1
|
Byrne MD, Petramfar P, Lee JK, Smeyne RJ. Templating of Monomeric Alpha-Synuclein Induces Inflammation and SNpc Dopamine Neuron Death in a Genetic Mouse Model of Synucleinopathy. RESEARCH SQUARE 2024:rs.3.rs-5269499. [PMID: 39606453 PMCID: PMC11601858 DOI: 10.21203/rs.3.rs-5269499/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While the etiology of most cases of Parkinson's disease (PD) are idiopathic, it has been estimated that 5-10% of PD arise from known genetic mutations. The first mutations described that leads to the development of an autosomal dominant form of PD are in the SNCA gene that codes for the protein alpha-synuclein (α-syn). α-syn is an abundant presynaptic protein that is natively disordered and whose function is still unclear. In PD, α-syn misfolds into multimeric b-pleated sheets that aggregate in neurons (Lewy Bodies/neurites) and spread throughout the neuraxis in a pattern that aligns with disease progression. Here, using IHC, HC, HPLC, and cytokine analysis, we examined the sequelae of intraparenchymal brain seeding of pre-formed fibrils (PFFs) and monomeric α-syn in C57BL/6J (WT) and A53T SNCA mutant mice. We found that injection of PFFs, but not monomeric α-syn, into the striatum of C57BL/6J mice induced spread of aggregated α-syn, loss of SNpc DA neurons and increased neuroinflammation. However, in A53T SNCA mice, we found that both PFFs and monomeric α-syn induced this pathology. This suggests that the conformation changes in α-syn seen in the A53T strain can recruit wild-type α-syn to a pathological misfolded conformation which may provide a mechanism for the induction of PD in humans with SNCA duplication/triplication.
Collapse
|
2
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Wani WY, Zunke F, Belur NR, Mazzulli JR. The hexosamine biosynthetic pathway rescues lysosomal dysfunction in Parkinson's disease patient iPSC derived midbrain neurons. Nat Commun 2024; 15:5206. [PMID: 38897986 PMCID: PMC11186828 DOI: 10.1038/s41467-024-49256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Disrupted glucose metabolism and protein misfolding are key characteristics of age-related neurodegenerative disorders including Parkinson's disease, however their mechanistic linkage is largely unexplored. The hexosamine biosynthetic pathway utilizes glucose and uridine-5'-triphosphate to generate N-linked glycans required for protein folding in the endoplasmic reticulum. Here we find that Parkinson's patient midbrain cultures accumulate glucose and uridine-5'-triphosphate, while N-glycan synthesis rates are reduced. Impaired glucose flux occurred by selective reduction of the rate-limiting enzyme, GFPT2, through disrupted signaling between the unfolded protein response and the hexosamine pathway. Failure of the unfolded protein response and reduced N-glycosylation caused immature lysosomal hydrolases to misfold and accumulate, while accelerating glucose flux through the hexosamine pathway rescued hydrolase function and reduced pathological α-synuclein. Our data indicate that the hexosamine pathway integrates glucose metabolism with lysosomal activity, and its failure in Parkinson's disease occurs by uncoupling of the unfolded protein response-hexosamine pathway axis. These findings offer new methods to restore proteostasis by hexosamine pathway enhancement.
Collapse
Affiliation(s)
- Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
5
|
Bétemps D, Arsac JN, Nicot S, Canal D, Tlili H, Belondrade M, Morignat E, Verchère J, Gaillard D, Bruyère-Ostells L, Mayran C, Lakhdar L, Bougard D, Baron T. Protease-Sensitive and -Resistant Forms of Human and Murine Alpha-Synucleins in Distinct Brain Regions of Transgenic Mice (M83) Expressing the Human Mutated A53T Protein. Biomolecules 2023; 13:1788. [PMID: 38136658 PMCID: PMC10741842 DOI: 10.3390/biom13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Human neurodegenerative diseases associated with the misfolding of the alpha-synuclein (aS) protein (synucleinopathies) are similar to prion diseases to the extent that lesions are spread by similar molecular mechanisms. In a transgenic mouse model (M83) overexpressing a mutated (A53T) form of human aS, we had previously found that Protein Misfolding Cyclic Amplification (PMCA) triggered the aggregation of aS, which is associated with a high resistance to the proteinase K (PK) digestion of both human and murine aS, a major hallmark of the disease-associated prion protein. In addition, PMCA was also able to trigger the aggregation of murine aS in C57Bl/6 mouse brains after seeding with sick M83 mouse brains. Here, we show that intracerebral inoculations of M83 mice with C57Bl/6-PMCA samples strikingly shortens the incubation period before the typical paralysis that develops in this transgenic model, demonstrating the pathogenicity of PMCA-aggregated murine aS. In the hind brain regions of these sick M83 mice containing lesions with an accumulation of aS phosphorylated at serine 129, aS also showed a high PK resistance in the N-terminal part of the protein. In contrast to M83 mice, old APPxM83 mice co-expressing human mutated amyloid precursor and presenilin 1 proteins were seen to have an aggregation of aS, especially in the cerebral cortex, hippocampus and striatum, which also contained the highest load of aS phosphorylated at serine 129. This was proven by three techniques: a Western blot analysis of PK-resistant aS; an ELISA detection of aS aggregates; or the identification of aggregates of aS using immunohistochemical analyses of cytoplasmic/neuritic aS deposits. The results obtained with the D37A6 antibody suggest a higher involvement of murine aS in APPxM83 mice than in M83 mice. Our study used novel tools for the molecular study of synucleinopathies, which highlight similarities with the molecular mechanisms involved in prion diseases.
Collapse
Affiliation(s)
- Dominique Bétemps
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jean-Noël Arsac
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Simon Nicot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Dominique Canal
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Habiba Tlili
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Maxime Belondrade
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Eric Morignat
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jérémy Verchère
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Damien Gaillard
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Charly Mayran
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Latifa Lakhdar
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Daisy Bougard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Thierry Baron
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| |
Collapse
|
6
|
Repositioning doxycycline for treating synucleinopathies: Evidence from a pre-clinical mouse model. Parkinsonism Relat Disord 2023; 106:105229. [PMID: 36462409 DOI: 10.1016/j.parkreldis.2022.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Parkinson's disease remains orphan of valuable therapies capable to interfere with the disease pathogenesis despite the large number of symptomatic approaches adopted in clinical practice to manage this disease. Treatments simultaneously affecting α-synuclein (α-syn) oligomerization and neuroinflammation may counteract Parkinson's disease and related disorders. Recent data demonstrate that Doxycycline, a tetracycline antibiotic, can inhibit α-syn aggregation as well as neuroinflammation. We herein investigate, for the first time, the potential therapeutic properties of Doxy in a human α-syn A53T transgenic Parkinson's disease mouse model evaluating behavioural, biochemical and histopathological parameters. EXPERIMENTAL APPROACH Human α-syn A53T transgenic mice were treated with Doxycycline (10 mg/kg daily ip) for 30 days. The effect of treatment on motor, cognitive and daily live activity performances were examined. Neuropathological and neurophysiological parameters were assessed through immunocytochemical, electrophysiological and biochemical analysis of cerebral tissue. KEY RESULTS Doxy treatment abolished cognitive and daily life activity deficiencies in A53T mice. The effect on cognitive functions was associated with neuroprotection, inhibition of α-syn oligomerization and gliosis both in the cortex and hippocampus. Doxy treatment restored hippocampal long-term potentiation in association with the inhibition of pro-inflammatory cytokines expression. Moreover, Doxy ameliorated motor impairment and reduced striatal glial activation in A53T mice. CONCLUSIONS AND IMPLICATIONS Our findings promote Doxy as a valuable multi-target therapeutic approach counteracting both symptoms and neuropathology in the complex scenario of α-synucleinopathies.
