a distinct mouse model for studying the cellular and molecular mechanisms underlying diminished activity-dependent neural signaling, the common molecular pathway dysregulated in ASD.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Connie Taylor
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Mark Williamson
- Biostatistics, Epidemiology, and Research Design Core, University of North Dakota, Grand Forks, ND, United States
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Luye Qin,
| |
Collapse
|
2
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
3
|
Hur HJ, Lee JY, Kim DH, Cho MS, Lee S, Kim HS, Kim DW. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int J Mol Sci 2022; 23:7787. [PMID: 35887140 PMCID: PMC9319001 DOI: 10.3390/ijms23147787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that early therapeutic events of neural precursor cells (NPCs) transplantation to animals with acute ischemic stroke readily protected neuronal cell damage and improved behavioral recovery through paracrine mechanisms. In this study, we tested the hypothesis that administration of conditioned medium from NPCs (NPC-CMs) could recapitulate the beneficial effects of cell transplantation. Rats with permanent middle cerebral artery occlusion (pMCAO) were randomly assigned to one of the following groups: PBS control, Vehicle (medium) controls, single (NPC-CM(S)) or multiple injections of NPC-CM(NPC-CM(M)) groups. A single intravenous injection of NPC-CM exhibited strong neuroregenerative potential to induce behavioral recovery, and multiple injections enhanced this activity further by suppressing inflammatory damage and inducing endogenous neurogenesis leading to histopathological and functional recovery. Proteome analysis of NPC-CM identified a number of proteins that are known to be associated with nervous system development, neurogenesis, and angiogenesis. In addition, transcriptome analysis revealed the importance of the inflammatory response during stroke recovery and some of the key hub genes in the interaction network were validated. Thus, our findings demonstrated that NPC-CM promoted functional recovery and reduced cerebral infarct and inflammation with enhanced endogenous neurogenesis, and the results highlighted the potency of NPC-CM in stroke therapy.
Collapse
Affiliation(s)
- Hye-Jin Hur
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Yong Lee
- Research Institute of Hyperbaric Medicine and Science, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea;
| | - Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- S. Biomedics Co., Ltd., Seoul 04979, Korea;
| | | | - Sangsik Lee
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea;
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
4
|
Harnish SM, Diedrichs VA, Bartlett CW. EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW. APHASIOLOGY 2022; 37:835-853. [PMID: 37346093 PMCID: PMC10281715 DOI: 10.1080/02687038.2022.2043234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/14/2022] [Indexed: 06/23/2023]
Abstract
Background Early investigations linking language and genetics were focused on the evolution of human communication in populations with developmental speech and language disorders. Recently, studies suggest that genes may also modulate recovery from post-stroke aphasia. Aims Our goal is to review current literature related to the influence of genetics on post-stroke recovery, and the implications for aphasia rehabilitation. We describe candidate genes implicated by empirical findings and address additional clinical considerations. Main Contribution We describe existing evidence and mechanisms supporting future investigations into how genetic factors may modulate aphasia recovery and propose that two candidate genes, brain derived neurotrophic factor (BDNF) and apolipoprotein E (APOE), may be important considerations for future research assessing response to aphasia treatment. Evidence suggests that BDNF is important for learning, memory, and neuroplasticity. APOE influences cognitive functioning and memory in older individuals and has also been implicated in neural repair. Moreover, recent data suggest an interaction between specific alleles of the BDNF and APOE genes in influencing episodic memory. Conclusions Genetic influences on recovery from aphasia have been largely unexplored in the literature despite evidence that genetic factors influence behaviour and recovery from brain injury. As researchers continue to explore prognostic factors that may influence response to aphasia treatment, it is time for genetic factors to be considered as a source of variability. As the field moves in the direction of personalized medicine, eventually allied health professionals may utilize genetic profiles to inform treatment decisions and education for patients and care partners.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University
| | | | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, College of Medicine, The Ohio State University
| |
Collapse
|
5
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
6
|
Liu J, Wang C. Microstructure and Genetic Polymorphisms: Role in Motor Rehabilitation After Subcortical Stroke. Front Aging Neurosci 2022; 14:813756. [PMID: 35177977 PMCID: PMC8843845 DOI: 10.3389/fnagi.2022.813756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose: Motor deficits are the most common disability after stroke, and early prediction of motor outcomes is critical for guiding the choice of early interventions. Two main factors that may impact the response to rehabilitation are variations in the microstructure of the affected corticospinal tract (CST) and genetic polymorphisms in brain-derived neurotrophic factor (BDNF). The purpose of this article was to review the role of these factors in stroke recovery, which will be useful for constructing a predictive model of rehabilitation outcomes.Summary of Review: We review the microstructure of the CST, including its origins in the primary motor area (M1), primary sensory area (S1), premotor cortex (PMC), and supplementary motor area (SMA). Damage to these fibers is disease-causing and can directly affect rehabilitation after subcortical stroke. BDNF polymorphisms are not disease-causing but can indirectly affect neuroplasticity and thus motor recovery. Both factors are known to be correlated with motor recovery. Further work is needed using large longitudinal patient samples and animal experiments to better establish the role of these two factors in stroke rehabilitation.Conclusions: Microstructure and genetic polymorphisms should be considered possible predictors or covariates in studies investigating motor recovery after subcortical stroke. Future predictive models of stroke recovery will likely include a combination of structural and genetic factors to allow precise individualization of stroke rehabilitation strategies.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Caihong Wang
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Caihong Wang
| |
Collapse
|
7
|
Cramer SC, See J, Liu B, Edwardson M, Wang X, Radom-Aizik S, Haddad F, Shahbaba B, Wolf SL, Dromerick AW, Winstein CJ. Genetic Factors, Brain Atrophy, and Response to Rehabilitation Therapy After Stroke. Neurorehabil Neural Repair 2021; 36:131-139. [PMID: 34933635 DOI: 10.1177/15459683211062899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Patients show substantial differences in response to rehabilitation therapy after stroke. We hypothesized that specific genetic profiles might explain some of this variance and, secondarily, that genetic factors are related to cerebral atrophy post-stroke. METHODS The phase 3 ICARE study examined response to motor rehabilitation therapies. In 216 ICARE enrollees, DNA was analyzed for presence of the BDNF val66met and the ApoE ε4 polymorphism. The relationship of polymorphism status to 12-month change in motor status (Wolf Motor Function Test, WMFT) was examined. Neuroimaging data were also evaluated (n=127). RESULTS Subjects were 61±13 years old (mean±SD) and enrolled 43±22 days post-stroke; 19.7% were BDNF val66met carriers and 29.8% ApoE ε4 carriers. Carrier status for each polymorphism was not associated with WMFT, either at baseline or over 12 months of follow-up. Neuroimaging, acquired 5±11 days post-stroke, showed that BDNF val66met polymorphism carriers had a 1.34-greater degree of cerebral atrophy compared to non-carriers (P=.01). Post hoc analysis found that age of stroke onset was 4.6 years younger in subjects with the ApoE ε4 polymorphism (P=.02). CONCLUSION Neither the val66met BDNF nor ApoE ε4 polymorphism explained inter-subject differences in response to rehabilitation therapy. The BDNF val66met polymorphism was associated with cerebral atrophy at baseline, echoing findings in healthy subjects, and suggesting an endophenotype. The ApoE ε4 polymorphism was associated with younger age at stroke onset, echoing findings in Alzheimer's disease and suggesting a common biology. Genetic associations provide insights useful to understanding the biology of outcomes after stroke.
