1
|
Silva Tortorelli L, Garad M, Megemont M, Haga-Yamanaka S, Goel A, Yang H. Variations of neuronal properties in the region of locus coeruleus of mice. Brain Res 2024; 1845:149289. [PMID: 39442646 DOI: 10.1016/j.brainres.2024.149289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.
Collapse
Affiliation(s)
- Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Khot S, Tackley G, Choy E. How to Distinguish Non-Inflammatory from Inflammatory Pain in RA? Curr Rheumatol Rep 2024; 26:403-413. [PMID: 39120749 PMCID: PMC11527911 DOI: 10.1007/s11926-024-01159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE OF THE REVIEW Managing non-inflammatory pain in rheumatoid arthritis (RA) can be a huge burden for the rheumatologist. Pain that persists despite optimal RA treatment is extremely challenging for patient and physician alike. Here, we outline the latest research relevant to distinguishing non-inflammatory from inflammatory RA pain and review the current understanding of its neurobiology and management. RECENT FINDINGS Nociplastic pain is a recently introduced term by the international pain community. Its definition encompasses the non-inflammatory pain of RA and describes pain that is not driven by inflamed joints or compromised nerves, but that is instead driven by a functional reorganisation of the central nervous system (CNS). Insights from all areas of nociplastic pain research, including fibromyalgia, support a personalised pain management approach for non-inflammatory pain of RA, with evidence-based guidelines favouring use of non-pharmacological interventions. Future developments include novel CNS targeting pharmacotherapeutic approaches to treat nociplastic pain.
Collapse
Affiliation(s)
- Sharmila Khot
- Department of Anaesthesia, Intensive Care and Pain Medicine, Cardiff and Vale University Health Board, Cardiff CF14 4XW and Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK.
| | - George Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK
| | - Ernest Choy
- Head of Rheumatology and Translational Research at the Division of Infection and Immunity and Director of the Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre at Cardiff University School of Medicine, Cardiff, Wales, UK, CF14 4YS
| |
Collapse
|
3
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
4
|
Norris MR, Kuo CC, Dunn SS, Kim JR, Becker LJ, Borges G, Thang LV, Parker KE, McCall JG. Mu opioid receptors gate the locus coeruleus pain generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.562785. [PMID: 37961541 PMCID: PMC10634678 DOI: 10.1101/2023.10.20.562785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Loc V. Thang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Zhang Y, Ma H, Bai Y, Hou X, Yang Y, Wang G, Li Y. Chronic Neuropathic Pain and Comorbid Depression Syndrome: From Neural Circuit Mechanisms to Treatment. ACS Chem Neurosci 2024; 15:2432-2444. [PMID: 38916052 DOI: 10.1021/acschemneuro.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Chronic neuropathic pain and comorbid depression syndrome (CDS) is a major worldwide health problem that affects the quality of life of patients and imposes a tremendous socioeconomic burden. More than half of patients with chronic neuropathic pain also suffer from moderate or severe depression. Due to the complex pathogenesis of CDS, there are no effective therapeutic drugs available. The lack of research on the neural circuit mechanisms of CDS limits the development of treatments. The purpose of this article is to provide an overview of the various circuits involved in CDS. Notably, activating some neural circuits can alleviate pain and/or depression, while activating other circuits can exacerbate these conditions. Moreover, we discuss current and emerging pharmacotherapies for CDS, such as ketamine. Understanding the circuit mechanisms of CDS may provide clues for the development of novel drug treatments for improved CDS management.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaojuan Hou
- Hebei North University, Zhangjiakou, 075000, China
| | - Yixin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| |
Collapse
|
6
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
7
|
Viellard J, Bouali-Benazzouz R, Benazzouz A, Fossat P. Modulating Neural Circuits of Pain in Preclinical Models: Recent Insights for Future Therapeutics. Cells 2024; 13:997. [PMID: 38920628 PMCID: PMC11202162 DOI: 10.3390/cells13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate. Most preclinical models have focused on sensory neurotransmission, with particular emphasis on the dorsal horn of the spinal cord as the first relay of nociceptive information. Beyond impaired nociceptive transmission, chronic pain is also accompanied by numerous comorbidities, such as anxiety-depressive disorders, anhedonia and motor and cognitive deficits gathered under the term "pain matrix". The emergence of cutting-edge techniques assessing specific neuronal circuits allow in-depth studies of the connections between "pain matrix" circuits and behavioural outputs. Pain behaviours are assessed not only by reflex-induced responses but also by various or more complex behaviours in order to obtain the most complete picture of an animal's pain state. This review summarises the latest findings on pain modulation by brain component of the pain matrix and proposes new opportunities to unravel the mechanisms of chronic pain.
Collapse
Affiliation(s)
- Juliette Viellard
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
8
|
Drummond PD. Anticipating noxious stimulation rather than afferent nociceptive input may evoke pupil asymmetry. Auton Neurosci 2024; 253:103179. [PMID: 38677128 DOI: 10.1016/j.autneu.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Unilateral nociceptive stimulation is associated with subtle signs of pupil asymmetry that may reflect lateralized activity in the locus coeruleus. To explore drivers of this pupil asymmetry, electrical stimuli, delivered alone or 200 ms before or after an acoustic startle stimulus, were administered to one ankle under four experimental conditions: with or without a 1.6 s anticipatory period, or while the forearm ipsilateral or contralateral to the electrical stimulus was heated tonically to induce moderate pain (15 healthy participants in each condition). Pupil diameter was measured at the start of each trial, at stimulus delivery, and each second for 5 s after stimulus delivery. At the start of the first trial, the pupil ipsilateral to the side on which electric shocks were later delivered was larger than the contralateral pupil. Both pupils dilated robustly during the anticipatory period and dilated further during single- and dual-stimulus trials. However, pupil asymmetry persisted throughout the experiment. Tonically-applied forearm heat-pain modulated the pupillary response to phasic electrical stimuli, with a slight trend for dilatation to be greater contralateral to the forearm being heated. Together, these findings suggest that focusing anxiously on the expected site of noxious stimulation was associated with dilatation of the ipsilateral pupil whereas phasic nociceptive stimuli and psychological arousal triggered bilateral pupillary dilatation. It was concluded that preparatory cognitive activity rather than phasic afferent nociceptive input is associated with pupillary signs of lateralized activity in the locus coeruleus.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, 90 South Street, Murdoch WA 6150, Australia.