Collapse
|
7
|
Argyrofthalmidou M, Polissidis A, Karaliota S, Papapanagiotou I, Sotiriou E, Manousaki M, Papadopoulou-Daifoti Z, Spillantini MG, Stefanis L, Vassilatis DK. Functional Interaction Between α-Synuclein and Nurr1 in Dopaminergic Neurons. Neuroscience 2022; 506:114-126. [PMID: 36270413 DOI: 10.1016/j.neuroscience.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Increased expression of alpha-synuclein (ASYN) and decreased expression of Nurr1 are associated with Parkinson's disease (PD) pathogenesis. These two proteins interact functionally and ASYN overexpression suppresses Nurr1 levels. ASYN pan-neuronal overexpression coupled with Nurr1 hemizygosity followed by Nurr1 repression in aging mice results in the manifestation of a typical PD-related phenotype and pathology. Here we investigated in mice the effects of C-terminally truncated ASYN(120) overexpression in dopaminergic (DA-ergic) neurons compounded with Nurr1 hemizygosity ('2-hit-DA'). We report that '2-hit-DA' animals did not manifest a characteristic PD-related phenotype, despite further substantia nigra ASYN-overexpression-dependent and age dependent Nurr1 protein downregulation. However, they displayed increased energy expenditure, reduced striatal dopamine (DA) and prolonged hyperactivity to a novel environment indicating impaired habituation. This DA-ergic dysfunction was observed in young adult '2-hit-DA' mice, persisted throughout life and it was associated with ASYN and Nurr1 synergistic alterations of DAT levels and function. Our experiments indicate that the expression levels of ASYN and Nurr1 are critical in the dysregulation of the nigrostriatal DA system and may be involved in neuropsychiatric aspects of PD.
Collapse
Affiliation(s)
- Maria Argyrofthalmidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Alexia Polissidis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Sevasti Karaliota
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Basic Science Program, Frederick National Laboratory for Cancer Research, NCI/NIH, Frederick, MD 21702-1201, USA
| | - Ioanna Papapanagiotou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelos Sotiriou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maria Manousaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK
| | - Leonidas Stefanis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Demetrios K Vassilatis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.
| |
Collapse
|
8
|
Dutta D, Paidi RK, Raha S, Roy A, Chandra S, Pahan K. Treadmill exercise reduces α-synuclein spreading via PPARα. Cell Rep 2022; 40:111058. [PMID: 35830804 PMCID: PMC9308946 DOI: 10.1016/j.celrep.2022.111058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/29/2021] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study underlines the importance of treadmill exercise in reducing α-synuclein (α-syn) spreading in the A53T brain and protecting nigral dopaminergic neurons. Preformed α-syn fibril (PFF) seeding in the internal capsule of young A53T α-syn mice leads to increased spreading of α-syn to substantia nigra and motor cortex and concomitant loss of nigral dopaminergic neurons. However, regular treadmill exercise decreases α-syn spreading in the brain and protects nigral dopaminergic neurons in PFF-seeded mice. Accordingly, treadmill exercise also mitigates α-synucleinopathy in aged A53T mice. While investigating this mechanism, we have observed that treadmill exercise induces the activation of peroxisome proliferator-activated receptor α (PPARα) in the brain to stimulate lysosomal biogenesis via TFEB. Accordingly, treadmill exercise remains unable to stimulate TFEB and reduce α-synucleinopathy in A53T mice lacking PPARα, and fenofibrate, a prototype PPARα agonist, reduces α-synucleinopathy. These results delineate a beneficial function of treadmill exercise in reducing α-syn spreading in the brain via PPARα.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramesh Kumar Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bucci C, Marzetti E. Circulating extracellular vesicles: friends and foes in neurodegeneration. Neural Regen Res 2022; 17:534-542. [PMID: 34380883 PMCID: PMC8504375 DOI: 10.4103/1673-5374.320972] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions. Via this route, several molecules (e.g., nucleic acids, proteins, metabolites) can be transferred to proximal and distant targets to convey specific information. Extracellular vesicle-associated cargo molecules have been proposed as markers of several disease conditions for their potential of tracking down the generating cell. Indeed, circulating extracellular vesicles may represent biomarkers of dysfunctional cellular quality control systems especially in conditions characterized by the accrual of intracellular misfolded proteins. Furthermore, the identification of extracellular vesicles as tools for the delivery of nucleic acids or other cargo molecules to diseased tissues makes these circulating shuttles possible targets for therapeutic development. The increasing interest in the study of extracellular vesicles as biomarkers resides mainly in the fact that the identification of peripheral levels of extracellular vesicle-associated proteins might reflect molecular events occurring in hardly accessible tissues, such as the brain, thereby serving as a "brain liquid biopsy". The exploitation of extracellular vesicles for diagnostic and therapeutic purposed might offer unprecedented opportunities to develop personalized approaches. Here, we discuss the bright and dark sides of extracellular vesicles in the setting of two main neurodegenerative diseases (i.e., Parkinson's and Alzheimer's diseases). A special focus will be placed on the possibility of using extracellular vesicles as biomarkers for the two conditions to enable disease tracking and treatment monitoring.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| |
Collapse
|
10
|
Ramirez AE, Fernández-Pérez EJ, Olivos N, Burgos CF, Boopathi S, Armijo-Weingart L, Pacheco CR, González W, Aguayo LG. The Stimulatory Effects of Intracellular α-Synuclein on Synaptic Transmission Are Attenuated by 2-Octahydroisoquinolin-2(1H)-ylethanamine. Int J Mol Sci 2021; 22:ijms222413253. [PMID: 34948050 PMCID: PMC8705949 DOI: 10.3390/ijms222413253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aβ) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.
Collapse
Affiliation(s)
- Alejandra E. Ramirez
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
| | - Eduardo J. Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
- Correspondence: (E.J.F.-P.); (L.G.A.)
| | - Nicol Olivos
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
| | - Carlos F. Burgos
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
| | - Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
- Center for Bioinformatics, Simulations and Modeling, The Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3530000, Chile;
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
| | - Carla R. Pacheco
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
| | - Wendy González
- Center for Bioinformatics, Simulations and Modeling, The Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3530000, Chile;
- Millennium Nucleus of Ion Channels-Associated Diseases, The Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3530000, Chile
| | - Luis G. Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 160-C, Concepción 4030000, Chile; (A.E.R.); (N.O.); (C.F.B.); (L.A.-W.); (C.R.P.)
- Programa de Neurociencia, Psiquiatría y Salud Mental, Anatomy Building,
Faculty of Medicine, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: (E.J.F.-P.); (L.G.A.)
| |
Collapse
|
11
|
Lan G, Wang P, Chan RB, Liu Z, Yu Z, Liu X, Yang Y, Zhang J. Astrocytic VEGFA: An essential mediator in blood-brain-barrier disruption in Parkinson's disease. Glia 2021; 70:337-353. [PMID: 34713920 DOI: 10.1002/glia.24109] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
The integrity of blood-brain-barrier (BBB) is essential for normal brain functions, synaptic remodeling, and angiogenesis. BBB disruption is a common pathology during Parkinson's disease (PD), and has been hypothesized to contribute to the progression of PD. However, the molecular mechanism of BBB disruption in PD needs further investigation. Here, A53T PD mouse and a 3-cell type in vitro BBB model were used to study the roles of α-synuclein (α-syn) in BBB disruption with the key results confirmed in the brains of PD patients obtained at autopsy. The A53T PD mouse studies showed that the expression of tight junction-related proteins decreased, along with increased vascular permeability and accumulation of oligomeric α-syn in activated astrocytes in the brain. The in vitro BBB model studies demonstrated that treatment with oligomeric α-syn, but not monomeric or fibrillar α-syn, resulted in significant disruption of BBB integrity. This process involved the expression and release of vascular endothelial growth factor A (VEGFA) and nitric oxide (NO) from oligomeric α-syn treated astrocytes. Increased levels of VEGFA and iNOS were also observed in the brain of PD patients. Blocking the VEGFA signaling pathway in the in vitro BBB model effectively protected the barrier against the harmful effects of oligomeric α-syn. Finally, the protective effects on BBB integrity associated with inhibition of VEGFA signaling pathway was also confirmed in PD mice. Taken together, our study concluded that oligomeric α-syn is critically involved in PD-associated BBB disruption, in a process that is mediated by astrocyte-derived VEGFA.