Collapse
Affiliation(s)
- Steven C Cramer
- Neurology, 12222University of California, Irvine, CA, USA.,Dept. Neurology, University of California, Los Angeles; and California Rehabilitation Institute, Los Angeles, CA, USA
| | - Jill See
- Neurology, 12222University of California, Irvine, CA, USA
| | - Brent Liu
- Image Processing and Informatics Lab, Dept. Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Ximing Wang
- Image Processing and Informatics Lab, Dept. Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Fadia Haddad
- Pediatrics, University of California, Irvine, CA, USA
| | - Babak Shahbaba
- 23433Statistics, University of California, Irvine, CA, USA
| | - Steven L Wolf
- Dept. Rehabilitation Medicine, Division of Physical Therapy Education, Emory University; Atlanta VA Health Care System, Center for Visual and Neurocognitive Rehabilitation
| | | | - Carolee J Winstein
- Div. Biokinesiology and Physical Therapy and Dept. Neurology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
9
|
Balkaya M, Kim ID, Shakil F, Cho S. CD36 deficiency reduces chronic BBB dysfunction and scar formation and improves activity, hedonic and memory deficits in ischemic stroke. J Cereb Blood Flow Metab 2021; 41:486-501. [PMID: 32404022 PMCID: PMC7922745 DOI: 10.1177/0271678x20924099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Ameliorating blood-brain barrier disruption and altering scar formation dynamics are potential strategies that may improve post-stroke recovery. CD36 is a class B scavenger receptor that plays a role in innate immunity, inflammation and vascular dysfunction and regulates post-stroke injury, neovascularization, reactive astrogliosis and scar formation. By subjecting WT and CD36KO mice to different MCAo occlusion durations to generate comparable acute lesion sizes, we addressed the role of CD36 in BBB dysfunction, scar formation and recovery. The majority of stroke recovery studies primarily focus on motor function. Here, we employed an extensive behavioral test arsenal to evaluate psychological and cognitive endpoints. While not evident during the acute phase, CD36 deficient mice displayed significantly attenuated BBB leakage and scar formation at three months after stroke compared to wild-type littermates. Assessment of motor (open field, rotarod), anxiety (plus maze, light-dark box), depression (forced swim, sucrose preference) and memory tests (water maze) revealed that CD36 deficiency ameliorated stroke-induced behavioral impairments in activity, hedonic responses and spatial learning and strategy switching. Our findings indicate that CD36 contributes to stroke-induced BBB dysfunction and scar formation in an injury-independent manner, as well as to the chronic motor and neurophysiological deficits in chronic stroke.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Il-doo Kim
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Faariah Shakil
- Burke Neurological Research Institute, White Plains, NY,
USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY,
USA
- Feil Family Brain and Mind Research Institute, Weill Cornell
Medicine at Burke Neurological Research Institute, White Plains, NY USA
| |
Collapse
|
10
|
Cuthbert GA, Shaik F, Harrison MA, Ponnambalam S, Homer-Vanniasinkam S. Scavenger Receptors as Biomarkers and Therapeutic Targets in Cardiovascular Disease. Cells 2020; 9:cells9112453. [PMID: 33182772 PMCID: PMC7696859 DOI: 10.3390/cells9112453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
The process of atherosclerosis leads to the formation of plaques in the arterial wall, resulting in a decreased blood supply to tissues and organs and its sequelae: morbidity and mortality. A class of membrane-bound proteins termed scavenger receptors (SRs) are closely linked to the initiation and progression of atherosclerosis. Increasing interest in understanding SR structure and function has led to the idea that these proteins could provide new routes for cardiovascular disease diagnosis, management, and treatment. In this review, we consider the main classes of SRs that are implicated in arterial disease. We consider how our understanding of SR-mediated recognition of diverse ligands, including modified lipid particles, lipids, and carbohydrates, has enabled us to better target SR-linked functionality in disease. We also link clinical studies on vascular disease to our current understanding of SR biology and highlight potential areas that are relevant to cardiovascular disease management and therapy.
Collapse
Affiliation(s)
- Gary A. Cuthbert
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: ; Tel.:+44 113 3433007
| | - Faheem Shaik
- School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (F.S.); (S.P.)
| | | | - Sreenivasan Ponnambalam
- School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (F.S.); (S.P.)
| | | |
Collapse
|
11
|
Santoro M, Siotto M, Germanotta M, Bray E, Mastrorosa A, Galli C, Papadopoulou D, Aprile I. BDNF rs6265 Polymorphism and Its Methylation in Patients with Stroke Undergoing Rehabilitation. Int J Mol Sci 2020; 21:ijms21228438. [PMID: 33182716 PMCID: PMC7696026 DOI: 10.3390/ijms21228438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) and its rs6265 single nucleotide polymorphism (SNP) play an important role in post-stroke recovery. We investigated the correlation between BDNF rs6265 SNP and recovery outcome, measured by the modified Barthel index, in 49 patients with stroke hospitalized in our rehabilitation center at baseline (T0) and after 30 sessions of rehabilitation treatment (T1); moreover, we analyzed the methylation level of the CpG site created or abolished into BDNF rs6265 SNP. In total, 11 patients (22.4%) were heterozygous GA, and 32 (65.3%) and 6 (12.2%) patients were homozygous GG and AA, respectively. The univariate analysis showed a significant relationship between the BDNF rs6265 SNP and the modified Barthel index cut-off (χ2(1, N = 48) = 3.86, p = 0.049), considering patients divided for carrying (A+) or not carrying (A−) the A allele. A higher percentage of A− patients obtained a favorable outcome, as showed by the logistic regression model corrected by age and time since the stroke onset, compared with the A+ patients (OR: 5.59). At baseline (T0), the percentage of BDNF methylation was significantly different between GG (44.6 ± 1.1%), GA (39.5 ± 2.8%) and AA (28.5 ± 1.7%) alleles (p < 0.001). After rehabilitation (T1), only patients A− showed a significant increase in methylation percentages (mean change = 1.3, CI: 0.4–2.2, p = 0.007). This preliminary study deserves more investigation to confirm if BDNF rs6265 SNP and its methylation could be used as a biological marker of recovery in patients with stroke undergoing rehabilitation treatment.
Collapse
|
12
|
Bembenek JP, Kurczych K, Kłysz B, Cudna A, Antczak J, Członkowska A. Prediction of Recovery and Outcome Using Motor Evoked Potentials and Brain Derived Neurotrophic Factor in Subacute Stroke. J Stroke Cerebrovasc Dis 2020; 29:105202. [PMID: 33066924 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Motor evoked potentials (MEPs) have been postulated to be useful in predicting recovery in patients with motor impairment. We aimed to investigate whether MEPs elicited by transcranial magnetic stimulation (TMS), serum brain derived neurotrophic factor (BDNF) and its genotype have prognostic value on stroke recovery in patients with hand paresis due to stroke. METHODS This was an observational cohort study. Patients underwent TMS with MEPs from abductor digiti minimi evaluation between 2-14 (D0) and 30 days (D30) after stroke and their impact on motor function of the upper limb and general outcome was assessed after 3 months (D90). The presence of a BDNF gene polymorphism was determined and serum BDNF concentrations were measured at D0, D30 and D90. RESULTS The presence of MEPs and their amplitude at rest and in effort significantly correlated with improvement of upper-limb paresis and general outcome after 3 months. Resting motor threshold did not have prognostic value. Central motor conduction time and MEP latency less consistently predicted stroke outcome or motor deficit improvement. Neither BDNF polymorphisms nor BDNF concentration at D0, D30 and D90 corresponded with the degree of paresis or the independence of patients 3 months after stroke. CONCLUSIONS The presence of MEPs and their amplitude are useful predictors of upper-limb motor function recovery and general outcome after stroke. BDNF concentration and its genotype had no prognostic value. Further studies conducted on large cohorts are necessary to determine the usefulness of these methods in motor recovery and stroke outcome prediction.
Collapse
Affiliation(s)
- Jan P Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Katarzyna Kurczych
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Bożena Kłysz
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Agnieszka Cudna
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Jakub Antczak
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Anna Członkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
13
|
Rezaei S, Asgari Mobarake K, Saberi A. BDNF (rs6265) Val < Met polymorphism can buffer cognitive functions against post stroke CT/MRI pathological findings. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:971-982. [PMID: 33073590 DOI: 10.1080/23279095.2020.1830774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain lesions following stroke have been shown prevalently in CT/MRI, and it was confirmed that lesions usually are accompanied by cognitive deficits. Although previous studies have emphasized that BDNF Val66Met polymorphism had a substantial role in neurogenesis and synaptic plasticity, it remains unclear to what extent an interaction may be appeared between neuroimaging findings and Val66Met variants on different cognitive functions following stroke. In a case-control study the carriers of at least one Val allele (n = 56), were compared with the carriers of Met/Met homozygotes (n = 156) in order to find possible neuroimaging factors in relation to cognitive functions in a sample from the north of Iran. The third edition of Addenbrooke's Cognitive Examination (ACE-III) was used to determine the cognitive functions. There were interactive effects among Val66Met genotypes with dominant hemisphere lesions [F = 6.97, ή2 = 0.03, p = 0.009], cerebral atrophy [F = 5.43, ή2 = 0.03, p = 0.011] and number of lesions [F = 4.32, ή2 = 0.04, p = 0.014], for visuospatial skills, memory, and attention functions respectively; implying that the effect of dominant hemisphere lesions, cerebral atrophy, and multiple lesions on cognitive functions have been modulated by Met/Met homozygosity. The destructive effect of Val/Met homozygosity on cognitive functions was shown to be exacerbated by dominant hemispheric lesions, cerebral atrophy, and multiple lesions following stroke. The findings of present research support our hypothesis that interaction of Val66Met variants with cerebral lesions is associated with cognitive dysfunctions in post stroke conditions; particularly through Met/Met homozygosity which act as a buffer mechanism against some CT/MRI pathological findings.