| |
Collapse
|
9
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
10
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Megemont M, Tortorelli LS, McBurney-Lin J, Cohen JY, O'Connor DH, Yang H. Simultaneous recordings of pupil size variation and locus coeruleus activity in mice. STAR Protoc 2024; 5:102785. [PMID: 38127625 PMCID: PMC10772391 DOI: 10.1016/j.xpro.2023.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
An extensive literature describes how pupil size reflects neuromodulatory activity, including the noradrenergic system. Here, we present a protocol for the simultaneous recording of optogenetically identified locus coeruleus (LC) units and pupil diameter in mice under different conditions. We describe steps for building an optrode, performing surgery to implant the optrode and headpost, searching for opto-tagged LC units, and performing dual LC-pupil recording. We then detail procedures for data processing and analysis. For complete details on the use and execution of this protocol, please refer to Megemont et al.1.
Collapse
Affiliation(s)
- Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Lucas S Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience & Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience & Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Li B, Cao Y, Yuan H, Yu Z, Miao S, Yang C, Gong Z, Xie W, Li C, Bai W, Tang W, Zhao D, Yu S. The crucial role of locus coeruleus noradrenergic neurons in the interaction between acute sleep disturbance and headache. J Headache Pain 2024; 25:31. [PMID: 38443795 PMCID: PMC10913606 DOI: 10.1186/s10194-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.
Collapse
Affiliation(s)
- Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Ya Cao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Huijuan Yuan
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhe Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenhao Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
13
|
Hoegh M, Bannister K. Pain Science in Practice (Part 6): How Does Descending Modulation of Pain Work?. J Orthop Sports Phys Ther 2024; 54:97-100. [PMID: 38288567 DOI: 10.2519/jospt.2024.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
SYNOPSIS To understand the neuroscience of pain relief, one must know about the descending pain modulatory system. Neuronal pathways that originate in the brainstem and project to the spinal cord to modulate spinal neuronal activity provide a well-documented perspective on the mechanisms of analgesia that underpin pharmacological and nonpharmacological treatment options for people with musculoskeletal pain. Peripheral stimuli or signals from the cortex and subcortical regions of the brain can trigger the descending pain modulatory system (DPMS). The system helps explain how counter-stimulation techniques (eg, acupuncture and manual therapy), the patients' expectations and beliefs, and social or contextual factors could influence how people experience pain. J Orthop Sports Phys Ther 2024;54(2):1-4. doi:10.2519/jospt.2024.12112.
Collapse
Affiliation(s)
- Morten Hoegh
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kirsty Bannister
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Signoret-Genest J, Barnet M, Gabrielli F, Aissouni Y, Artola A, Dallel R, Antri M, Tovote P, Monconduit L. Compromised trigemino-coerulean coupling in migraine sensitization can be prevented by blocking beta-receptors in the locus coeruleus. J Headache Pain 2023; 24:165. [PMID: 38062355 PMCID: PMC10704784 DOI: 10.1186/s10194-023-01691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Migraine is a disabling neurological disorder, characterized by recurrent headaches. During migraine attacks, individuals often experience sensory symptoms such as cutaneous allodynia which indicates the presence of central sensitization. This sensitization is prevented by oral administration of propranolol, a common first-line medication for migraine prophylaxis, that also normalized the activation of the locus coeruleus (LC), considered as the main origin of descending noradrenergic pain controls. We hypothesized that the basal modulation of trigeminal sensory processing by the locus coeruleus is shifted towards more facilitation in migraineurs and that prophylactic action of propranolol may be attributed to a direct action in LC through beta-adrenergic receptors. METHODS We used simultaneous in vivo extracellular recordings from the trigeminocervical complex (TCC) and LC of male Sprague-Dawley rats to characterize the relationship between these two areas following repeated meningeal inflammatory soup infusions. Von Frey Hairs and air-puff were used to test periorbital mechanical allodynia. RNAscope and patch-clamp recordings allowed us to examine the action mechanism of propranolol. RESULTS We found a strong synchronization between TCC and LC spontaneous activities, with a precession of the LC, suggesting the LC drives TCC excitability. Following repeated dural-evoked trigeminal activations, we observed a disruption in coupling of activity within LC and TCC. This suggested an involvement of the two regions' interactions in the development of sensitization. Furthermore, we showed the co-expression of alpha-2A and beta-2 adrenergic receptors within LC neurons. Finally propranolol microinjections into the LC prevented trigeminal sensitization by desynchronizing and decreasing LC neuronal activity. CONCLUSIONS Altogether these results suggest that trigemino-coerulean coupling plays a pivotal role in migraine progression, and that propranolol's prophylactic effects involve, to some extent, the modulation of LC activity through beta-2 adrenergic receptors. This insight reveals new mechanistic aspects of LC control over sensory processing.