Collapse
Affiliation(s)
- Guoyu Lan
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Zongran Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaodan Liu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ying Yang
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJC, Osterberg VR, Brockway NL, Pizano S, Glover G, Weissman TA, Unni VK. In vivo aggregation of presynaptic alpha-synuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis 2021; 152:105291. [PMID: 33556542 PMCID: PMC10405908 DOI: 10.1016/j.nbd.2021.105291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals. We show that human α-synuclein tagged with GFP can be expressed in zebrafish neurons, localizing normally to presynaptic terminals and undergoing phosphorylation at serine-129, as in mammalian neurons. The visual advantages of the zebrafish system allow for dynamic in vivo imaging to study α-synuclein, including the use of fluorescence recovery after photobleaching (FRAP) techniques to probe protein mobility. These experiments reveal three distinct terminal pools of α-synuclein with varying mobility, likely representing different subpopulations of aggregated and non-aggregated protein. Human α-synuclein is phosphorylated by an endogenous zebrafish Polo-like kinase activity, and there is a heterogeneous population of neurons containing either very little or extensive phosphorylation throughout the axonal arbor. Both pharmacological and genetic manipulations of serine-129 show that phosphorylation of α-synuclein at this site does not significantly affect its mobility. This suggests that serine-129 phosphorylation alone does not promote α-synuclein aggregation. Together our results show that human α-synuclein can be expressed and measured quantitatively in zebrafish, and that disease-relevant post-translational modifications occur within neurons. The zebrafish model provides a powerful in vivo system for measuring and manipulating α-synuclein function and aggregation, and for developing new treatments for neurodegenerative disease.
Collapse
Affiliation(s)
- Leah J Weston
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Zoe T Cook
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Mehtab K Sal
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | | | - Valerie R Osterberg
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Saheli Pizano
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Greta Glover
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
13
|
Argyrofthalmidou M, Spathis AD, Maniati M, Poula A, Katsianou MA, Sotiriou E, Manousaki M, Perier C, Papapanagiotou I, Papadopoulou-Daifoti Z, Pitychoutis PM, Alexakos P, Vila M, Stefanis L, Vassilatis DK. Nurr1 repression mediates cardinal features of Parkinson's disease in α-synuclein transgenic mice. Hum Mol Genet 2021; 30:1469-1483. [PMID: 33902111 PMCID: PMC8330896 DOI: 10.1093/hmg/ddab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson’s disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/− (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging ‘2-hit’ mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/−] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region–specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.
Collapse
Affiliation(s)
- Maria Argyrofthalmidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Athanasios D Spathis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Matina Maniati
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Amalia Poula
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maira A Katsianou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelos Sotiriou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maria Manousaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Celine Perier
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Ioanna Papapanagiotou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Pothitos M Pitychoutis
- Department of Pharmacology, Medical School, University of Athens, Athens 11527, Greece.,Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469-2320, USA
| | - Pavlos Alexakos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Miquel Vila
- Research Institute, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Leonidas Stefanis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Demetrios K Vassilatis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
14
|
Stojkovska I, Mazzulli JR. Detection of pathological alpha-synuclein aggregates in human iPSC-derived neurons and tissue. STAR Protoc 2021; 2:100372. [PMID: 33733241 PMCID: PMC7941090 DOI: 10.1016/j.xpro.2021.100372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The accumulation of proteins into insoluble aggregates is a common feature of several neurodegenerative diseases. Aggregated α-synuclein is a major component of Lewy bodies that pathologically define Parkinson's disease (PD). Here, we present methods for the detection of pathogenic conformations of α-synuclein in induced pluripotent stem cell (iPSC) patient-derived neuron models and brain tissue. These methods can be applied to studies of PD pathogenesis and the discovery of novel therapeutics that restore physiological α-synuclein. For complete details on the use and execution of this protocol, please refer to Cuddy et al. (2019) and Zunke et al. (2018). α-Synuclein aggregates can be characterized by sequential protein extraction Protocol is optimized for detecting α-synuclein in iPSC-derived neurons or brain tissue Gel filtration is a useful method for the detection of oligomeric intermediates Inclusions can be further analyzed by immunofluorescence and Thioflavin S staining
Collapse
Affiliation(s)
- Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Limegrover CS, Yurko R, Izzo NJ, LaBarbera KM, Rehak C, Look G, Rishton G, Safferstein H, Catalano SM. Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson's patient brain-derived α-synuclein. J Neurosci Res 2021; 99:1161-1176. [PMID: 33480104 PMCID: PMC7986605 DOI: 10.1002/jnr.24782] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
α‐Synuclein oligomers are thought to have a pivotal role in sporadic and familial Parkinson's disease (PD) and related α‐synucleinopathies, causing dysregulation of protein trafficking, autophagy/lysosomal function, and protein clearance, as well as synaptic function impairment underlying motor and cognitive symptoms of PD. Moreover, trans‐synaptic spread of α‐synuclein oligomers is hypothesized to mediate disease progression. Therapeutic approaches that effectively block α‐synuclein oligomer‐induced pathogenesis are urgently needed. Here, we show for the first time that α‐synuclein species isolated from human PD patient brain and recombinant α‐synuclein oligomers caused similar deficits in lipid vesicle trafficking rates in cultured rat neurons and glia, while α‐synuclein species isolated from non‐PD human control brain samples did not. Recombinant α‐synuclein oligomers also increased neuronal expression of lysosomal‐associated membrane protein‐2A (LAMP‐2A), the lysosomal receptor that has a critical role in chaperone‐mediated autophagy. Unbiased screening of several small molecule libraries (including the NIH Clinical Collection) identified sigma‐2 receptor antagonists as the most effective at blocking α‐synuclein oligomer‐induced trafficking deficits and LAMP‐2A upregulation in a dose‐dependent manner. These results indicate that antagonists of the sigma‐2 receptor complex may alleviate α‐synuclein oligomer‐induced neurotoxicity and are a novel therapeutic approach for disease modification in PD and related α‐synucleinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
16
|
Landeck N, Strathearn KE, Ysselstein D, Buck K, Dutta S, Banerjee S, Lv Z, Hulleman JD, Hindupur J, Lin LK, Padalkar S, Stanciu LA, Lyubchenko YL, Kirik D, Rochet JC. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Mol Neurodegener 2020; 15:49. [PMID: 32900375 PMCID: PMC7487555 DOI: 10.1186/s13024-020-00380-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Natalie Landeck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Katherine E. Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Fujifilm Irvine Scientific, Santa Ana, CA USA
| | - Daniel Ysselstein
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kerstin Buck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Present address: AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Zhengjian Lv
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
- Present address: Bruker Nanosurfaces Division, Goleta, Santa Barbara, CA USA
| | - John D. Hulleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Departments of Ophthalmology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jagadish Hindupur
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Present address: Liveon Biolabs Pvt. Ltd., Tumakuru, Karnataka India
| | - Li-Kai Lin
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Sonal Padalkar
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
- Present address: Department of Mechanical Engineering, Iowa State University, Ames, IA USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| |
Collapse
|
17
|
Toffoli M, Vieira SRL, Schapira AHV. Genetic causes of PD: A pathway to disease modification. Neuropharmacology 2020; 170:108022. [PMID: 32119885 DOI: 10.1016/j.neuropharm.2020.108022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
The underline neuropathology of Parkinson disease is pleiomorphic and its genetic background diverse. Possibly because of this heterogeneity, no effective disease modifying therapy is available. In this paper we give an overview of the genetics of Parkinson disease and explain how this is relevant for the development of new therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- M Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - S R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - A H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
18
|
Karampetsou M, Sykioti VS, Leandrou E, Melachroinou K, Lambiris A, Giannelos A, Emmanouilidou E, Vekrellis K. Intrastriatal Administration of Exosome-Associated Pathological Alpha-Synuclein Is Not Sufficient by Itself to Cause Pathology Transmission. Front Neurosci 2020; 14:246. [PMID: 32372894 PMCID: PMC7186405 DOI: 10.3389/fnins.2020.00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
α-Synuclein (α-syn) has been genetically and biochemically linked to the pathogenesis of Parkinson's disease (PD). There is accumulating evidence that misfolded α-syn species spread between cells in a prion-like manner and seed the aggregation of endogenous protein in the recipient cells. Exosomes have been proposed to mediate the transfer of misfolded α-syn and thus facilitate disease transmission, although the pathological mechanism remains elusive. Here, we investigated the seeding capacity of exosome-associated α-syn, in vivo. Disease-associated α-syn was present in exosome fractions isolated from transgenic A53T mouse brain. However, following intrastriatal injection of such exosomes in wild-type (wt) mice, we were not able to detect any accumulation of endogenous α-syn. In addition, recombinant fibrillar α-syn, when loaded to isolated brain exosomes, induced minor pathological α-syn brain accumulation at 7 months post injection. These data suggest that exosomes neutralize the effect of toxic α-syn species and raise additional questions on their paracrine modulatory role in disease transmission.