Collapse
Affiliation(s)
- Sajjad Rezaei
- Department of Psychology, University of Guilan, Rasht, Iran
| | | | - Alia Saberi
- Neuroscience Research Center, Department of Neurology, School of Medicine, PourSina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
15
|
Zhang X, Bi X. Post-Stroke Cognitive Impairment: A Review Focusing on Molecular Biomarkers. J Mol Neurosci 2020; 70:1244-1254. [PMID: 32219663 DOI: 10.1007/s12031-020-01533-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Post-stroke cognitive impairment (PSCI), as one of the major complications after stroke, refers to a series of syndromes from mild cognitive impairment to dementia caused by stroke. Stroke has been reported to increase the risk of cognitive impairment by at least five to eight times. The assessment of PSCI usually relies on neuropsychological tests, but the results of these tests are subjective and inaccurate, and can be insufficient for the diagnosis and prognosis of PSCI. In recent years, an increasing number studies have indicated that changes in the expression of biomarkers such as C-reactive protein (CRP), interleukin 6 (IL-6) and IL-10 in blood, urine and other body fluids are associated with cognitive decline after stroke. Therefore, the detection of biomarkers in circulating blood serum, plasma and cerebrospinal fluid (CSF) may improve the accuracy of diagnosis and prognosis in PSCI. This review aims to summarize the studies on potential molecular biomarkers of PSCI.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of kinesiology, Shanghai University of sport, No. 200 Hengren Road, Yangpu District, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China.
| |
Collapse
|
16
|
Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21072273. [PMID: 32218342 PMCID: PMC7177523 DOI: 10.3390/ijms21072273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Regeneration of adult neural circuits after an injury is limited in the central nervous system (CNS). Heme oxygenase (HO) is an enzyme that produces HO metabolites, such as carbon monoxide (CO), biliverdin and iron by heme degradation. CO may act as a biological signal transduction effector in CNS regeneration by stimulating neuronal intrinsic and extrinsic mechanisms as well as mitochondrial biogenesis. CO may give directions by which the injured neurovascular system switches into regeneration mode by stimulating endogenous neural stem cells and endothelial cells to produce neurons and vessels capable of replacing injured neurons and vessels in the CNS. The present review discusses the regenerative potential of CO in acute and chronic neuroinflammatory diseases of the CNS, such as stroke, traumatic brain injury, multiple sclerosis and Alzheimer’s disease and the role of signaling pathways and neurotrophic factors. CO-mediated facilitation of cellular communications may boost regeneration, consequently forming functional adult neural circuits in CNS injury.
Collapse
|
17
|
Merritt VC, Clark AL, Evangelista ND, Sorg SF, Schiehser DM, Delano-Wood L. Dissociation of BDNF Val66Met polymorphism on neurocognitive functioning in military veterans with and without a history of remote mild traumatic brain injury. Clin Neuropsychol 2020; 34:1226-1247. [PMID: 32204647 DOI: 10.1080/13854046.2020.1740324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Since neurocognitive functioning following mild traumatic brain injury (mTBI) may be influenced by genetic factors that mediate synaptic survival and repair, we examined the influence of a common brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) on cognition using a well-defined sample of military Veterans with and without a history of mTBI. METHOD Participants included 138 Veterans (mTBI = 75; military controls [MCs] = 63) who underwent neuropsychological testing, including completion of self-report measures assessing psychiatric distress, and BDNF genotyping. The mTBI group was tested roughly 66.7 months following their most recent mTBI. Veterans were divided into two groups-Met+ (Met/Met and Met/Val; n = 49) and Met- (Val/Val; n = 89) and compared on domain-specific cognitive composite scores representing memory, executive functioning, and visuospatial speed. RESULTS ANCOVAs adjusting for psychiatric distress, sex, years of education, and ethnicity/race revealed a significant group (mTBI vs. MC) by BDNF genotype (Met + vs. Met-) interaction for the memory (p = .024; ηp 2 = .039) and executive functioning (p = .010; ηp 2 = .050) composites, such that Met+ mTBI Veterans demonstrated better performance than Met- mTBI Veterans on the cognitive measures, whereas Met+ MCs demonstrated worse performance relative to Met- MCs on the cognitive measures. No significant interaction was observed for the visuospatial speed composite (p = .938; ηp 2 < .001). CONCLUSIONS These findings offer preliminary evidence to suggest that the Met allele may be protective in the context of remote mTBI. Findings need to be replicated using larger samples, and future studies are necessary to elucidate the precise mechanisms and neural underpinnings of this interaction.
Collapse
Affiliation(s)
- Victoria C Merritt
- Research and Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA, USA
| | - Alexandra L Clark
- Research and Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Scott F Sorg
- Research and Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA, USA
| | - Dawn M Schiehser
- Research and Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| | - Lisa Delano-Wood
- Research and Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
18
|
Han Z, Qi L, Xu Q, Xu M, Cai L, Wong J, Hu X, Luo X, Wang J, Zhang Y, Li Y, Wang QM. BDNF Met allele Is Associated With Lower Cognitive Function in Poststroke Rehabilitation. Neurorehabil Neural Repair 2020; 34:247-259. [PMID: 32009534 DOI: 10.1177/1545968320902127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background and purpose. The identification of a genetic role for cognitive outcome could influence the design of individualized treatment in poststroke rehabilitation. The aim of this study is to determine whether brain-derived neurotrophic factor ( BDNF) Val66Met polymorphism is independently associated with poststroke functional outcome. Methods. A total of 775 stroke patients with genomic data were identified from the Partners HealthCare Biobank, which contains a large number of genotypes from Biobank’s consented patients. Of 775 stroke patients who met the inclusion/exclusion criteria, 86 were enrolled. Functional outcomes were assessed using the Functional Independence Measure scores at the time of admission and discharge. Logistic and linear regression models adjusted for covariate variables, including age, sex, and medical conditions, were used to evaluate the association between BDNF Val66Met and functional outcome. Results. We detected a significant correlation between Met alleles and lower cognitive function at discharge in both ischemic and hemorrhagic stroke patients. Genotyping findings confirmed that BDNF Met allele frequency was higher in contrast to Val/Val allele frequency in lower cognitive functional recovery. Furthermore, after adjusting for covariate variables, BDNF Met alleles were found to be associated with lower cognitive outcome [ P = .003; odds ratio (OR) = 5.95 (1.81-19.52)] and recovery [ P = .006; OR = 3.16 (1.4-7.15)], especially with lower problem solving, expression, and social recovery in all stroke patients. Conclusions. Met allele carriers exhibited impaired poststroke cognitive function. The BDNF genotype may be a useful predictor of cognitive function in inpatient poststroke rehabilitation.
Collapse
Affiliation(s)
- Zhenxiang Han
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- Seventh People’s Hospital of Shanghai University of TCM, Shanghai, PR China
| | - Lili Qi
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of TCM, Shanghai, PR China
| | | | - Mingzhu Xu
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- Southern Medical University, Shenzhen, PR China
| | - Lei Cai
- Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - John Wong
- MGH Institute of Health Professions, Boston, MA, USA
| | - Xinjia Hu
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- Shenzhen People’s Hospital, Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, PR China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong, PR China
- Dapeng New District Nan’ao People’s Hospital, Shenzhen, Guangdong, PR China
| | - Jiening Wang
- Seventh People’s Hospital of Shanghai University of TCM, Shanghai, PR China
| | - Yuling Zhang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yapeng Li
- Fudan University, Shanghai, PR China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Giarratana AO, Teng S, Reddi S, Zheng C, Adler D, Thakker-Varia S, Alder J. BDNF Val66Met Genetic Polymorphism Results in Poor Recovery Following Repeated Mild Traumatic Brain Injury in a Mouse Model and Treatment With AAV-BDNF Improves Outcomes. Front Neurol 2019; 10:1175. [PMID: 31787925 PMCID: PMC6854037 DOI: 10.3389/fneur.2019.01175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 01/23/2023] Open
Abstract
Clinicians have long noticed that some Traumatic Brain Injury (TBI) patients have worse symptoms and take a longer time to recover than others, for reasons unexplained by known factors. Identifying what makes some individuals more susceptible is critical to understanding the underlying mechanisms through which TBI causes deleterious effects. We have sought to determine the effect of a single nucleotide polymorphism (SNP) in Brain-derived neurotrophic factor (BDNF) at amino acid 66 (rs6265) on recovery after TBI. There is controversy from human studies as to whether the BDNF Val66Val or Val66Met allele is the risk factor for worse outcomes after brain trauma. We therefore investigated cellular and behavioral outcomes in genetically engineered mice following repeated mild TBI (rmTBI) using a lateral fluid percussion (LFP) injury model. We found that relative to injured Val66Val carriers, injured Val66Met carriers had a larger inflammation volume and increased levels of neurodegeneration, apoptosis, p-tau, activated microglia, and gliosis in the cortex and/or hippocampus at 1 and/or 21 days post-injury (DPI). We therefore concluded that the Val66Met genetic polymorphism is a risk factor for poor outcomes after rmTBI. In order to determine the mechanism for these differences, we investigated levels of the apoptotic-inducing pro BDNF and survival-inducing mature BDNF isoforms and found that Met carriers had less total BDNF in the cortex and a higher pro/mature ratio of BDNF in the hippocampus. We then developed a personalized approach to treating genetically susceptible individuals by overexpressing wildtype BDNF in injured Val66Met mice using an AAV-BDNF virus. This intervention improved cellular, motor, and cognitive behavior outcomes at 21 DPI and increased levels of mature BDNF and phosphorylation of mature BDNF's receptor trkB. This study lays the groundwork for further investigation into the genetics that play a role in the extent of injury after rmTBI and highlights how personalized therapeutics may be targeted for recovery in susceptible individuals.