Collapse
Affiliation(s)
- Jérémy Signoret-Genest
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
- Department of Psychiatry, Center of Mental Health, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - François Gabrielli
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Alain Artola
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Myriam Antri
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Lénaïc Monconduit
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Nazabal A, Mendiguren A, Pineda J. Inhibition of rat locus coeruleus neurons by prostaglandin E 2 EP3 receptors: pharmacological characterization ex vivo. Front Pharmacol 2023; 14:1290605. [PMID: 38035000 PMCID: PMC10684765 DOI: 10.3389/fphar.2023.1290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator synthesized by the brain constitutive cyclooxygenase enzyme. PGE2 binds to G protein-coupled EP1-4 receptors (EP1 to Gq, EP2,4 to Gs, and EP3 to Gi/o). EP2, EP3 and EP4 receptors are expressed in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. EP3 receptors have been explored in the central nervous system, although its role regulating the locus coeruleus neuron activity has not been pharmacologically defined. Our aim was to characterize the function of EP3 receptors in neurons of the LC. Thus, we studied the effect of EP3 receptor agonists on the firing activity of LC cells in rat brain slices by single-unit extracellular electrophysiological techniques. The EP3 receptor agonist sulprostone (0.15 nM-1.28 µM), PGE2 (0.31 nM-10.2 µM) and the PGE1 analogue misoprostol (0.31 nM-2.56 µM) inhibited the firing rate of LC neurons in a concentration-dependent manner (EC50 = 15 nM, 110 nM, and 51 nM, respectively). The EP3 receptor antagonist L-798,106 (3-10 µM), but not the EP2 (PF-04418948, 3-10 µM) or EP4 (L-161,982, 3-10 µM) receptor antagonists, caused rightward shifts in the concentration-effect curves for the EP3 receptor agonists. Sulprostone-induced effect was attenuated by the Gi/o protein blocker pertussis toxin (pertussis toxin, 500 ng ml-1) and the inhibitors of inwardly rectifying potassium channels (GIRK) BaCl2 (300 µM) and SCH-23390 (15 µM). In conclusion, LC neuron firing activity is regulated by EP3 receptors, presumably by an inhibitory Gi/o protein- and GIRK-mediated mechanism.
Collapse
|
16
|
Lubejko ST, Livrizzi G, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561768. [PMID: 37873091 PMCID: PMC10592708 DOI: 10.1101/2023.10.10.561768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. Unexpectedly, given prior emphasis on descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We also report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings significantly revise current models of the DPMS and establish a novel supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Mesa-Lombardo A, García-Magro N, Nuñez A, Martin YB. Locus coeruleus inhibition of vibrissal responses in the trigeminal subnucleus caudalis are reduced in a diabetic mouse model. Front Cell Neurosci 2023; 17:1208121. [PMID: 37475984 PMCID: PMC10354250 DOI: 10.3389/fncel.2023.1208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic neuropathy is the loss of sensory function beginning distally in the lower extremities, which is also characterized by pain and substantial morbidity. Furthermore, the locus coeruleus (LC) nucleus has been proposed to play an important role in descending pain control through the activation of α2-noradrenergic (NA) receptors in the spinal dorsal horn. We studied, on control and diabetic mice, the effect of electrical stimulation of the LC nucleus on the tactile responses in the caudalis division of the spinal trigeminal nucleus (Sp5C), which is involved in the relay of orofacial nociceptive information. Diabetes was induced in young adult C57BL/6J mice with one intraperitoneal injection of streptozotocin (50 mg/kg) daily for 5 days. The diabetic animals showed pain in the orofacial area because they had a decrease in the withdrawal threshold to the mechanical stimulation in the vibrissal pad. LC electrical stimulation induced the inhibition of vibrissal responses in the Sp5C neurons when applied at 50 and 100 ms before vibrissal stimulation in the control mice; however, the inhibition was reduced in the diabetic mice. These effects may be due to a reduction in the tyrosine hydroxylase positive (TH+) fibers in the Sp5C, as was observed in diabetic mice. LC-evoked inhibition was decreased by an intraperitoneal injection of the antagonist of the α2-NA receptors, yohimbine, indicating that it was due to the activation of α2-NA receptors. The decrease in the LC-evoked inhibition in the diabetic mice was partially recovered when clonidine, a non-selective α2-agonist, was injected intraperitoneally. These findings suggest that in diabetes, there is a reduction in the NA inputs from the LC in the Sp5C that may favor the development of chronic pain.
Collapse
Affiliation(s)
- Alberto Mesa-Lombardo
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yasmina B. Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
18
|
Kong D, Zhang Y, Gao P, Pan C, Deng H, Xu S, Tang D, Xiao J, Jiao Y, Yu W, Wen D. The locus coeruleus input to the rostral ventromedial medulla mediates stress-induced colorectal visceral pain. Acta Neuropathol Commun 2023; 11:65. [PMID: 37062831 PMCID: PMC10108465 DOI: 10.1186/s40478-023-01537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.
Collapse
Affiliation(s)
- Dexu Kong
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Chao Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Haoyue Deng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
19
|
Gu X, Zhang YZ, O'Malley JJ, De Preter CC, Penzo M, Hoon MA. Neurons in the caudal ventrolateral medulla mediate descending pain control. Nat Neurosci 2023; 26:594-605. [PMID: 36894654 PMCID: PMC11114367 DOI: 10.1038/s41593-023-01268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.
Collapse
Affiliation(s)
- Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Yizhen Z Zhang
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - John J O'Malley
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Caitlynn C De Preter
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Mario Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
The sensory and affective components of pain differentially shape pupillary dilatation during cold pressor tests. Auton Neurosci 2023; 246:103084. [PMID: 36934567 DOI: 10.1016/j.autneu.2023.103084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Nociceptive and affective stimuli increase reflex sympathetic outflow to the pupils. To investigate effects of stimulus intensity, unpleasantness and distress on these pupillary reflexes, and to assess their stability, healthy participants immersed their hand in ice-water three times (for 20, 40 and 60 s; or 60, 40 and 20 s; or three times for 60 s) (N = 21 in each condition). Each ice-water immersion was preceded by a 90 s warm water immersion. To evaluate phasic sympathetic influences on pupil diameter, pupillary re-dilatation after 1 s of bright light was assessed during the last 10 s of each immersion. By-and-large, pain ratings and pupil diameter were greater during longer than shorter ice-water immersions, and ice-water immersions facilitated pupillary re-dilatation after the flash stimulus. However, mean pupil diameter during ice- and warm water immersions, minor ipsilateral amplification of the pupillary response, and ratings of pain unpleasantness and distress decreased across the experiment. Together, these findings suggest that nociceptive input increased sympathetic pupillary tone and amplified phasic increases in sympathetic activity after exposure to light. However, tonic sympathetic influences on pupil diameter and lateralization decreased across repeated immersions, possibly as novel or threatening aspects of the experience declined. Pupillary nociceptive and affective reflexes involve the locus coeruleus, an integral component of neural circuits that heighten cortical arousal and regulate pain. As these reflexes appear to reflect different aspects of sensory and affective processing, their combined assessment might increase the sensitivity and specificity of tests of locus coeruleus function in patients with suspected deficits.