Collapse
Affiliation(s)
- Mantia Karampetsou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasia Samantha Sykioti
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Emmanouela Leandrou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Katerina Melachroinou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Alexandros Lambiris
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonis Giannelos
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
19
|
Cuddy LK, Wani WY, Morella ML, Pitcairn C, Tsutsumi K, Fredriksen K, Justman CJ, Grammatopoulos TN, Belur NR, Zunke F, Subramanian A, Affaneh A, Lansbury PT, Mazzulli JR. Stress-Induced Cellular Clearance Is Mediated by the SNARE Protein ykt6 and Disrupted by α-Synuclein. Neuron 2019; 104:869-884.e11. [PMID: 31648898 PMCID: PMC6895429 DOI: 10.1016/j.neuron.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Age-related neurodegenerative disorders are characterized by a slow, persistent accumulation of aggregated proteins. Although cells can elicit physiological responses to enhance cellular clearance and counteract accumulation, it is unclear how pathogenic proteins evade this process in disease. We find that Parkinson's disease α-synuclein perturbs the physiological response to lysosomal stress by impeding the SNARE protein ykt6. Cytosolic ykt6 is normally autoinhibited by a unique farnesyl-mediated regulatory mechanism; however, during lysosomal stress, it activates and redistributes into membranes to preferentially promote hydrolase trafficking and enhance cellular clearance. α-Synuclein aberrantly binds and deactivates ykt6 in patient-derived neurons, thereby disabling the lysosomal stress response and facilitating protein accumulation. Activating ykt6 by small-molecule farnesyltransferase inhibitors restores lysosomal activity and reduces α-synuclein in patient-derived neurons and mice. Our findings indicate that α-synuclein creates a permissive environment for aggregate persistence by inhibiting regulated cellular clearance and provide a therapeutic strategy to restore protein homeostasis by harnessing SNARE activity.
Collapse
Affiliation(s)
- Leah K Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martino L Morella
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Tsutsumi
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Aarthi Subramanian
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amira Affaneh
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter T Lansbury
- Lysosomal Therapeutics, Inc., Cambridge, MA 02139, USA; Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Subramaniam S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:695-705. [PMID: 31866784 PMCID: PMC6913821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A major unresolved problem in neurodegenerative disease is why and how a specific set of neurons in the brain are highly vulnerable to neuronal death. Multiple pathways and mechanisms have been proposed to play a role in Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington disease (HD), yet how they contribute to neuronal vulnerability remains far from clear. In this review, various mechanisms ascribed in AD, PD, ALS, and HD will be briefly summarized. Particular focus will be placed on Rhes-mediated intercellular transport of the HD protein and its role in mitophagy, in which I will discuss some intriguing observations that I apply to model striatal vulnerability in HD. I may have unintentionally missed referring some studies in this review, and I extend my apologies to the authors in those circumstances.
Collapse
|
21
|
Stanojlovic M, Pallais JP, Lee MK, Kotz CM. Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson's disease. Mol Brain 2019; 12:87. [PMID: 31666100 PMCID: PMC6822428 DOI: 10.1186/s13041-019-0514-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD), classically defined as a progressive motor disorder accompanied with dopaminergic neuron loss and presence of Lewy bodies, is the second most common neurodegenerative disease. PD also has various non-classical symptoms, including cognitive impairments. In addition, inflammation and astrogliosis are recognized as an integral part of PD pathology. The hippocampus (Hipp) is a brain region involved in cognition and memory, and the neuropeptide orexin has been shown to enhance learning and memory. Previous studies show impairments in Hipp-dependent memory in a transgenic mouse model of Parkinson's disease (A53T mice), and we hypothesized that increasing orexin tone will reverse this. To test this, we subjected 3, 5, and 7-month old A53T mice to a Barnes maze and a contextual object recognition test to determine Hipp dependent memory. Inflammation and astrogliosis markers in the Hipp were assessed by immuno-fluorescence densitometry. The data show that early cognitive impairment is coupled with an increase in expression of inflammatory and astrogliosis markers. Next, in two separate experiments, mice were given intra-hippocampal injections of orexin or chemogenetic viral injections of an orexin neuron specific Designer Receptor Exclusively Activated by Designer Drug (DREADD). For the pharmacological approach mice were intracranially treated with orexin A, whereas the chemogenetic approach utilized clozapine N-oxide (CNO). Both pharmacological orexin A intervention as well as chemogenetic activation of orexin neurons ameliorated Hipp-dependent early memory impairment observed in A53T mice. This study implicates orexin in PD-associated cognitive impairment and suggests that exogenous orexin treatment and/or manipulation of endogenous orexin levels may be a potential strategy for addressing early cognitive loss in PD.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience (ITN), University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- Minneapolis VA Health Care System, GRECC, Minneapolis, MN, USA
| |
Collapse
|
22
|
Nicot S, Verchère J, Bélondrade M, Mayran C, Bétemps D, Bougard D, Baron T. Seeded propagation of α-synuclein aggregation in mouse brain using protein misfolding cyclic amplification. FASEB J 2019; 33:12073-12086. [PMID: 31370680 DOI: 10.1096/fj.201900354r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
α-Synuclein (α-syn) protein aggregation is associated with several neurodegenerative disorders collectively referred to as synucleinopathies, including Parkinson's disease. We used protein misfolding cyclic amplification (PMCA) to study α-syn aggregation in brain homogenates of wild-type or transgenic mice expressing normal (D line) or A53T mutant (M83 line) human α-syn. We found that sonication-incubation cycles of M83 mouse brain gradually produce large quantities of SDS-resistant α-syn aggregates, involving both human and mouse proteins. These PMCA products, containing partially proteinase K-resistant α-syn species, are competent to accelerate the onset of neurologic symptoms after intracerebral inoculation to young M83 mice and to seed aggregate formation of α-syn following PMCA, including in D and wild-type mouse brain substrates. PMCA seeding activity in the M83 diseased brain correlates positively with regions mostly targeted by the α-syn pathology in this model. Our data indicate that similar to prions, PMCA can reproduce some characteristics of α-syn aggregation and seeded propagation in vitro in a complex milieu. This opens new opportunities for the molecular study of synucleinopathies.-Nicot, S., Verchère, J., Bélondrade, M., Mayran, C., Bétemps, D., Bougard, D., Baron, T. Seeded propagation of α-synuclein aggregation in mouse brain using protein misfolding cyclic amplification.
Collapse
Affiliation(s)
- Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Jérémy Verchère
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| | - Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Dominique Bétemps
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Thierry Baron
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| |
Collapse
|
23
|
The Functional Mammalian CRES (Cystatin-Related Epididymal Spermatogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable Oligomer During Assembly. Sci Rep 2019; 9:9210. [PMID: 31239483 PMCID: PMC6593142 DOI: 10.1038/s41598-019-45545-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
An amyloid matrix composed of several family 2 cystatins, including the reproductive cystatin CRES, is an integral structure in the mouse epididymal lumen and has proposed functions in sperm maturation and protection. Understanding how CRES amyloid assembles in vitro may provide clues on how the epididymal amyloid matrix forms in vivo. We therefore purified full-length CRES under nondenaturing conditions and followed its aggregation from monomer to amyloid under conditions that may approximate those in the epididymal lumen. CRES transitioned into a metastable oligomer that was resistant to aggregation and only over extended time formed higher-ordered amyloids. High protein concentrations facilitated oligomer assembly and also were required to maintain the metastable state since following dilution the oligomer was no longer detected. Similar to other amyloid precursors, the formation of CRES amyloids correlated with a loss of α-helix and a gain of β-sheet content. However, CRES is unique in that its amyloids are rich in antiparallel β-sheets instead of the more common parallel β-sheets. Taken together, our studies suggest that early metastable oligomers may serve as building blocks for functional amyloid assembly and further reveal that antiparallel β-sheet-rich amyloids can be functional forms.