Collapse
Affiliation(s)
- Anna O Giarratana
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Sahithi Reddi
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Derek Adler
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
20
|
Kang HJ, Kim KO, Kim JW, Kim SW, Park MS, Kim HR, Shin MG, Cho KH, Kim JM. A longitudinal study of the associations of BDNF genotype and methylation with poststroke anxiety. Int J Geriatr Psychiatry 2019; 34:1706-1714. [PMID: 31368178 DOI: 10.1002/gps.5185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although the precise etiology of poststroke anxiety (PSA) has yet to be fully elucidated, it is known that brain-derived neurotrophic factor (BDNF) is important for neural plasticity and long-term potentiation, associated with the pathophysiology of anxiety. The expression of BDNF is regulated by epigenetic and genetic profiles. Thus, we investigated the association between BDNF methylation status and PSA at 2 weeks and 1 year after stroke while accounting for interactions with the BDNF Val66Met polymorphism. METHODS The baseline sample comprised 286 patients who were assessed at 2 weeks after stroke; of these patients, 222 (78%) were followed up with at 1 year after stroke. The presence of PSA was determined using the anxiety subscale of the Hospital Anxiety and Depression Scale (HADS), and the effects of BDNF methylation status and polymorphisms on PSA status were assessed with multivariate logistic regression models. RESULTS The prevalence of PSA was slightly lower (27 [9.4%]) at baseline, and 35 (15.8%) patients were identified as having PSA at the 1-year follow-up. Stroke patients with a higher average methylation status were more likely to have PSA at 1 year. The BDNF Val66Met polymorphism was not independently associated with PSA during either the acute or chronic phase after stroke, but there was a significant interactive effect between BDNF methylation and genotype on PSA at 2 weeks. CONCLUSIONS In this study, BDNF methylation in combination with the met/met BDNF polymorphism (Val66Met polymorphism) was associated with PSA. These findings may help identify patients at higher risk for PSA.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Kyu-On Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Hye-Ran Kim
- College of Korean Medicine, Dongshin University, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
21
|
Qin L, Actor-Engel HS, Woo MS, Shakil F, Chen YW, Cho S, Aoki C. An Increase of Excitatory-to-Inhibitory Synaptic Balance in the Contralateral Cortico-Striatal Pathway Underlies Improved Stroke Recovery in BDNF Val66Met SNP Mice. Neurorehabil Neural Repair 2019; 33:989-1002. [PMID: 31524060 DOI: 10.1177/1545968319872997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite negative association in cognition and memory, mice harboring Val66Met BDNF SNP (BDNFM/M) exhibit enhanced motor recovery accompanied by elevated excitatory synaptic markers VGLUT1 and VGLUT2 in striatum contralateral to unilateral ischemic stroke. The cortico-striatal pathway is a critical gateway for plasticity of motor/gait function. We hypothesized that enhanced excitability of the cortico-striatal pathway, especially of the contralateral hemisphere, underlies improved motor recovery. To test this hypothesis, we examined the key molecules involving excitatory synaptogenesis: Thrombospondins (TSP1/2) and their neuronal receptor α2δ-1. In WT brains, stroke induced expressions of TSP1/2-mRNA. The contralateral hemisphere of BDNFM/M mice showed heightened TSP2 and α2δ-1 mRNA and protein specifically at 6 months post-stroke. Immunoreactivities of TSPs and α2δ-1 were increased in cortical layers 1/2 of stroked BDNFM/M animals compared with BDNFM/M sham brains at this time. Areal densities of excitatory synapses in cortical layer 1 and striatum were also increased in stroked BDNFM/M brains, relative to stroked WT brains. Notably, the frequency of GABAergic synapses was greatly reduced along distal dendrites in cortical layer 1 in BDNFM/M brains, whether or not stroked, compared with WT brains. There was no effect of genotype or treatment on the density of GABAergic synapses onto striatal medium spiny neurons. The study identified molecular and synaptic substrates in the contralateral hemisphere of BDNFM/M mice, especially in cortical layers 1/2, which indicates selective region-related synaptic plasticity. The study suggests that an increase in excitatory-to-inhibitory synaptic balance along the contralateral cortico-striatal pathway underlies the enhanced functional recovery of BDNFM/M mice.
Collapse
Affiliation(s)
- Luye Qin
- Burke Neurological Institute, White Plains, NY, USA.,State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Chiye Aoki
- New York University, New York, NY, USA.,NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
23
|
Landers MR, Johnson KN, Johnson S, Ormsby T, Salgo DC, Zorn JB, Lyle J, Murtishaw AS, Salazar AM, Kinney JW. Pre-diagnosis physical activity habits are associated with age of diagnosis in Parkinson's disease. Clin Park Relat Disord 2019; 1:25-30. [PMID: 34316595 PMCID: PMC8288698 DOI: 10.1016/j.prdoa.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Studies suggest that exercise may be neuroprotective when implemented before the clinical presentation of Parkinson's disease (PD). Levels of brain-derived neurotrophic factor (BDNF), theorized to play a role in neuroprotection, are affected by its genotype and exercise. Here we explore this previously unstudied interaction on age at diagnosis and severity of symptoms. METHODS 76 participants with PD submitted buccal cells to determine BDNF genotype, completed the modified Lifetime Physical Activity Questionnaire to determine exercise habits, and were assessed using the Movement Disorder Society - Unified Parkinson's Disease Rating Scale III (MDS-UPDRS-III) and the Mini-Balance Evaluations Test (MBT). For aim 1 (age at diagnosis), 60 participants (age = 69.6 ± 7.4; males = 45, females = 15) were analyzed. For aim 2 (severity of symptoms), 54 participants (age = 70.0 ± 7.6; males = 41, females = 13) were analyzed. RESULTS The final hierarchical regression model for age at diagnosis produced an R2 = 0.146, p = .033; however, the only significant variable in the final model was average moderate physical activity from ages 20s to 40s (p = .009). The regression for MDS-UPDRS III was not significant; however, the regression for MBT was, p = .0499. In the final model, 23.1% of the variance was explained. Years since diagnosis (p = .014) and average vigorous physical activity from ages 20s to 40s (p = .047) were the only predictors in the final model. CONCLUSIONS While a strong interaction between BDNF genotype and lifetime physical activity was not observed, our results suggest that lifetime exercise may be neuroprotective in PD. Specifically, higher amounts of moderate PA were associated with an older age at diagnosis.
Collapse
Affiliation(s)
- Merrill R. Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 453029, Las Vegas, NV 89154, USA
| | - Kyle N. Johnson
- Encompass Health Rehabilitation Hospital of Las Vegas, 1250 South Valley View Blvd, Las Vegas, NV 89102, USA
| | - Samantha Johnson
- Department of Physical Therapy, University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 453029, Las Vegas, NV 89154, USA
| | - Tyler Ormsby
- Encompass Health Rehabilitation Hospital of Henderson, Henderson, NV 89052, USA
| | - Danielle C. Salgo
- Custom Physical Therapy, 1450 E Prater Way Unit 103, Sparks, NV 89434, USA
| | - Jessica B. Zorn
- Benchmark Human Services, 11350 Random Hills Road, Suite 885, Fairfax, VA 22030, USA
| | - James Lyle
- 11257 Mile 2 E., Mercedes, TX 78570, USA
| | | | | | | |
Collapse
|
24
|
Discovery of Biomarker Panels for Neural Dysfunction in Inborn Errors of Amino Acid Metabolism. Sci Rep 2019; 9:9128. [PMID: 31235756 PMCID: PMC6591213 DOI: 10.1038/s41598-019-45674-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with inborn errors of amino acid metabolism frequently show neuropsychiatric symptoms despite accurate metabolic control. This study aimed to gain insight into the underlying mechanisms of neural dysfunction. Here we analyzed the expression of brain-derived neurotrophic factor (BDNF) and 10 genes required for correct brain functioning in plasma and blood of patients with Urea Cycle Disorders (UCD), Maple Syrup Urine Disease (MSUD) and controls. Receiver-operating characteristic (ROC) analysis was used to evaluate sensitivity and specificity of potential biomarkers. CACNA2D2 (α2δ2 subunit of voltage-gated calcium channels) and MECP2 (methyl-CpG binding protein 2) mRNA and protein showed an excellent neural function biomarker signature (AUC ≥ 0,925) for recognition of MSUD. THBS3 (thrombospondin 3) mRNA and AABA gave a very good biomarker signature (AUC 0,911) for executive-attention deficits. THBS3, LIN28A mRNA, and alanine showed a perfect biomarker signature (AUC 1) for behavioral and mood disorders. Finally, a panel of BDNF protein and at least two large neural AAs showed a perfect biomarker signature (AUC 1) for recognition of psychomotor delay, pointing to excessive protein restriction as central causative of psychomotor delay. To conclude, our study has identified promising biomarker panels for neural function evaluation, providing a base for future studies with larger samples.