Collapse
|
21
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
22
|
Sirucek L, Ganley RP, Zeilhofer HU, Schweinhardt P. Diffuse noxious inhibitory controls and conditioned pain modulation: a shared neurobiology within the descending pain inhibitory system? Pain 2023; 164:463-468. [PMID: 36017879 PMCID: PMC9916052 DOI: 10.1097/j.pain.0000000000002719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Sirucek
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Robert Philip Ganley
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Cerpa JC, Piccin A, Dehove M, Lavigne M, Kremer EJ, Wolff M, Parkes SL, Coutureau E. Inhibition of noradrenergic signalling in rodent orbitofrontal cortex impairs the updating of goal-directed actions. eLife 2023; 12:81623. [PMID: 36804007 PMCID: PMC9988255 DOI: 10.7554/elife.81623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In a constantly changing environment, organisms must track the current relationship between actions and their specific consequences and use this information to guide decision-making. Such goal-directed behaviour relies on circuits involving cortical and subcortical structures. Notably, a functional heterogeneity exists within the medial prefrontal, insular, and orbitofrontal cortices (OFC) in rodents. The role of the latter in goal-directed behaviour has been debated, but recent data indicate that the ventral and lateral subregions of the OFC are needed to integrate changes in the relationships between actions and their outcomes. Neuromodulatory agents are also crucial components of prefrontal functions and behavioural flexibility might depend upon the noradrenergic modulation of the prefrontal cortex. Therefore, we assessed whether noradrenergic innervation of the OFC plays a role in updating action-outcome relationships in male rats. We used an identity-based reversal task and found that depletion or chemogenetic silencing of noradrenergic inputs within the OFC rendered rats unable to associate new outcomes with previously acquired actions. Silencing of noradrenergic inputs in the prelimbic cortex or depletion of dopaminergic inputs in the OFC did not reproduce this deficit. Together, our results suggest that noradrenergic projections to the OFC are required to update goal-directed actions.
Collapse
Affiliation(s)
| | | | | | - Marina Lavigne
- Institut de Génétique Moléculaire de Montpellier, CNRS, University of MontpellierMontpellierFrance
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS, University of MontpellierMontpellierFrance
| | | | | | | |
Collapse
|
24
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
25
|
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y, Yu W. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 2023; 14:1159753. [PMID: 37153792 PMCID: PMC10157642 DOI: 10.3389/fphar.2023.1159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a bulbospinal nuclei in the descending pain modulation system, and directly affects spinal nociceptive transmission through pronociceptive ON cells and antinociceptive OFF cells in this area. The functional status of ON and OFF neurons play a pivotal role in pain chronification. As distinct pain modulative information converges in the RVM and affects ON and OFF cell excitability, neural circuits and transmitters correlated to RVM need to be defined for an in-depth understanding of central-mediated pain sensitivity. In this review, neural circuits including the role of the periaqueductal gray, locus coeruleus, parabrachial complex, hypothalamus, amygdala input to the RVM, and RVM output to the spinal dorsal horn are discussed. Meanwhile, the role of neurotransmitters is concluded, including serotonin, opioids, amino acids, cannabinoids, TRPV1, substance P and cholecystokinin, and their dynamic impact on both ON and OFF cell activities in modulating pain transmission. Via clarifying potential specific receptors of ON and OFF cells, more targeted therapies can be raised to generate pain relief for patients who suffer from chronic pain.
Collapse
Affiliation(s)
- Bingxue Peng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shian Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| |
Collapse
|
26
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
27
|
Research progress on the mechanism of chronic neuropathic pain. IBRO Neurosci Rep 2022; 14:80-85. [PMID: 36632243 PMCID: PMC9827377 DOI: 10.1016/j.ibneur.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic neuropathic pain (CNP) refers to pain that lasts for more than three months due to a disease or an injury to the somatosensory nervous system. The incidence of CNP has been increasing in the world, causing it to become a global concern and patients often experience spontaneous pain, hyperalgesia, abnormal pain or even abnormal sensation as some of its main symptoms. In addition to serious pain and poor physical health, CNP also negatively affects patients' mental health, thus impacting the overall quality of their lives. The pathogenesis of CNP is not clear, but some studies have proved that central sensitization, peripheral sensitization, neuroinflammation, dysfunction in descending nociceptive modulatory systems, oxidative stress reaction, activation of glial cells and psychological factors play an important role in the occurrence and development of CNP. In this context, this article summarizes the current research progress on the mechanism of CNP to provide a basis for further research in preventing and treating the disease.