Collapse
|
24
|
Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 2019; 34:167-179. [PMID: 30633814 PMCID: PMC6379109 DOI: 10.1002/mds.27607] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is primarily a movement disorder driven by the loss of dopamine-producing neurons in the substantia nigra (SN). Early identification of the oxidative properties of dopamine implicated it as a potential source of oxidative stress in PD, yet few studies have investigated dopamine neurotoxicity in vivo. The discovery of PD-causing mutations in α-synuclein and the presence of aggregated α-synuclein in the hallmark Lewy body pathology of PD revealed another important player. Despite extensive efforts, the precise role of α-synuclein aggregation in neurodegeneration remains unclear. We recently manipulated both dopamine levels and α-synuclein expression in aged mice and found that only the combination of these 2 factors caused progressive neurodegeneration of the SN and an associated motor deficit. Dopamine modified α-synuclein aggregation in the SN, resulting in greater abundance of α-synuclein oligomers and unique dopamine-induced oligomeric conformations. Furthermore, disruption of the dopamine-α-synuclein interaction rescued dopaminergic neurons from degeneration in transgenic Caenorhabditis elegans models. In this Perspective, we discuss these findings in the context of known α-synuclein and dopamine biology, review the evidence for α-synuclein oligomer toxicity and potential mechanisms, and discuss therapeutic implications. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danielle E. Mor
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Malcolm J. Daniels
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
25
|
Huang M, Wang B, Li X, Fu C, Wang C, Kang X. α-Synuclein: A Multifunctional Player in Exocytosis, Endocytosis, and Vesicle Recycling. Front Neurosci 2019; 13:28. [PMID: 30745863 PMCID: PMC6360911 DOI: 10.3389/fnins.2019.00028] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022] Open
Abstract
α-synuclein (α-Syn) is a presynaptic enriched protein involved in the pathogenesis of Parkinson’s disease. However, the physiological roles of α-Syn remain poorly understood. Recent studies have indicated a critical role of α-Syn in the sensing and generation of membrane curvature during vesicular exocytosis and endocytosis. It has been known to modulate the assembly of SNARE complex during exocytosis including vesicle docking, priming and fusion steps. Growing evidence suggests that α-Syn also plays critical roles in the endocytosis of synaptic vesicles. It also modulates the availability of releasable vesicles by promoting synaptic vesicles clustering. Here, we provide an overview of recent progresses in understanding the function of α-Syn in the regulation of exocytosis, endocytosis, and vesicle recycling under physiological and pathological conditions.
Collapse
Affiliation(s)
- Mingzhu Huang
- School of Life Sciences, Liaocheng University, Liaocheng, China.,Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China.,Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Li
- School of Life Sciences, Liaocheng University, Liaocheng, China.,Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chongluo Fu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinjiang Kang
- School of Life Sciences, Liaocheng University, Liaocheng, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Gerson JE, Farmer KM, Henson N, Castillo-Carranza DL, Carretero Murillo M, Sengupta U, Barrett A, Kayed R. Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener 2018; 13:13. [PMID: 29544548 PMCID: PMC5856311 DOI: 10.1186/s13024-018-0245-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein. Moreover, a large body of research suggests that α-synuclein interacts with tau in disease and may act in a synergistic mechanism, implicating tau oligomers as a potential therapeutic target. METHODS We treated seven-month-old mice overexpressing mutated α-synuclein (A53T mice) with tau oligomer-specific monoclonal antibody (TOMA) and a control antibody and assessed both behavioral and pathological phenotypes. RESULTS We found that A53T mice treated with TOMA were protected from cognitive and motor deficits two weeks after a single injection. Levels of toxic tau oligomers were specifically decreased in the brains of TOMA-treated mice. Tau oligomer depletion also protected against dopamine and synaptic protein loss. CONCLUSION These results indicate that targeting tau oligomers is beneficial for a mouse model of synucleinopathy and may be a viable therapeutic strategy for treating diseases in which tau and α-synuclein have a synergistic toxicity.
Collapse
Affiliation(s)
- Julia E Gerson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kathleen M Farmer
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Natalie Henson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Diana L Castillo-Carranza
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariana Carretero Murillo
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
27
|
Abstract
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases. The relevance of β-amyloid oligomers and cellular prion protein (PrPC) binding has been a focus of interest in Alzheimer's disease (AD). At the molecular level, β-amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. In addition to β-amyloid, participation of PrPC in α-synuclein binding and brain spreading also appears to be relevant in α-synucleopathies. This review summarizes current knowledge about PrPC as a putative receptor for amyloid proteins and the physiological consequences of these interactions.
Collapse
Affiliation(s)
- José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Mor DE, Ischiropoulos H. The Convergence of Dopamine and α-Synuclein: Implications for Parkinson's Disease. J Exp Neurosci 2018; 12:1179069518761360. [PMID: 29559809 PMCID: PMC5846926 DOI: 10.1177/1179069518761360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/02/2022] Open
Abstract
In Parkinson’s disease (PD), the loss of dopamine-producing neurons in the substantia nigra (SN) leads to severe motor impairment, and pathological inclusions known as Lewy bodies contain aggregated α-synuclein protein. The relationship of α-synuclein aggregation and dopaminergic degeneration is unclear. This commentary highlights a recent study showing that the interaction of α-synuclein with dopamine may be an important mechanism underlying disease. Elevating dopamine levels in mice expressing human α-synuclein with the A53T familial PD mutation recapitulated key features of PD, including progressive neurodegeneration of the SN and decreased ambulation. The toxicity of dopamine was dependent on α-synuclein expression; hence, raising dopamine levels in nontransgenic mice did not result in neuronal injury. This interaction is likely mediated through soluble α-synuclein oligomers, which had modified conformations and were more abundant as a result of dopamine elevation in the mouse brain. Specific mutation of the dopamine interaction motif in the C-terminus of α-synuclein rescued dopamine neurons from degeneration in Caenorhabditis elegans models. Here, these findings are discussed, particularly regarding possible mechanisms of oligomer toxicity, relevance of these models to sporadic and autosomal recessive forms of PD, and implications for current PD treatment.
Collapse
Affiliation(s)
- Danielle E Mor
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Harry Ischiropoulos
- Perelman School of Medicine, University of Pennsylvania, and the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
29
|
Recasens A, Carballo-Carbajal I, Parent A, Bové J, Gelpi E, Tolosa E, Vila M. Lack of pathogenic potential of peripheral α-synuclein aggregates from Parkinson's disease patients. Acta Neuropathol Commun 2018; 6:8. [PMID: 29422109 PMCID: PMC5806361 DOI: 10.1186/s40478-018-0509-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
In Parkinson's disease (PD) there is widespread accumulation in the brain of abnormal α-synuclein aggregates forming intraneuronal Lewy bodies (LB). It is now well established that LB-type α-synuclein aggregates also occur in the peripheral autonomic nervous system in PD, from where it has been speculated they may progressively spread to the central nervous system through synaptically-connected brain networks and reach the substantia nigra to trigger herein dopaminergic dysfunction/degeneration and subsequent parkinsonism. Supporting a pathogenic role for α-synuclein aggregates we have previously shown that LB purified from postmortem PD brains promote α-synuclein pathology and dopaminergic neurodegeneration when intracerebrally inoculated into wild-type mice. However, the pathogenic capacity of PD-derived peripheral α-synuclein aggregates remains unknown. Here we addressed this question using purified LB-type α-synuclein aggregates from postmortem PD stellate ganglia (SG), a paravertebral sympathetic ganglion that exhibits consistent and conspicuous Lewy pathology in all PD patients. In contrast to our previous findings using nigral LB extracts, intracerebral inoculation of SG-derived LB into mice did not trigger long-term nigrostriatal neurodegeneration nor α-synuclein pathology. The differential pathogenic capacities of central- and peripheral-derived α-synuclein aggregates appear independent of the absolute amount and basic biochemical properties of α-synuclein within these aggregates and may rely instead on differences in α-synuclein conformation and/or yet unrecognized brain region-specific intrinsic factors. Our results argue against a putative pathogenic capacity of peripheral α-synuclein aggregates to promote α-synuclein pathology in the brain, propagate between neuronal networks or induce neurodegeneration.