Collapse
|
25
|
Zhou J, Ma MM, Fang JH, Zhao L, Zhou MK, Guo J, He L. Differences in brain-derived neurotrophic factor gene polymorphisms between acute ischemic stroke patients and healthy controls in the Han population of southwest China. Neural Regen Res 2019; 14:1404-1411. [PMID: 30964066 PMCID: PMC6524511 DOI: 10.4103/1673-5374.253525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, West China Hospital, Sichuan University, China between September 2011 and December 2014. The patients’ severities of neurological deficits in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR] = 0.67; 95% confidence interval [CI]: 0.45–1.00; P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65; 95% CI: 0.42–1.00; P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.58; 95% CI: 0.37–0.90; P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008[4]) on July 25, 2008.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Meng-Meng Ma
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing-Huan Fang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mu-Ke Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
26
|
Lee H, Choi YK. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int J Mol Sci 2018; 20:ijms20010078. [PMID: 30585210 PMCID: PMC6337166 DOI: 10.3390/ijms20010078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.
Collapse
Affiliation(s)
- Huiju Lee
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
27
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|
28
|
Yang J, Park KW, Cho S. Inhibition of the CD36 receptor reduces visceral fat accumulation and improves insulin resistance in obese mice carrying the BDNF- Val66Met variant. J Biol Chem 2018; 293:13338-13348. [PMID: 29914985 DOI: 10.1074/jbc.ra118.002405] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/12/2018] [Indexed: 01/09/2023] Open
Abstract
Obesity-induced metabolic dysfunctions increase the risk for vascular diseases, including type II diabetes and stroke. Managing obesity is of interest to address the worldwide health problem; however, the role of genetic variability in human obesity development and specific targets for obesity-related metabolic disease have not been thoroughly studied. A SNP in the brain-derived neurotropic factor (BDNF) gene that results in the substitution of a valine with a methionine at codon 66 (Val66Met) occurs with a high frequency in humans. This study addressed the effect of genetic variability in developing obesity and the efficacy of the inhibition of cluster of differentiation 36 (CD36), a multifunctional receptor implicated in obesity and insulin resistance, in WT mice and mice with the BDNF Val66Met variant. CD36 inhibition by salvionolic acid B (SAB) in diet-induced obese WT mice reduced visceral fat accumulation and improved insulin resistance. The benefit of SAB was abrogated in CD36 knockout mice, showing the specificity of SAB. In addition, mice with the Val66Met variant in both alleles (BDNFM/M) fed a high-fat diet exhibited extreme obesity with increased CD36 gene and protein levels in macrophages. Chronic SAB treatment in BDNFM/M mice significantly decreased visceral fat accumulation and improved insulin resistance. Notably, the effect of SAB was greater in the extremely obese BDNFM/M mice compared with the WT mice. The study demonstrated a link between BDNF Val66Met and elevated CD36 expression and suggested that CD36 inhibition may be a potential strategy to improve metabolic dysfunctions and to normalize risk factors for vascular diseases in the obese population.
Collapse
Affiliation(s)
- Jiwon Yang
- From the Burke Medical Research Institute, White Plains, New York 10605 and
| | - Keun Woo Park
- From the Burke Medical Research Institute, White Plains, New York 10605 and
| | - Sunghee Cho
- From the Burke Medical Research Institute, White Plains, New York 10605 and .,the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
29
|
Marie C, Pedard M, Quirié A, Tessier A, Garnier P, Totoson P, Demougeot C. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function? J Cereb Blood Flow Metab 2018; 38:935-949. [PMID: 29557702 PMCID: PMC5998997 DOI: 10.1177/0271678x18766772] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.
Collapse
Affiliation(s)
- Christine Marie
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Martin Pedard
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France.,2 Service de Neurologie, CHRU, Dijon, France
| | - Aurore Quirié
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Anne Tessier
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Perle Totoson
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
30
|
Becerra-Calixto A, Posada-Duque R, Cardona-Gómez GP. Recovery of Neurovascular Unit Integrity by CDK5-KD Astrocyte Transplantation in a Global Cerebral Ischemia Model. Mol Neurobiol 2018; 55:8563-8585. [PMID: 29564811 DOI: 10.1007/s12035-018-0992-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Astrocytes play metabolic and structural support roles and contribute to the integrity of the blood-brain barrier (BBB), linking communication between neurons and the endothelium. Cyclin-dependent kinase 5 (CDK5) likely exerts a dual effect on the endothelium and astrocytes due to its involvement in migration and angiogenesis; the overactivation of CDK5 is associated with dysfunction in glutamate recapture and hypoxia. Recently, we proposed that CDK5-targeted astrocytes facilitate the recovery of neurological and motor function in transplanted ischemic rats. In the current study, we treated cerebral ischemic rats and endothelial cells exposed to glutamate toxicity with CDK5 knock-down (CDK5-KD) astrocytes to determine the role of CDK5 in neurovascular integrity. We found that the effects of CDK5-KD were sustained for 4 months, preventing neuronal and astrocyte loss, facilitating the recovery of the BBB via the production of BDNF by endogenous astrocytes (GFP-) surrounding vessels in the motor cortex and the corpus callosum of global ischemic rats, and improving neurological performance. These findings were supported by the in vitro findings of increased transendothelial resistance, p120-ctn+ adhesion and reduced intercellular gaps induced by a CDK5 inhibitor (roscovitine) in bEnd.3 cells in a glutamate-toxicity model. Additionally, CDK5-KD astrocytes in co-culture protected the endothelial cell viability, increased BDNF release from astrocytes, increased BDNF immunoreactivity in neighboring astrocytes and endothelial cells and enhanced cell adhesion in a glutamate-toxicity model. Altogether, these findings suggest that a CDK5 reduction in astrocytes protects the endothelium, which promotes BDNF release, endothelial adhesion, and the recovery of neurovascular unit integrity and brain function in ischemic rats.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia. .,Universidad de Antioquia, Sede de Investigación Universitaria (SIU), Calle 62 # 52 - 59; Torre 1, Piso 4, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
31
|
Pedard M, Demougeot C, Prati C, Marie C. Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:249-254. [PMID: 29126980 DOI: 10.1016/j.pnpbp.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Both peripheral and central brain-derived neurotrophic factor (BDNF) levels are decreased in depression and normalized by efficient anti-depressive therapies. While depression symptoms are frequent in rheumatoid arthritis, BDNF has been poorly investigated in this pathology. Therefore, the present study explored cerebral and peripheral BDNF in arthritis rats as well as the link between brain BDNF and the two factors recently involved in the pathogenesis of depression and present in rheumatoid arthritis namely inflammation and endothelial dysfunction. METHODS The brain (hippocampus and frontal cortex) and blood (serum) were collected in rats subjected to adjuvant-induced arthritis (AIA) when inflammatory symptoms and endothelial dysfunction are fully developed. Anhedonia as a core symptom of depression symptom was assessed from preference for a saccharin drinking solution. Inflammation was assessed from the arthritis score and serum levels of TNFα and IL-1β. Treatment with the arginase inhibitor N(w)-hydroxy-nor-l-arginine (nor-NOHA) was used as a strategy to prevent endothelial dysfunction without improving inflammatory symptoms. RESULTS As compared to controls, AIA rats displayed decreased brain BDNF levels that coexisted with anhedonia but contrasted with increased BDNF levels in serum. Brain BDNF deficiency correlated neither with arthritis score nor with pro-inflammatory cytokines levels, while it was mitigated by nor-NOHA treatment. A positive correlation was observed between serum BDNF and TNFα levels. CONCLUSIONS Our study reveals that arthritis decreases BDNF levels in the brain and that endothelial dysfunction rather than inflammation contributes to the decrease. It also identifies a disconnection between serum and brain BDNF levels in arthritis.