Collapse
|
28
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
López-Córdoba G, Martínez-Lorenzana G, Lozano-Cuenca J, Condés-Lara M, González-Hernández A. The differential in vivo contribution of spinal α 2A- and α 2C-adrenoceptors in tonic and acute evoked nociception in the rat. Front Pharmacol 2022; 13:1023611. [PMID: 36506544 PMCID: PMC9727263 DOI: 10.3389/fphar.2022.1023611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Spinal α2-adrenoceptor induces analgesia by neuronal inhibition of primary afferent fibers. This family receptor coupled to G i/o proteins can be subdivided into three functional subtypes: α2A, α2B, and α2C-adrenoceptors, and current evidence on spinal analgesia supports the relevance of α2A and seems to exclude the role of α2B, but the functional contribution of α2C-adrenoceptors remains elusive. The present study was designed to pharmacologically dissect the contribution of spinal α2-adrenoceptor subtypes modulating tonic or acute peripheral nociception. Using male Wistar rats, we analyzed the effect of spinal clonidine (a non-selective α2A/α2B/α2C-adrenoceptor agonist) and/or selective subtype α2-adrenoceptor antagonists on: 1) tonic nociception induced by subcutaneous formalin (flinching behavior) or 2) acute nociception induced by peripheral electrical stimulus in in vivo extracellular recordings of spinal dorsal horn second-order wide dynamic range (WDR) neurons. Clonidine inhibited the nocifensive behavior induced by formalin, an effect blocked by BRL 44408 (α2A-adrenoceptor antagonist) but not by imiloxan (α2B-adrenoceptor antagonist) or JP 1302 (α2C-adrenoceptor antagonist). Similarly, spinal BRL 44408 reversed the clonidine-induced inhibition of nociceptive WDR activity. Interestingly, spinal JP 1302 per se produced behavioral antinociception (an effect blocked by bicuculline, a preferent GABAA channel blocker), but no correlation was found with the electrophysiological experiments. These data imply that, at the spinal level, 1) presynaptic α2A-adrenoceptor activation produces antinociception during acute or tonic nociceptive stimuli; and 2) under tonic nociceptive (inflammatory) input, spinal α2C-adrenoceptors are pronociceptive, probably by the inactivation of GABAergic transmission. This result supports a differential role of α2A and α2C-adrenoceptors modulating nociception.
Collapse
Affiliation(s)
- Gustavo López-Córdoba
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jair Lozano-Cuenca
- Departamento de Biología Celular, Secretaría de Salud, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Abimael González-Hernández
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico,*Correspondence: Abimael González-Hernández,
| |
Collapse
|
30
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
31
|
McBurney-Lin J, Vargova G, Garad M, Zagha E, Yang H. The locus coeruleus mediates behavioral flexibility. Cell Rep 2022; 41:111534. [PMID: 36288712 PMCID: PMC9662304 DOI: 10.1016/j.celrep.2022.111534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Behavioral flexibility is the ability to adjust behavioral strategies in response to changing environmental contingencies. A major hypothesis in the field posits that the activity of neurons in the locus coeruleus (LC) plays an important role in mediating behavioral flexibility. To test this hypothesis, we developed a tactile-based rule-shift detection task in which mice responded to left and right whisker deflections in a context-dependent manner and exhibited varying degrees of switching behavior. Recording spiking activity from optogenetically tagged neurons in the LC at millisecond precision during task performance revealed a prominent graded correlation between baseline LC activity and behavioral flexibility, where higher baseline activity following a rule change was associated with faster behavioral switching to the new rule. Increasing baseline LC activity with optogenetic activation accelerated task switching and improved task performance. Overall, our study provides important evidence to reveal the link between LC activity and behavioral flexibility.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Greta Vargova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
32
|
Monoaminergic mediation of hyperalgesic and analgesic descending control of nociception in mice. Pain 2022; 164:1096-1105. [PMID: 36448969 DOI: 10.1097/j.pain.0000000000002806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT Descending control of nociception (DCN; also known as conditioned pain modulation [CPM], the behavioral correlate of diffuse noxious inhibitory controls) is the phenomenon whereby pain inhibits pain in another part of the body and is the subject of increasing study because it may represent a biomarker of chronic pain. We recently discovered that pain modulation upon application of a DCN paradigm involving low-intensity test stimuli occurs in the direction of hyperalgesia in healthy mice and rats, whereas the use of high-intensity stimuli produces analgesia. To elucidate the physiological mechanisms underlying hyperalgesic DCN, we administered agonists and antagonists of norepinephrine (NE) and serotonin (5-HT) receptors, key neurochemical players in the production of analgesic DCN. We find that three different monoamine reuptake inhibitors-the NE-selective reboxetine, the 5-HT-selective fluoxetine, and the dual NE/5-HT agonist duloxetine-all abolish hyperalgesic DCN when administered into the spinal cord (but not systemically), with no effect on heat or mechanical pain sensitivity. Reboxetine's attenuation of hyperalgesic DCN is mediated by α 2 -adrenergic receptors (i.e., blocked by atipamezole), and fluoxetine's effect is mediated by 5-HT 7 receptors (i.e., blocked by SB269970). In contrast, analgesic DCN was found to be reversed by atipamezole and SB269970 themselves, with no effect of reboxetine or fluoxetine. Thus, hyperalgesic DCN appears to be the neurochemical opposite to analgesic DCN. These data further validate and help elucidate a pre-clinical paradigm that mimics dysfunctional CPM, and thus may form the basis of translational experiments that aim to reveal preventative pharmacological strategies for individuals predisposed to persistent pain.
Collapse
|
33
|
Li A, Huang CJ, Gu KP, Huang Y, Huang YQ, Zhang H, Lin JP, Liu YF, Yang Y, Yao YX. PSD-95 in the anterior cingulate cortex contributes to neuropathic pain by interdependent activation with NR2B. Sci Rep 2022; 12:17114. [PMID: 36224339 PMCID: PMC9556829 DOI: 10.1038/s41598-022-21488-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
Studies suggest that the scaffolding protein, postsynaptic density protein-95 (PSD-95), is involved in multiple neurological dysfunctions. However, the role of PSD-95 in the anterior cingulate cortex (ACC) in neuropathic pain (NP) has not been investigated. The current study addressed the role of PSD-95 in the ACC in NP and its modulating profile with NMDA receptor subunit 2B (NR2B). The NP model was established by chronic constriction injury (CCI) of the sciatic nerve, and mechanical and thermal tests were used to evaluate behavioral hyperalgesia. Protein expression and distribution were evaluated using immunohistochemistry and western blotting. The results showed that PSD-95 and NR2B were co-localized in neurons in the ACC. After CCI, both PSD-95 and NR2B were upregulated in the ACC. Inhibiting NR2B with Ro 25-6981 attenuated pain hypersensitivity and decreased the over-expression of PSD-95 induced by CCI. Furthermore, intra-ACC administration of PSD-95 antisense oligonucleotide not only attenuated pain hypersensitivity but also downregulated the NR2B level and the phosphorylation of cyclic AMP response element-binding protein. These results demonstrated that PSD-95 in the ACC contributes to NP by interdependent activation of NR2B.