Collapse
|
30
|
Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, Toker NJ, Jeon S, Fredriksen K, Mazzulli JR. Reversible Conformational Conversion of α-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 2017; 97:92-107.e10. [PMID: 29290548 DOI: 10.1016/j.neuron.2017.12.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
α-Synuclein (α-syn) aggregation is a key event in Parkinson's disease (PD). Mutations in glycosphingolipid (GSL)-degrading glucocerebrosidase are risk factors for PD, indicating that disrupted GSL clearance plays a key role in α-syn aggregation. However, the mechanisms of GSL-induced aggregation are not completely understood. We document the presence of physiological α-syn conformers in human midbrain dopamine neurons and tested their contribution to the aggregation process. Pathological α-syn assembly mainly occurred through the conversion of high molecular weight (HMW) physiological α-syn conformers into compact, assembly-state intermediates by glucosylceramide (GluCer), without apparent disassembly into free monomers. This process was reversible in vitro through GluCer depletion. Reducing GSLs in PD patient neurons with and without GBA1 mutations diminished pathology and restored physiological α-syn conformers that associated with synapses. Our work indicates that GSLs control the toxic conversion of physiological α-syn conformers in a reversible manner that is amenable to therapeutic intervention by GSL reducing agents.
Collapse
Affiliation(s)
- Friederike Zunke
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexandra C Moise
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nandkishore R Belur
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eilrayna Gelyana
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Iva Stojkovska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haris Dzaferbegovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicholas J Toker
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sohee Jeon
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Tayebi N, Parisiadou L, Berhe B, Gonzalez AN, Serra-Vinardell J, Tamargo RJ, Maniwang E, Sorrentino Z, Fujiwara H, Grey RJ, Hassan S, Blech-Hermoni YN, Chen C, McGlinchey R, Makariou-Pikis C, Brooks M, Ginns EI, Ory DS, Giasson BI, Sidransky E. Glucocerebrosidase haploinsufficiency in A53T α-synuclein mice impacts disease onset and course. Mol Genet Metab 2017; 122:198-208. [PMID: 29173981 PMCID: PMC6007972 DOI: 10.1016/j.ymgme.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Mutations in GBA1 encountered in Gaucher disease are a leading risk factor for Parkinson disease and associated Lewy body disorders. Many GBA1 mutation carriers, especially those with severe or null GBA1 alleles, have earlier and more progressive parkinsonism. To model the effect of partial glucocerebrosidase deficiency on neurological progression in vivo, mice with a human A53T α-synuclein (SNCAA53T) transgene were crossed with heterozygous null gba mice (gba+/-). Survival analysis of 84 mice showed that in gba+/-//SNCAA53T hemizygotes and homozygotes, the symptom onset was significantly earlier than in gba+/+//SNCAA53T mice (p-values 0.023-0.0030), with exacerbated disease progression (p-value <0.0001). Over-expression of SNCAA53T had no effect on glucocerebrosidase levels or activity. Immunoblotting demonstrated that gba haploinsufficiency did not lead to increased levels of either monomeric SNCA or insoluble high molecular weight SNCA in this model. Immunohistochemical analyses demonstrated that the abundance and distribution of SNCA pathology was also unaltered by gba haploinsufficiency. Thus, while the underlying mechanism is not clear, this model shows that gba deficiency impacts the age of onset and disease duration in aged SNCAA53T mice, providing a valuable resource to identify modifiers, pathways and possible moonlighting roles of glucocerebrosidase in Parkinson pathogenesis.
Collapse
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bahafta Berhe
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | | | | | | | | | - Zachary Sorrentino
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan McGlinchey
- Laboratory of Protein Conformation and Dynamics, NHLBI, NIH, Bethesda, MD. USA
| | - Chrissy Makariou-Pikis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mieu Brooks
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward I Ginns
- Lysosomal Disorders Treatment and Research Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
32
|
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20:1560-1568. [PMID: 28920936 PMCID: PMC5893155 DOI: 10.1038/nn.4641] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Collapse
Affiliation(s)
- Danielle E. Mor
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elpida Tsika
- AC Immune SA, Ecole Polytechnique fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neal S. Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Malcolm J. Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shachee Doshi
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Preetika Gupta
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L. Grossman
- State University of New York Downstate College of Medicine, Brooklyn, New York, USA
| | - Victor X. Tan
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G. Kalb
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - John H. Wolfe
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
E46K α-synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proc Natl Acad Sci U S A 2017; 114:E8274-E8283. [PMID: 28900007 DOI: 10.1073/pnas.1703420114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (aSyn) is the main driver of neurodegenerative diseases known as "synucleinopathies," but the mechanisms underlying this toxicity remain poorly understood. To investigate aSyn toxic mechanisms, we have developed a primary neuronal model in which a longitudinal survival analysis can be performed by following the overexpression of fluorescently tagged WT or pathologically mutant aSyn constructs. Most aSyn mutations linked to neurodegenerative disease hindered neuronal survival in this model; of these mutations, the E46K mutation proved to be the most toxic. While E46K induced robust PLK2-dependent aSyn phosphorylation at serine 129, inhibiting this phosphorylation did not alleviate aSyn toxicity, strongly suggesting that this pathological hallmark of synucleinopathies is an epiphenomenon. Optical pulse-chase experiments with Dendra2-tagged aSyn versions indicated that the E46K mutation does not alter aSyn protein turnover. Moreover, since the mutation did not promote overt aSyn aggregation, we conclude that E46K toxicity was driven by soluble species. Finally, we developed an assay to assess whether neurons expressing E46K aSyn affect the survival of neighboring control neurons. Although we identified a minor non-cell-autonomous component spatially restricted to proximal neurons, most E46K aSyn toxicity was cell autonomous. Thus, we have been able to recapitulate the toxicity of soluble aSyn species at a stage preceding aggregation, detecting non-cell-autonomous toxicity and evaluating how some of the main aSyn hallmarks are related to neuronal survival.
Collapse
|
34
|
Sargent D, Verchère J, Lazizzera C, Gaillard D, Lakhdar L, Streichenberger N, Morignat E, Bétemps D, Baron T. ‘Prion-like’ propagation of the synucleinopathy of M83 transgenic mice depends on the mouse genotype and type of inoculum. J Neurochem 2017; 143:126-135. [DOI: 10.1111/jnc.14139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Dorian Sargent
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Jérémy Verchère
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Corinne Lazizzera
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Damien Gaillard
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Latifa Lakhdar
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Nathalie Streichenberger
- Centre de Pathologie et Neuropathologie Est; Hospices Civils de Lyon; Université de Lyon; Institut Neuromyogène; CNRS; INSERM; Bron France
| | - Eric Morignat
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Dominique Bétemps
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| | - Thierry Baron
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Université de Lyon; Lyon France
| |
Collapse
|
35
|
Fleming SM, Santiago NA, Mullin EJ, Pamphile S, Karkare S, Lemkuhl A, Ekhator OR, Linn SC, Holden JG, Aga DS, Roth JA, Liou B, Sun Y, Shull GE, Schultheis PJ. The effect of manganese exposure in Atp13a2-deficient mice. Neurotoxicology 2017; 64:256-266. [PMID: 28595912 PMCID: PMC10178982 DOI: 10.1016/j.neuro.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/25/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
Abstract
Loss of function mutations in the P5-ATPase ATP13A2 are associated with Kufor-Rakeb Syndrome and Neuronal Ceroid Lipofuscinosis. While the function of ATP13A2 is unclear, in vitro studies suggest it is a lysosomal protein that interacts with the metals manganese (Mn) and zinc and the presynaptic protein alpha-synuclein. Loss of ATP13A2 function in mice causes sensorimotor deficits, enhanced autofluorescent storage material, and accumulation of alpha-synuclein. The present study sought to determine the effect of Mn administration on these same outcomes in ATP13A2-deficient mice. Wildtype and ATP13A2-deficient mice received saline or Mn at 5-9 or 12-19 months for 45days. Sensorimotor function was assessed starting at day 30. Autofluorescence was quantified in multiple brain regions and alpha-synuclein protein levels were determined in the ventral midbrain. Brain Mn, iron, zinc, and copper concentrations were measured in 5-9 month old mice. The results show Mn enhanced sensorimotor function, increased autofluorescence in the substantia nigra, and increased insoluble alpha-synuclein in the ventral midbrain in older ATP13A2-deficient mice. In addition, the Mn regimen used increased Mn concentration in the brain and levels were higher in Mn-treated mutants than controls. These results indicate loss of ATP13A2 function leads to increased sensitivity to Mn in vivo.