Collapse
Affiliation(s)
- Martin Pedard
- INSERM U1093, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service de Neurologie, CHRU, Dijon, France
| | - Céline Demougeot
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Clément Prati
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France; Service de Rhumatologie, CHRU, Besançon, France
| | - Christine Marie
- INSERM U1093, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
32
|
Vibhuti, Khan R, Sharma A, Jain S, Mohanty S, Prasad K. Intra-arterial transplantation of human bone marrow mesenchymal stem cells (hBMMSCs) improves behavioral deficits and alters gene expression in rodent stroke model. J Neurochem 2017; 143:722-735. [PMID: 29049855 DOI: 10.1111/jnc.14241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Stroke is a multi-factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q-PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation-specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper-methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo-methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.
Collapse
Affiliation(s)
- Vibhuti
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rehan Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
33
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, Zhu X, He T, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143:87-99. [PMID: 28771727 DOI: 10.1111/jnc.14140] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoru Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Lili Cui
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Rong Chen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Ye Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Cong Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xingyuan Zhu
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Tingting He
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zuyuan Shen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Lipeng Dong
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jingru Zhao
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Ya Wen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiufen Zheng
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Pan Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
34
|
Jiang X, Zhao X, Chen R, Jiang Q, Zhou B. Plasma soluble CD36, carotid intima-media thickness and cognitive function in patients with type 2 diabetes. Arch Med Sci 2017; 13:1031-1039. [PMID: 28883843 PMCID: PMC5575210 DOI: 10.5114/aoms.2016.60821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/07/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Diabetes and atherosclerosis are both risk factors of cognitive deficits. Scavenger receptor CD36 is associated with increasing risk of diabetes and atherosclerosis, and may play a role in cognitive deficits. The aim of this study is to determine the correlations of plasma soluble CD36 concentrations with carotid intima-media thickness (IMT) and cognitive function in patients with type 2 diabetes. MATERIAL AND METHODS We determined the levels of soluble CD36 (sCD36), blood lipids, fasting blood glucose, glycosylated hemoglobin, carotid atherosclerosis as IMT, cognitive function by the Montreal Cognitive Assessment (MoCA) scoring system, and other clinical characteristics in 357 patients with type 2 diabetes. RESULTS Diabetic patients with the lowest quartile of IMT (Q1) had lower sCD36 concentrations (ANOVA, ptrend < 0.05) and higher MoCA scores than upper ones (Q2-Q4) (ptrend < 0.05), and those with the highest quartile of sCD36(Q4) had higher FBG, LDL-C and carotid IMT than lower ones (Q1-Q3) (ptrend < 0.05 for all). Plasma log10(sCD36) was significantly correlated with carotid IMT (r = 0.202, p < 0.001) after adjustment for age, gender, and education level. Carotid IMT was significantly associated with MoCA scores (r = 0.284, p < 0.001) after adjustment for, age, gender, education level, duration of DM and hypertension. There were no correlations between sCD36 and MoCA scores (r = -0.038, p = 0.470). CONCLUSIONS Our study shows that sCD36 is associated with carotid IMT, and carotid IMT is inversely correlated with cognitive function in type 2 diabetic patients. Nevertheless, no cross-sectional association between sCD36 and MoCA scores was detected in this study.
Collapse
Affiliation(s)
- Xiaozhen Jiang
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Xiaohui Zhao
- Department of Neurology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Ruihua Chen
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Quan Jiang
- Department of Ultrasonography, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Bin Zhou
- Department of Endocrinology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
35
|
Qiao HJ, Li ZZ, Wang LM, Sun W, Yu JC, Wang B. Association of lower serum Brain-derived neurotrophic factor levels with larger infarct volumes in acute ischemic stroke. J Neuroimmunol 2017; 307:69-73. [PMID: 28495141 DOI: 10.1016/j.jneuroim.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) plays a potential role in stroke recovery, as it promotes plasticity. The aim of this study is to investigate the association between infarct volume using DWI and BDNF at admission in patients with acute ischemic stroke (AIS). METHODS The study population comprised consecutive patients with an AIS diagnosis who had been referred to our hospital between January 2015 and June 2016. The severity of stroke was evaluated by the National Institutes of Health Stroke Scale (NIHSS) at admission. Infarct volumes indicated by DWI were measured with MIPAV software. The relationship between median DWI infarct volume and serum BDNF level quartiles was evaluated using a semiparametric approach with univariate and multivariate quartile regression analysis. RESULTS In this study, 270 patients were included and met the study criteria. The median DWI infarct volumes for the serum BDNF level quartiles (lowest to highest) were 10.56, 5.13, 3.75 and 2.43ml. Nonparametric Spearman rank correlation revealed a statistically significant negative correlation between serum BDNF level and DWI infarct volume (r=-0.363; P<0.001). The median DWI infarct volume in the lowest BDNF quartile was significantly larger than those in the upper 3 quartiles (P<0.001). Further, median adjusted DWI infarct volumes (IQR) for each of the BDNF level quartiles were 7.77, 4.56, 3.75, and 2.43ml from lowest to highest quartiles. CONCLUSIONS Larger stroke infarct volumes using DWI are associated with lower levels of BDNF at admission. Further investigations are suggested to elucidate the role of BDNF as part of a potential neuroprotective strategy.
Collapse
Affiliation(s)
- Hui-Jie Qiao
- Department of Radiology, Weihai Municipal Hospital, Binzhou Medical University, Weihai, China
| | - Zhen-Zhi Li
- Department of Radiology, Weihai Municipal Hospital, Binzhou Medical University, Weihai, China
| | - Li-Ming Wang
- Department of Radiology, Weihai Municipal Hospital, Binzhou Medical University, Weihai, China
| | - Wei Sun
- Department of Radiology, Weihai Municipal Hospital, Binzhou Medical University, Weihai, China
| | - Jin-Chao Yu
- Department of Radiology, Weihai Municipal Hospital, Binzhou Medical University, Weihai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China.
| |
Collapse
|
36
|
Cook DJ, Nguyen C, Chun HN, L Llorente I, Chiu AS, Machnicki M, Zarembinski TI, Carmichael ST. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab 2017; 37:1030-1045. [PMID: 27174996 PMCID: PMC5363479 DOI: 10.1177/0271678x16649964] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 03/20/2016] [Indexed: 11/15/2022]
Abstract
Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.
Collapse
Affiliation(s)
- Douglas J Cook
- Department of Surgery, Division of Neurosurgery, Kingston General Hospital, Kingston, Canada
| | - Cynthia Nguyen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Hyun N Chun
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Abraham S Chiu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | | | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
37
|
Wang J, Gao L, Yang YL, Li YQ, Chang T, Man MH, Zhang XY, Guo SC, Li LH. Low Serum Levels of Brain-Derived Neurotrophic Factor Were Associated with Poor Short-Term Functional Outcome and Mortality in Acute Ischemic Stroke. Mol Neurobiol 2016; 54:7335-7342. [DOI: 10.1007/s12035-016-0236-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 11/28/2022]
|
38
|
Woo MS, Yang J, Beltran C, Cho S. Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. J Biol Chem 2016; 291:23654-23661. [PMID: 27646002 DOI: 10.1074/jbc.m116.750018] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 01/23/2023] Open
Abstract
Infiltrating monocyte-derived macrophages (M-MΦ) influence stroke-induced brain injury. Although the inflammatory nature of M-MΦ in acute stroke has been well documented, their role during the resolution phase of stroke is less clear. With emerging evidence for the involvement of scavenger receptors in innate immunity, this study addresses an M-MΦ CD36 role in mediating phagocytosis during the recovery phase of stroke. Stroke increases CD36 and TSP-1/2 mRNA levels in the ipsilateral hemisphere at acute (3-day (d)) and recovery (7d) periods. Quantification of total, intracellular, and cell surface CD36 protein levels showed relatively unchanged expression at 3d post-ischemia. At 7d, there was a significant increase in cell surface CD36 (p < 0.05) with a concurrent reduction of intracellular CD36 (p < 0.05) in the ipsilateral hemisphere. Both cell surface and intracellular CD36 were found in whole brain lysates, whereas cell surface CD36 was predominantly detected in isolated brain mononuclear cells, blood monocytes, and peritoneal macrophages, suggesting that cell surface CD36 expressed in the post-ischemic brain originates from the periphery. The stroke-induced CD36 mRNA level correlated with increased expression of lysosomal acid lipase, an M2 macrophage marker. Functionally, higher CD36 expression in M-MΦ is correlated with higher phagocytic indices in post-ischemic brain immune cells. Moreover, pharmacological inhibition of CD36 attenuated phagocytosis in peritoneal macrophages and brain M-MΦ These findings demonstrate that cell surface CD36 on M-MΦ mediates phagocytosis during the recovery phase in post-stroke brains and suggests that CD36 plays a reparative role during the resolution of inflammation in ischemic stroke.