Collapse
Affiliation(s)
- Ang Li
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Chang-Jun Huang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China ,Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, China
| | - Kai-Peng Gu
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Yan Huang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Ya-Qin Huang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Hui Zhang
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Jia-Piao Lin
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Yu-Fan Liu
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| | - Yan Yang
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Xing Yao
- grid.13402.340000 0004 1759 700XDepartment of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 China
| |
Collapse
|
34
|
Kucharczyk MW, Di Domenico F, Bannister K. Distinct brainstem to spinal cord noradrenergic pathways inversely regulate spinal neuronal activity. Brain 2022; 145:2293-2300. [PMID: 35245374 PMCID: PMC9337805 DOI: 10.1093/brain/awac085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
Brainstem to spinal cord noradrenergic pathways include a locus coeruleus origin projection and diffuse noxious inhibitory controls. While both pathways are traditionally viewed as exerting an inhibitory effect on spinal neuronal activity, the locus coeruleus was previously shown to have a facilitatory influence on thermal nocioception according to the subpopulation of coerulean neurons activated. Coupled with knowledge of its functional modular organisation and the fact that diffuse noxious inhibitory controls are not expressed in varied animal models of chronicity, we hypothesized a regulatory role for the locus coeruleus on non-coerulean, discrete noradrenergic cell group(s). We implemented locus coeruleus targeting strategies by microinjecting canine adenovirus encoding for channelrhodopsin-2 under a noradrenaline-specific promoter in the spinal cord (retrogradely labelling a coeruleospinal module) or the locus coeruleus itself (labelling the entire coerulean module). Coeruleospinal module optoactivation abolished diffuse noxious inhibitory controls (two-way ANOVA, P < 0.0001), which were still expressed following locus coeruleus neuronal ablation. We propose that the cerulean system interacts with, but does not directly govern, diffuse noxious inhibitory controls. This mechanism may underlie the role of the locus coeruleus as a 'chronic pain generator'. Pinpointing the functionality of discrete top-down pathways is crucial for understanding sensorimotor modulation in health and disease.
Collapse
Affiliation(s)
- Mateusz W Kucharczyk
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Francesca Di Domenico
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
35
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|
36
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Dai D, Li W, Chen A, Gao XF, Xiong L. Lateral Habenula and Its Potential Roles in Pain and Related Behaviors. ACS Chem Neurosci 2022; 13:1108-1118. [PMID: 35412792 DOI: 10.1021/acschemneuro.2c00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lateral habenula (LHb) is a tiny structure that acts as a hub, relaying signals from the limbic forebrain structures and basal ganglia to the brainstem modulatory area. Facilitated by updated knowledge and more precise manipulation of circuits, the progress in figuring out the neural circuits and functions of the LHb has increased dramatically over the past decade. Importantly, LHb is found to play an integrative role and has profound effects on a variety of behaviors associated with pain, including depression-like and anxiety-like behaviors, antireward or aversion, aggression, defensive behavior, and substance use disorder. Thus, LHb is a potential target for improving pain management and related disorders. In this review, we focused on the functions, related circuits, and neurotransmissions of the LHb in pain processing and related behaviors. A comprehensive understanding of the relationship between the LHb and pain will help to find new pain treatments.
Collapse
Affiliation(s)
- Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Wanrong Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Xiao-Fei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| |
Collapse
|
38
|
Guo F, Du Y, Qu FH, Lin SD, Chen Z, Zhang SH. Dissecting the Neural Circuitry for Pain Modulation and Chronic Pain: Insights from Optogenetics. Neurosci Bull 2022; 38:440-452. [PMID: 35249185 PMCID: PMC9068856 DOI: 10.1007/s12264-022-00835-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage. The processing of pain involves complicated modulation at the levels of the periphery, spinal cord, and brain. The pathogenesis of chronic pain is still not fully understood, which makes the clinical treatment challenging. Optogenetics, which combines optical and genetic technologies, can precisely intervene in the activity of specific groups of neurons and elements of the related circuits. Taking advantage of optogenetics, researchers have achieved a body of new findings that shed light on the cellular and circuit mechanisms of pain transmission, pain modulation, and chronic pain both in the periphery and the central nervous system. In this review, we summarize recent findings in pain research using optogenetic approaches and discuss their significance in understanding the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Da Lin
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Lee JH, Kim B, Ko SG, Kim W. Analgesic Effect of SH003 and Trichosanthes kirilowii Maximowicz in Paclitaxel-Induced Neuropathic Pain in Mice. Curr Issues Mol Biol 2022; 44:718-730. [PMID: 35723335 PMCID: PMC8929024 DOI: 10.3390/cimb44020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosantheskirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
40
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
41
|