Collapse
Affiliation(s)
- Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nicholas A Santiago
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | | | - Shanta Pamphile
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Swagata Karkare
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Andrew Lemkuhl
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Osunde R Ekhator
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Stephen C Linn
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| | - John G Holden
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Diana S Aga
- Department of Chemistry, SUNY Buffalo, Buffalo, NY, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, SUNY Buffalo, Buffalo, NY, United States
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick J Schultheis
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| |
Collapse
|
36
|
Gerson JE, Mudher A, Kayed R. Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 2016; 51:482-496. [PMID: 27650389 PMCID: PMC5285467 DOI: 10.1080/10409238.2016.1226251] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The culmination of many years of increasing research into the toxicity of tau aggregation in neurodegenerative disease has led to the consensus that soluble, oligomeric forms of tau are likely the most toxic entities in disease. While tauopathies overlap in the presence of tau pathology, each disease has a unique combination of symptoms and pathological features; however, most study into tau has grouped tau oligomers and studied them as a homogenous population. Established evidence from the prion field combined with the most recent tau and amyloidogenic protein research suggests that tau is a prion-like protein, capable of seeding the spread of pathology throughout the brain. Thus, it is likely that tau may also form prion-like strains or diverse conformational structures that may differ by disease and underlie some of the differences in symptoms and pathology in neurodegenerative tauopathies. The development of techniques and new technology for the detection of tau oligomeric strains may, therefore, lead to more efficacious diagnostic and treatment strategies for neurodegenerative disease. [Formula: see text].
Collapse
Affiliation(s)
- Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| |
Collapse
|
37
|
Abstract
The neurodegenerative synucleinopathies, which include Parkinson disease, multiple-system atrophy, and Lewy body disease, are characterized by the presence of abundant neuronal inclusions called Lewy bodies and Lewy neurites. These disorders remain incurable, and a greater understanding of the pathologic processes is needed for effective treatment strategies to be developed. Recent data suggest that pathogenic misfolding of the presynaptic protein, α-synuclein (α-syn), and subsequent aggregation and accumulation are fundamental to the disease process. It is hypothesized that the misfolded isoform is able to induce misfolding of normal endogenous α-syn, much like what occurs in the prion diseases. Recent work highlighting the seeding effect of pathogenic α-syn has largely focused on the detergent-insoluble species of the protein. In this study, we performed intracerebral inoculations of the sarkosyl-insoluble or sarkosyl-soluble fractions of human Lewy body disease brain homogenate and show that both fractions induce CNS pathology in mice at 4 months after injection. Disease-associated deposits accumulated both near and distal to the site of the injection, suggesting a cell-to-cell spread via recruitment of α-syn. These results provide further insight into the prion-like mechanisms of α-syn and suggest that disease-associated α-syn is not homogeneous within a single patient but might exist in both soluble and insoluble isoforms.
Collapse
|
38
|
Finkelstein DI, Hare DJ, Billings JL, Sedjahtera A, Nurjono M, Arthofer E, George S, Culvenor JG, Bush AI, Adlard PA. Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice. ACS Chem Neurosci 2016; 7:119-29. [PMID: 26481462 DOI: 10.1021/acschemneuro.5b00253] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) has been linked to a number of neurodegenerative disorders, the most noteworthy of which is Parkinson's disease. Alpha-synuclein itself is not toxic and fulfills various physiological roles in the central nervous system. However, specific types of aggregates have been shown to be toxic, and metals have been linked to the assembly of these toxic aggregates. In this paper, we have characterized a transgenic mouse that overexpresses the A53T mutation of human α-syn, specifically assessing cognition, motor performance, and subtle anatomical markers that have all been observed in synucleinopathies in humans. We hypothesized that treatment with the moderate-affinity metal chelator, clioquinol (CQ), would reduce the interaction between metals and α-syn to subsequently improve the phenotype of the A53T animal model. We showed that CQ prevents an iron-synuclein interaction, the formation of urea-soluble α-syn aggregates, α-syn-related substantia nigra pars compacta cell loss, reduction in dendritic spine density of hippocampal and caudate putamen medium spiny neurons, and the decline in motor and cognitive function. In conclusion, our data suggests that CQ is capable of mitigating the pathological metal/α-syn interactions, suggesting that the modulation of metal ions warrants further study as a therapeutic approach for the synucleinopathies.
Collapse
Affiliation(s)
- David I. Finkelstein
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Elemental
Bio-imaging Facility, University of Technology Sydney, Broadway, New South Wales 2007, Australia
- Senator
Frank R. Lautenberg Environmental Science Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jessica L. Billings
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Amelia Sedjahtera
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Milawaty Nurjono
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elisa Arthofer
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department
of Physiology and Pharmacology, Karolinska Institut, Stockholm SE-171 77, Sweden
| | - Sonia George
- School
of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Janetta G. Culvenor
- School
of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I. Bush
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul A. Adlard
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
39
|
Mor DE, Ugras SE, Daniels MJ, Ischiropoulos H. Dynamic structural flexibility of α-synuclein. Neurobiol Dis 2015; 88:66-74. [PMID: 26747212 DOI: 10.1016/j.nbd.2015.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023] Open
Abstract
α-Synuclein is a conserved, abundantly expressed protein that is partially localized in pre-synaptic terminals in the central nervous system. The precise biological function(s) and structure of α-synuclein are under investigation. Recently, the native conformation and the presence of naturally occurring multimeric assemblies have come under debate. These are important deliberations because α-synuclein assembles into highly organized amyloid-like fibrils and non-amyloid amorphous aggregates that constitute the neuronal inclusions in Parkinson's disease and related disorders. Therefore understanding the nature of the native and pathological conformations is pivotal from the standpoint of therapeutic interventions that could maintain α-synuclein in its physiological state. In this review, we will discuss the existing evidence that define the physiological states of α-synuclein and highlight how the inherent structural flexibility of this protein may be important in health and disease.
Collapse
Affiliation(s)
- Danielle E Mor
- Biomedical graduate studies in Neuroscience, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Scott E Ugras
- Biomedical graduate studies in Biochemistry and Molecular Biophysics, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Malcolm J Daniels
- Biomedical graduate studies in Pharmacology, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Harry Ischiropoulos
- Biomedical graduate studies in Neuroscience, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Biomedical graduate studies in Biochemistry and Molecular Biophysics, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Biomedical graduate studies in Pharmacology, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Children's Hospital of Philadelphia Research Institute, PA 19104, United States; Department of Pediatrics, Raymond, and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Raymond, and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States.
| |
Collapse
|
40
|
Marmolino D, Foerch P, Atienzar FA, Staelens L, Michel A, Scheller D. Alpha synuclein dimers and oligomers are increased in overexpressing conditions in vitro and in vivo. Mol Cell Neurosci 2015; 71:92-101. [PMID: 26711807 DOI: 10.1016/j.mcn.2015.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta along with the formation of intracellular fibrillar inclusions (Lewy bodies and Lewy neuritis), which are mainly composed of aggregated α-synuclein (ASYN). This latter is a 14 kDa protein that localizes to synaptic vesicles in nerve terminals and promotes soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly. We explored the monomeric and oligomeric state of ASYN in vitro in HEK293s and SH-SY5Y cell lines. In addition rats were injected in the substantia nigra with an Adeno associated virus carrying the human A53T mutation of ASYN (in vivo experiments). We show that human wild type ASYN as well as PD-linked mutations (A30P, E46K and A53T) in overexpressing conditions mostly exists in a monomeric state in equilibrium with dimeric forms. The monomer/dimer ratio is unaffected by PD-linked mutation. Furthermore, the A30P, E46K and A53T mutations overexpression strongly increased cell death compared to wild type ASYN. Taken together, our data suggest that ASYN dimers amount do not directly correlate to reduced cellular viability, suggesting a different role in protein function and induced pathology. Our data suggest that early ASYN neuro-pathogenic effects are probably mediated by other molecular processes than increased oligomerization alone.