Collapse
Affiliation(s)
- Moon-Sook Woo
- From the Burke-Cornell Medical Research Institute, White Plains, New York 10605 and the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Jiwon Yang
- From the Burke-Cornell Medical Research Institute, White Plains, New York 10605 and the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Cesar Beltran
- From the Burke-Cornell Medical Research Institute, White Plains, New York 10605 and the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Sunghee Cho
- From the Burke-Cornell Medical Research Institute, White Plains, New York 10605 and the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
39
|
Nguyen H, Aum D, Mashkouri S, Rao G, Vega Gonzales-Portillo JD, Reyes S, Borlongan CV. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev Neurother 2016; 16:915-26. [PMID: 27152762 DOI: 10.1080/14737175.2016.1184086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In recent years, accumulating evidence has demonstrated the key role of inflammation in the progression of cerebrovascular diseases. Inflammation can persist over prolonged period of time after the initial insult providing a wider therapeutic window. Despite the acute endogenous upregulation of many growth factors after the injury, it is not sufficient to protect against inflammation and to regenerate the brain. Therapeutic approaches targeting both dampening inflammation and enhancing growth factors are likely to provide beneficial outcomes in cerebrovascular disease. AREAS COVERED In this mini review, we discuss major growth factors and their beneficial properties to combat the inflammation in cerebrovascular diseases. Emerging biotechnologies which facilitate the therapeutic effects of growth factors are also presented in an effort to provide insights into the future combination therapies incorporating both central and peripheral abrogation of inflammation. Expert commentary: Many studies discussed in this review have demonstrated the therapeutic effects of growth factors in treating cerebrovascular diseases. It is unlikely that one growth factor can be used to treat these complex diseases. Combination of growth factors and anti-inflammatory modulators may clinically improve outcomes for patients. In particular, transplantation of stem cells may be able to achieve both goals of modulating inflammation and upregulating growth factors. Large preclinical studies and multiple laboratory collaborations are needed to advance these findings from bench to bedside.
Collapse
Affiliation(s)
- Hung Nguyen
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - David Aum
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Sherwin Mashkouri
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Gautam Rao
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | | | - Stephanny Reyes
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Cesario V Borlongan
- a Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
40
|
Rezaei S, Asgari Mobarake K, Saberi A, Keshavarz P, Leili EK. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran. Neurol Sci 2016; 37:935-42. [DOI: 10.1007/s10072-016-2520-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/13/2016] [Indexed: 12/31/2022]
|
41
|
Keshavarz P, Saberi A, Sharafshah A, Asgari K, Rezaei S. Association of BDNF G196A Gene Polymorphism with Ischemic Stroke Occurrence and its 6-Month Outcome in an Iranian Population. Top Stroke Rehabil 2016; 23:254-60. [PMID: 27077983 DOI: 10.1080/10749357.2016.1141491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genetic factors like the allele for Brain-Derived Neurotrophic Factor (BDNF) are associated with the outcome of ischemic stroke most likely through affecting neural differentiation and synaptic plasticity. Studies of the association of BDNF G196A gene polymorphism and long-term ischemic stroke outcome in various populations have not been concordant. OBJECTIVE In this research, the association of BDNF G196A gene polymorphism and ischemic stroke occurrence were studied in a northern Iranian population with a glance to its 6-month outcome. METHODS The genetic variant of BDNF G196A was examined in Ischemic Stroke (IS) patients (n = 206) and control group (n = 200). In IS individuals, outcome variables such as stroke severity, functional disability, and cognitive impairment were examined, respectively, by NIHSS, Barthel Index, and MoCA in an average of 202 days after the stroke occurrence. RESULTS The frequency of risk allele G was 12.1% in IS patients and 5.5% in healthy individuals; and the difference was statistically significant (p < 0.0001). The frequency of risk genotype GG, heterozygote and homozygote were 0% and 1%, 24%.3% and 9%, 75.7% and 90%, respectively, for IS and control groups (p < 0.05). After controlling the phenotype confounding factors, logistic regression analysis showed that there was a borderline significant relationship between genotype BDNF GA + GG and IS occurrence (AOR = 1.997,95% CI: 0.252-1.010, p = 0.051). There was no significant difference between the various genotypic groups regarding the severity of the stroke and functional disability. Yet, G allele carriers had more cognitive impairment after IS (p = 0.002). CONCLUSION For the first time in an Iranian population, it was demonstrated that BDNF G196A variant plays a major role in stroke occurrence and consequences. It is suggested that, after IS, G allele carriers should have precedence for medicinal and rehabilitation interventions, in order to reduce their cognitive deficiency.
Collapse
Affiliation(s)
- Parvaneh Keshavarz
- a School of Medicine, Cellular and Molecular Research Center , Guilan University of Medical Sciences , Rasht , Iran
| | - Alia Saberi
- b Department of Neurology , Guilan University of Medical Sciences , Rasht , Iran
| | - Alireza Sharafshah
- c Cellular and Molecular Research Center , Guilan University of Medical Sciences , Rasht , Iran
| | - Karim Asgari
- d Department of Psychology , University of Isfahan , Isfahan , Iran
| | - Sajjad Rezaei
- e Clinical Research Development Center , Guilan University of Medical Sciences , Rasht , Iran
| |
Collapse
|
42
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
43
|
Behavioral characterization of CD36 knockout mice with SHIRPA primary screen. Behav Brain Res 2015; 299:90-6. [PMID: 26628208 DOI: 10.1016/j.bbr.2015.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022]
Abstract
CD36 is a member of the class B scavenger receptor family of cell surface proteins, which plays a major role in fatty acid, glucose and lipid metabolism. Besides, CD36 functions as a microglial surface receptor for amyloid beta peptide. Regarding this, we suggest CD36 might also contribute to neuropsychiatric disease. The aim of this study was to achieve a behavioral phenotype of CD36 knockout (CD36(-/-)) mice. We characterized the behavior of CD36(-/-) mice and C57BL/6J mice by subjecting them to a series of tests, which include SHIRPA primary behavioral screen test, 1% sucrose preference test, elevated plus-maze test, open-field test and forced swimming test. The results showed that CD36(-/-) mice traversed more squares, emitted more defecation, exhibited higher tail elevation and had more aggressive behaviors than C57BL/6J mice. The CD36(-/-) mice spent more time and traveled longer distance in periphery zone in the open-field test. Meanwhile, the numbers that CD36(-/-) mice entered in the open arms of elevated plus-maze were reduced. These findings suggest that CD36(-/-) mice present an anxious phenotype and might be involved in neuropsychiatric disorders.
Collapse
|
44
|
DeLeon-Pennell KY, Tian Y, Zhang B, Cates CA, Iyer RP, Cannon P, Shah P, Aiyetan P, Halade GV, Ma Y, Flynn E, Zhang Z, Jin YF, Zhang H, Lindsey ML. CD36 Is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling. ACTA ACUST UNITED AC 2015; 9:14-25. [PMID: 26578544 DOI: 10.1161/circgenetics.115.001249] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/13/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling. METHODS AND RESULTS Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression. CONCLUSIONS Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis.
Collapse
Affiliation(s)
- Kristine Y DeLeon-Pennell
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.).
| | - Yuan Tian
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Bai Zhang
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Courtney A Cates
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Rugmani Padmanabhan Iyer
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Presley Cannon
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Punit Shah
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Paul Aiyetan
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Ganesh V Halade
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Yonggang Ma
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Elizabeth Flynn
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Zhen Zhang
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Yu-Fang Jin
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Hui Zhang
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | - Merry L Lindsey
- From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.D.-P., Y.T., C.A.C., R.P.I., P.C., Y.M., E.F., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.).
| |
Collapse
|
45
|
Abstract
An arteriovenous malformation is a tangle of dysplastic vessels (nidus) fed by arteries and drained by veins without intervening capillaries, forming a high-flow, low-resistance shunt between the arterial and venous systems. Arteriovenous malformations in the brain have a low estimated prevalence but are an important cause of intracerebral haemorrhage in young adults. For previously unruptured malformations, bleeding rates are approximately 1% per year. Once ruptured, the subsequent risk increases fivefold, depending on associated aneurysms, deep locations, deep drainage and increasing age. Recent findings from novel animal models and genetic studies suggest that arteriovenous malformations, which were long considered congenital, arise from aberrant vasculogenesis, genetic mutations and/or angiogenesis after injury. The phenotypical characteristics of arteriovenous malformations differ among age groups, with fistulous lesions in children and nidal lesions in adults. Diagnosis mainly involves imaging techniques, including CT, MRI and angiography. Management includes observation, microsurgical resection, endovascular embolization and stereotactic radiosurgery, alone or in any combination. There is little consensus on how to manage patients with unruptured malformations; recent studies have shown that patients managed medically fared better than those with intervention at short-term follow-up. By contrast, interventional treatment is preferred following a ruptured malformation to prevent rehaemorrhage. Management continues to evolve as new mechanistic discoveries and reliable animal models raise the possibility of developing drugs that might prevent the formation of arteriovenous malformations, induce obliteration and/or stabilize vessels to reduce rupture risk. For an illustrated summary of this Primer, visit: http://go.nature.com/TMoAdn.