Oliva V, Gregory R, Brooks JC, Pickering AE. Central pain modulatory mechanisms of attentional analgesia are preserved in fibromyalgia. Pain 2022; 163:125-136. [PMID: 33941755 PMCID: PMC8675057 DOI: 10.1097/j.pain.0000000000002319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Fibromyalgia is a prevalent pain condition that is associated with cognitive impairments including in attention, memory, and executive processing. It has been proposed that fibromyalgia may be caused by altered central pain processing characterised by a loss of endogenous pain modulation. We tested whether attentional analgesia, where cognitive engagement diminishes pain percept, was attenuated in patients with fibromyalgia (n = 20) compared with matched healthy controls (n = 20). An individually calibrated, attentional analgesia paradigm with a 2 × 2 factorial design was used with brain and brainstem-focussed functional magnetic resonance imaging. Patients with fibromyalgia had both lower heat pain thresholds and speeds in a visual attention task. When this was taken into account for both attentional task and thermal stimulation, both groups exhibited an equivalent degree of attentional analgesia. Functional magnetic resonance imaging analysis showed similar patterns of activation in the main effects of pain and attention in the brain and brainstem (with the sole exceptions of increased activation in the control group in the frontopolar cortex and the ipsilateral locus coeruleus). The attentional analgesic effect correlated with activity in the periaqueductal gray and rostral ventromedial medulla. These findings indicate that patients with fibromyalgia can engage the descending pain modulatory system if the attentional task and noxious stimulus intensity are appropriately titrated.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert Gregory
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
- Anaesthesia, Pain & Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol, United Kingdom
| | - Jonathan C.W. Brooks
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
- University of East Anglia Brain Imaging Centre, School of Psychology, Norwich, United Kingdom
| | - Anthony E. Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
- Anaesthesia, Pain & Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol, United Kingdom
| |
Collapse
|
42
|
Harley CW, Yuan Q. Locus Coeruleus Optogenetic Modulation: Lessons Learned from Temporal Patterns. Brain Sci 2021; 11:1624. [PMID: 34942924 PMCID: PMC8699422 DOI: 10.3390/brainsci11121624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
After reviewing seminal studies using optogenetics to interrogate the functional role of the locus coeruleus in behavior, we conclude that differences in firing rates and firing patterns of locus coeruleus neurons contribute to locus coeruleus nucleus heterogeneity by recruiting different output circuitry, and differentially modifying behavior. The outcomes initiated by different optogenetic input activation patterns and frequencies can have opposite consequences for behavior, activate different neurons in the same target structure, be supported by distinct adrenoceptors and vary with behavioral state.
Collapse
Affiliation(s)
- Carolyn W. Harley
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences Department, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| |
Collapse
|
43
|
Optogenetic Stimulation of the Anterior Cingulate Cortex Modulates the Pain Processing in Neuropathic Pain: A Review. J Mol Neurosci 2021; 72:1-8. [PMID: 34505976 DOI: 10.1007/s12031-021-01898-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is characterized by hypersensitivity, hyperalgesia, and allodynia, which is caused by damage to the somatosensory nervous system. It substantially impairs the quality of life. The management of neuropathic pain is challenging and should comprise alternative therapies. Researchers working on neural modulation methods in the field of optogenetics have recently referred to novel techniques that involve the activation or inhibition of signaling proteins by specific wavelengths of light. The use of optogenetics in neuropathic pain facilitates the investigation of pain pathways involved in chronic pain and has the potential for therapeutic use. Neuropathic pain is often accompanied by negative stimuli involving a broad network of brain regions. In particular, the anterior cingulate cortex (ACC) is a part of the limbic system that has highly interconnected structures involved in processing components of pain. The ACC is a key region for acute pain perception as well as the development of neuropathic pain, characterized by long-term potentiation induced in pain pathways. The exact mechanism for neuropathic pain in the ACC is unclear. Current evidence supports the potential of optogenetics methods to modulate the neuronal activity in the ACC for neuropathic pain. We anticipate the neuronal modulation in the ACC will be used widely to manage neuropathic pain.
Collapse
|
44
|
Cardenas A, Papadogiannis A, Dimitrov E. The role of medial prefrontal cortex projections to locus ceruleus in mediating the sex differences in behavior in mice with inflammatory pain. FASEB J 2021; 35:e21747. [PMID: 34151467 DOI: 10.1096/fj.202100319rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This article summarizes the current understanding of the pathophysiology of migraine, including some controversial aspects of the underlying mechanisms of the disorder. RECENT FINDINGS Recent functional neuroimaging studies focusing on the nonpainful symptoms of migraine have identified key areas of the central nervous system implicated in the early phases of a migraine attack. Clinical studies of spontaneous and provoked migraine attacks, together with preclinical studies using translational animal models, have led to a better understanding of the disease and the development of disease-specific and targeted therapies. SUMMARY Our knowledge of the pathophysiology of migraine has advanced significantly in the past decades. Current evidence supports our understanding of migraine as a complex cyclical brain disorder that likely results from dysfunctional sensory processing and dysregulation of homeostatic mechanisms. This article reviews the underlying mechanisms of the clinical manifestations of each phase of the migraine cycle.
Collapse
|
46
|
Grueschow M, Stenz N, Thörn H, Ehlert U, Breckwoldt J, Brodmann Maeder M, Exadaktylos AK, Bingisser R, Ruff CC, Kleim B. Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nat Commun 2021; 12:2275. [PMID: 33859187 PMCID: PMC8050280 DOI: 10.1038/s41467-021-22509-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/04/2021] [Indexed: 02/02/2023] Open
Abstract
Individuals may show different responses to stressful events. Here, we investigate the neurobiological basis of stress resilience, by showing that neural responsitivity of the noradrenergic locus coeruleus (LC-NE) and associated pupil responses are related to the subsequent change in measures of anxiety and depression in response to prolonged real-life stress. We acquired fMRI and pupillometry data during an emotional-conflict task in medical residents before they underwent stressful emergency-room internships known to be a risk factor for anxiety and depression. The LC-NE conflict response and its functional coupling with the amygdala was associated with stress-related symptom changes in response to the internship. A similar relationship was found for pupil-dilation, a potential marker of LC-NE firing. Our results provide insights into the noradrenergic basis of conflict generation, adaptation and stress resilience.