Collapse
Affiliation(s)
- D Marmolino
- UCB Biopharma S.P.R.L., Neuroscience TA, Chemin du Foriest B-1420 Braine l'Alleud, Belgium.
| | - P Foerch
- UCB Biopharma S.P.R.L., Molecular Biology & Gene Expression, Discovery Research, Chemin du Foriest B-1420 Braine l'Alleud, Belgium
| | - F A Atienzar
- UCB Biopharma S.P.R.L., Non-Clinical Development, Chemin du Foriest B-1420 Braine l'Alleud, Belgium
| | - L Staelens
- UCB Biopharma S.P.R.L., Neuroscience TA, Chemin du Foriest B-1420 Braine l'Alleud, Belgium
| | - A Michel
- UCB Biopharma S.P.R.L., Neuroscience TA, Chemin du Foriest B-1420 Braine l'Alleud, Belgium
| | - D Scheller
- UCB Biopharma S.P.R.L., Neuroscience TA, Chemin du Foriest B-1420 Braine l'Alleud, Belgium
| |
Collapse
|
41
|
Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathol Commun 2015; 3:76. [PMID: 26621506 PMCID: PMC4666041 DOI: 10.1186/s40478-015-0257-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. RESULTS Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. CONCLUSIONS Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Anusha Koneti
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Laura Gil
- Department of Genetics, Medical School, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Raul Delgado-Morales
- Cancer Epigenetics and Biology Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Castaño
- Biology-Bellvitge Unit, Scientific and Technological Centers-University of Barcelona (CCiTUB), Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital, carrer Feixa Llarga s/n, 08907, Hospitalet de Llobregat, Spain.
| |
Collapse
|
42
|
|
43
|
Sengupta U, Guerrero-Muñoz MJ, Castillo-Carranza DL, Lasagna-Reeves CA, Gerson JE, Paulucci-Holthauzen AA, Krishnamurthy S, Farhed M, Jackson GR, Kayed R. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol Psychiatry 2015; 78:672-83. [PMID: 25676491 DOI: 10.1016/j.biopsych.2014.12.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Aberrant accumulation of α-synuclein constitutes inclusion bodies that are considered a characteristic feature of a group of neurological disorders described as synucleinopathies. Often, multiple disease-causing proteins overlap within a given disease pathology. An emerging body of research focuses on the oligomeric populations of various pathogenic proteins, considering them as the culprits causing neuronal damage and degeneration. To this end, the use of conformation-specific antibodies has proven to be an effective tool. Previous work from our laboratory and others has shown that oligomeric entities of α-synuclein and tau accumulate in their respective diseases, but their interrelationship at this higher order has yet to be shown in synucleinopathies. METHODS Here, we used two novel conformation-specific antibodies, F8H7 and Syn33, which recognize α-synuclein oligomers and were developed in our laboratory. We investigated brain tissue from five of each Parkinson's disease and dementia with Lewy bodies patients by performing biophysical and biochemical assays using these antibodies, in addition to the previously characterized anti-tau oligomer antibody T22. RESULTS We demonstrate that in addition to the deposition of oligomeric α-synuclein, tau oligomers accumulate in these diseased brains compared with control brains. Moreover, we observed that oligomers of tau and α-synuclein exist in the same aggregates, forming hybrid oligomers in these patients' brains. CONCLUSIONS In addition to the deposition of tau oligomers, our results also provide compelling evidence of co-occurrence of α-synuclein and tau into their most toxic forms, i.e., oligomers suggesting that these species interact and influence each other's aggregation via an interface in synucleinopathies.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Cristian A Lasagna-Reeves
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Julia E Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | | | - Shashirekha Krishnamurthy
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Malika Farhed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - George R Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas; Departments of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
44
|
Roberts RF, Wade-Martins R. Can pathological oligomeric proteins make good biomarkers? (Commentary on Williams et al.). Eur J Neurosci 2015; 43:1-2. [PMID: 26503665 DOI: 10.1111/ejn.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rosalind F Roberts
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, Québec, Canada, H3A 2B4
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| |
Collapse
|
45
|
Sharma P, Abbasi C, Lazic S, Teng ACT, Wang D, Dubois N, Ignatchenko V, Wong V, Liu J, Araki T, Tiburcy M, Ackerley C, Zimmermann WH, Hamilton R, Sun Y, Liu PP, Keller G, Stagljar I, Scott IC, Kislinger T, Gramolini AO. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun 2015; 6:8391. [PMID: 26403541 DOI: 10.1038/ncomms9391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.
Collapse
Affiliation(s)
- Parveen Sharma
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Cynthia Abbasi
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Dingyan Wang
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Nicole Dubois
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Victoria Wong
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Jun Liu
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Toshiyuki Araki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Malte Tiburcy
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Cameron Ackerley
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wolfram H Zimmermann
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Robert Hamilton
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Peter P Liu
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Igor Stagljar
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
46
|
Cabral KMS, Raymundo DP, Silva VS, Sampaio LAG, Johanson L, Hill LF, Almeida FCL, Cordeiro Y, Almeida MS. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions. PLoS One 2015; 10:e0137916. [PMID: 26383250 PMCID: PMC4575080 DOI: 10.1371/journal.pone.0137916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/23/2015] [Indexed: 12/27/2022] Open
Abstract
BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.
Collapse
Affiliation(s)
- Katia M. S. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana P. Raymundo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura A. G. Sampaio
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laizes Johanson
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Fernando Hill
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C. L. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein. Sci Rep 2015; 5:9862. [PMID: 25985292 PMCID: PMC4435243 DOI: 10.1038/srep09862] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that deposition of neurotoxic α-synuclein
aggregates in the brain during the development of neurodegenerative diseases like
Parkinson’s disease can be curbed by anti-aggregation strategies that
either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol
exhibits anti-amyloid activity but the use of this polyphenol is limited owing to
its instability. As chemical modifications in curcumin confiscate this limitation,
such efforts are intensively performed to discover molecules with similar but
enhanced stability and superior properties. This study focuses on the inhibitory
effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin
isoxazole and their derivatives against α-synuclein aggregation,
fibrillization and toxicity. Employing biochemical, biophysical and cell based
assays we discovered that curcumin pyrazole (3) and its derivative
N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only
arresting fibrillization and disrupting preformed fibrils but also preventing
formation of A11 conformation in the protein that imparts toxic effects. Compounds 3
and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant
form of α-synuclein. These two analogues of curcumin described here may
therefore be useful therapeutic inhibitors for the treatment of
α-synuclein amyloidosis and toxicity in Parkinson’s disease
and other synucleinopathies.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| | - Satyendra Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Manish Kumar Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, INDIA 110067
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| |
Collapse
|
48
|
Lehri-Boufala S, Ouidja MO, Barbier-Chassefière V, Hénault E, Raisman-Vozari R, Garrigue-Antar L, Papy-Garcia D, Morin C. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease. PLoS One 2015; 10:e0116641. [PMID: 25617759 PMCID: PMC4305359 DOI: 10.1371/journal.pone.0116641] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022] Open
Abstract
The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.
Collapse
Affiliation(s)
- Sonia Lehri-Boufala
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Mohand-Ouidir Ouidja
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Véronique Barbier-Chassefière
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Emilie Hénault
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Rita Raisman-Vozari
- CNRS UMR 7225, Hôpital de la Salpêtrière-Bâtiment, ICM (Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière), CRICM, Thérapeutique Expérimentale de la Neurodégénérescence, Université Pierre et Marie Curie, UPMC, 75651, Paris, France
| | - Laure Garrigue-Antar
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Dulce Papy-Garcia
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
| | - Christophe Morin
- Université Paris-Est Créteil, Laboratoire CRRET-EAC CNRS 7149, 61 Avenue de Général de Gaulle, 94010, Créteil, France
- * E-mail:
| |
Collapse
|
49
|
Giráldez-Pérez RM, Antolín-Vallespín M, Muñoz MD, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson's disease. Acta Neuropathol Commun 2014; 2:176. [PMID: 25497491 PMCID: PMC4272812 DOI: 10.1186/s40478-014-0176-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
Collapse
Affiliation(s)
- Rosa María Giráldez-Pérez
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
- />Departamento Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Mónica Antolín-Vallespín
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - María Dolores Muñoz
- />Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - Amelia Sánchez-Capelo
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| |
Collapse
|
50
|
Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiol Aging 2014; 35:2316-28. [DOI: 10.1016/j.neurobiolaging.2014.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/10/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022]
|