Collapse
|
46
|
Di Pino G, Pellegrino G, Capone F, Assenza G, Florio L, Falato E, Lotti F, Di Lazzaro V. Val66Met BDNF Polymorphism Implies a Different Way to Recover From Stroke Rather Than a Worse Overall Recoverability. Neurorehabil Neural Repair 2015; 30:3-8. [PMID: 25896987 DOI: 10.1177/1545968315583721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In search for individualized predictors of stroke recovery, the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) is attracting great interest, because it has a negative impact on neurotrophin function. Since stroke recovery relies on brain plastic processes, on which BDNF is permissive, the dominant thought is in favor of a worse recovery in Met carriers. Conversely, we suggest that Met carriers do not differ in terms of absolute ability to recover from stroke, but they do differ on the way they recover. In particular, Met carriers rely more on subcortical plasticity, while ValVal patients more on intracortical plastic processes. Indeed, the direct evidence of impaired Met carrier recovery is inconsistent, as a high worldwide diffusion of the polymorphism suggests. The plasticity taking place in cortex, which is the one targeted by noninvasive brain stimulation strategies aimed at enhancing recovery, is less pronounced in Met carrier stroke patients, who have instead spared global recovery potential. Enhanced subcortical plasticity sustains better stroke recovery of Met carrier mice: this may also happen in humans, explaining the weaker interhemispheric cortical excitability imbalance recently described in Met carriers. Thus, BDNF haplotype determines mechanisms and structures involved in stroke recovery. The less pronounced cortical plasticity of Met carrier implies that plastic changes induced by interventional neurophysiological protocols would be better predictors of ValVal chronic outcome and those protocols would be more effective to boost their recovery. Other strategies, more focused on subcortical mechanisms, should be used in Met carriers.
Collapse
Affiliation(s)
| | - Giovanni Pellegrino
- Campus Bio-Medico University, Rome, Italy McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Berretta A, Tzeng YC, Clarkson AN. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev Neurother 2014; 14:1335-44. [DOI: 10.1586/14737175.2014.969242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
López-Valdés HE, Clarkson AN, Ao Y, Charles AC, Carmichael ST, Sofroniew MV, Brennan KC. Memantine enhances recovery from stroke. Stroke 2014; 45:2093-2100. [PMID: 24938836 DOI: 10.1161/strokeaha.113.004476] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Stroke treatment is constrained by limited treatment windows and the clinical inefficacy of agents that showed preclinical promise. Yet animal and clinical data suggest considerable poststroke plasticity, which could allow treatment with recovery-modulating agents. Memantine is a well-tolerated N-methyl-D-aspartate glutamate receptor antagonist in common use for Alzheimer disease. METHODS Memantine, 30 mg/kg per day, or vehicle, was delivered chronically in drinking water beginning >2 hours after photothrombotic stroke. RESULTS Although there was no difference in infarct size, behavior, or optical intrinsic signal maps in the first 7 days after stroke, mice treated chronically with memantine showed significant improvements in motor control, measured by cylinder test and grid-walking performance, compared with vehicle-treated animals. Optical intrinsic signal revealed an increased area of forepaw sensory maps at 28 days after stroke. There was decreased reactive astrogliosis and increased vascular density around the infarcted cortex. Peri-infarct Western blots revealed increased brain-derived neurotrophic factor and phosphorylated-tropomyosin-related kinase-B receptor expression. CONCLUSIONS Our results suggest that memantine improves stroke outcomes in an apparently non-neuroprotective manner involving increased brain-derived neurotrophic factor signaling, reduced reactive astrogliosis, and improved vascularization, associated with improved recovery of sensory and motor cortical function. The clinical availability and tolerability of memantine make it an attractive candidate for clinical translation.
Collapse
Affiliation(s)
| | - Andrew N Clarkson
- Neurology, David Geffen School of Medicine at UCLA.,Anatomy and Psychology, University of Otago
| | - Yan Ao
- Neurobiology, David Geffen School of Medicine at UCLA
| | | | | | | | - K C Brennan
- Neurology, David Geffen School of Medicine at UCLA.,Neurology, University of Utah School of Medicine
| |
Collapse
|
49
|
Burke E, Dodakian L, See J, McKenzie A, Riley JD, Le V, Cramer SC. A multimodal approach to understanding motor impairment and disability after stroke. J Neurol 2014; 261:1178-86. [PMID: 24728337 DOI: 10.1007/s00415-014-7341-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/20/2023]
Abstract
Many different measures have been found to be related to behavioral outcome after stroke. Preclinical studies emphasize the importance of brain injury and neural function. However, the measures most important to human outcomes remain uncertain, in part because studies often examine one measure at a time or enroll only mildly impaired patients. The current study addressed this by performing multimodal evaluation in a heterogeneous population. Patients (n = 36) with stable arm paresis 3-6 months post-stroke were assessed across 6 categories of measures related to stroke outcome: demographics/medical history, cognitive/mood status, genetics, neurophysiology, brain injury, and cortical function. Multivariate modeling identified measures independently related to an impairment-based outcome (arm Fugl-Meyer motor score). Analyses were repeated (1) identifying measures related to disability (modified Rankin Scale score), describing independence in daily functions and (2) using only patients with mild deficits. Across patients, greater impairment was related to measures of injury (reduced corticospinal tract integrity) and neurophysiology (absence of motor evoked potential). In contrast, (1) greater disability was related to greater injury and poorer cognitive status (MMSE score) and (2) among patients with mild deficits, greater impairment was related to cortical function (greater contralesional motor/premotor cortex activation). Impairment after stroke is most related to injury and neurophysiology, consistent with preclinical studies. These relationships vary according to the patient subgroup or the behavioral endpoint studied. One potential implication of these results is that choice of biomarker or stratifying variable in a clinical stroke study might vary according to patient characteristics.
Collapse
Affiliation(s)
- Erin Burke
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA,
| | | | | | | | | | | | | |
Collapse
|
50
|
Qin L, Jing D, Parauda S, Carmel J, Ratan RR, Lee FS, Cho S. An adaptive role for BDNF Val66Met polymorphism in motor recovery in chronic stroke. J Neurosci 2014; 34:2493-502. [PMID: 24523540 PMCID: PMC3921423 DOI: 10.1523/jneurosci.4140-13.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
Little is known about the influence of genetic diversity on stroke recovery. One exception is the polymorphism in brain derived neurotrophic factor (BDNF), a critical neurotrophin for brain repair and plasticity. Humans have a high-frequency single nucleotide polymorphism (SNP) in the prodomain of the BDNF gene. Previous studies show that the BDNF Val66Met variant negatively affects motor learning and severity of acute stroke. To investigate the impact of this common BDNF SNP on stroke recovery, we used a mouse model that contains the human BDNF Val66Met variant in both alleles (BDNF(M/M)). Male BDNF(+/+) and BDNF(M/M) littermates received sham or transient middle cerebral artery occlusion. We assessed motor function regularly for 6 months after stroke and then performed anatomical analyses. Despite reported negative association of the SNP with motor learning and acute deficits, we unexpectedly found that BDNF(M/M) mice displayed significantly enhanced motor/kinematic performance in the chronic phase of motor recovery, especially in ipsilesional hindlimb. The enhanced recovery was associated with significant increases in striatum volume, dendritic arbor, and elevated excitatory synaptic markers in the contralesional striatum. Transient inactivation of the contralateral striatum during recovery transiently abolished the enhanced function. This study showed an unexpected benefit of the BDNFVal66Met carriers for functional recovery, involving structural and molecular plasticity in the nonstroked hemisphere. Clinically, this study suggests a role for BDNF genotype in predicting stroke recovery and identifies a novel systems-level mechanism for enhanced motor recovery.
Collapse
Affiliation(s)
- Luye Qin
- Weill Cornell Medical College at Burke Medical Research Institute, White Plains, New York 10605, and
| | - Deqiang Jing
- Weill Cornell Medical College, New York, New York 10021
| | - Sarah Parauda
- Weill Cornell Medical College at Burke Medical Research Institute, White Plains, New York 10605, and
| | - Jason Carmel
- Weill Cornell Medical College at Burke Medical Research Institute, White Plains, New York 10605, and
| | - Rajiv R. Ratan
- Weill Cornell Medical College at Burke Medical Research Institute, White Plains, New York 10605, and
| | | | - Sunghee Cho
- Weill Cornell Medical College at Burke Medical Research Institute, White Plains, New York 10605, and
| |
Collapse
|