Collapse
Affiliation(s)
- Marcus Grueschow
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Nico Stenz
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hanna Thörn
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Ulrike Ehlert
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Jan Breckwoldt
- Medical School, Deanery, University of Zurich, Zurich, Switzerland
| | | | | | - Roland Bingisser
- Department of Emergency Medicine, University Hospital Basel, Basel, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Stevens L, Larsen LE, Van Lysebettens W, Carrette E, Boon P, Raedt R, Vonck K. Optimized Parameters for Transducing the Locus Coeruleus Using Canine Adenovirus Type 2 (CAV2) Vector in Rats for Chemogenetic Modulation Research. Front Neurosci 2021; 15:663337. [PMID: 33927593 PMCID: PMC8076532 DOI: 10.3389/fnins.2021.663337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The locus coeruleus noradrenergic (LC-NA) system is studied for its role in various neurological and psychiatric disorders such as epilepsy and Major Depression Dissorder. Chemogenetics is a powerful technique for specific manipulation of the LC to investigate its functioning. Local injection of AAV2/7 viral vectors has limitations with regards to efficiency and specificity of the transduction, potentially due to low tropism of AAV2/7 for LC neurons. In this study we used a canine adenovirus type 2 (CAV2) vector with different volumes and viral particle numbers to achieve high and selective expression of hM3Dq, an excitatory Designer Receptor Exclusively Activated by Designer Drugs (DREADD), for chemogenetic modulation of LC neurons. Methods Adult male Sprague-Dawley rats were injected in the LC with different absolute numbers of CAV2-PRSx8-hM3Dq-mCherry physical particles (0.1E9, 1E9, 5E9,10E9, or 20E9 pp) using different volumes (LowV = 3 nl × 300 nl, MediumV = 3 × 600 nl, HighV = 3 × 1200 nl). Two weeks post-injection, double-labeling immunohistochemistry for dopamine β hydroxylase (DBH) and mCherry was performed to determine hM3Dq expression and its specificity for LC neurons. The size of the transduced LC was compared to the contralateral LC to identify signs of toxicity. Results Administration of Medium volume (3 × 600 nl) and 1E9 particles resulted in high expression levels with 87.3 ± 9.8% of LC neurons expressing hM3Dq, but low specificity with 36.2 ± 17.3% of hM3Dq expression in non-LC neurons. The most diluted conditions (Low volume_0.1E pp and Medium Volume_0.1E pp) presented similar high transduction of LC neurons (70.9 ± 12.7 and 77.2 ± 9.8%) with lower aspecificity (5.5 ± 3.5 and 4.0 ± 1.9%, respectively). Signs of toxicity were observed in all undiluted conditions as evidenced by a decreased size of the transduced LC. Conclusion This study identified optimal conditions (Low and Medium Volume with 0.1E9 particles of CAV2-PRSx8-hM3Dq-mCherry) for safe and specific transduction of LC neurons with excitatory DREADDs to study the role of the LC-NA system in health and disease.
Collapse
Affiliation(s)
- Latoya Stevens
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Lars Emil Larsen
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium.,Medical Imaging and Signal Processing, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Wouter Van Lysebettens
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Paul Boon
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Kristl Vonck
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
49
|
Modulation of Noradrenergic and Serotonergic Systems by Cannabinoids: Electrophysiological, Neurochemical and Behavioral Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:111-132. [PMID: 33537940 DOI: 10.1007/978-3-030-61663-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The main noradrenergic and serotonergic nuclei in the central nervous system (CNS) are the locus coeruleus (LC) and the dorsal raphe nucleus (DRN). These brain areas, located in the brainstem, play a pivotal role in the control of various functions and behaviors that are altered by cannabinoids (i.e., pain, arousal, mood, anxiety, or sleep-wake cycle). Anatomical, neurochemical, and functional data suggest that cannabinoids regulate both central noradrenergic and serotonergic neurotransmission. Thus, strong evidence has shown that the firing activity of LC and DRN monoamine neurons or the synthesis/release of noradrenaline (NA) and serotonin (5-HT) in the projection areas are all affected by cannabinoid administration. Herein, we propose that interaction between the endocannabinoid system and the noradrenergic-serotonergic systems could account for some of the anxiolytic, antidepressant, and antinociceptive effects of cannabinoids or the disruption of attention/sleep induced by these drugs.
Collapse
|
50
|
Li D, Chung G, Kim SK. The Involvement of Central Noradrenergic Pathway in the Analgesic Effect of Bee Venom Acupuncture on Vincristine-Induced Peripheral Neuropathy in Rats. Toxins (Basel) 2020; 12:toxins12120775. [PMID: 33291335 PMCID: PMC7762247 DOI: 10.3390/toxins12120775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vincristine is a vinca alkaloid anti-mitotic drug with a broad spectrum of effects on solid and hematologic cancers. The major dose-limiting factor of this anti-cancer regimen is painful peripheral neuropathy. However, no gold-standard analgesic option has been used clinically. In this study, we investigated the effects and mechanism of bee venom acupuncture (BVA) to alleviate peripheral neuropathic pain induced by repeated intraperitoneal infusions of vincristine (1 mg/kg/day, days 1–5 and 8–12) in rats. Subcutaneous injection with bee venom (BV, 1.0 mg/kg) at the ST36 acupoint ameliorated cold and mechanical hypersensitivity (i.e., aberrant withdrawal responses in acetone drop and von Frey hair tests, respectively). In vivo extracellular recording demonstrated that BVA inhibited cutaneous cold (acetone) and mechanical (brush, press, and pinch) stimuli-elicited abnormal hyperexcitation of the spinal wide dynamic range (WDR) neurons in vincristine-treated rats. In addition, the microinjection of lidocaine into the ipsilateral locus coeruleus or the antagonism of the spinal α2-adrenergic receptors clearly reversed the effects of BVA on cold and mechanical hypersensitivity, indicating a vital role of the descending noradrenergic modulation in analgesia. These findings suggest that BVA could be a potential therapeutic option for vincristine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Daxian Li
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|