1
|
Liu Y, Yu S, Li J, Ma J, Wang F, Sun S, Yao D, Xu P, Zhang T. Brain state and dynamic transition patterns of motor imagery revealed by the bayes hidden markov model. Cogn Neurodyn 2024; 18:2455-2470. [PMID: 39555271 PMCID: PMC11564432 DOI: 10.1007/s11571-024-10099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 11/19/2024] Open
Abstract
Motor imagery (MI) is a high-level cognitive process that has been widely applied to brain-computer inference (BCI) and motor recovery. In practical applications, however, huge individual differences and unclear neural mechanisms have seriously hindered the application of MI and BCI systems. Thus, it is urgently needed to explore MI from a new perspective. Here, we applied a hidden Markov model (HMM) to explore the dynamic organization patterns of left- and right-hand MI tasks. Eleven distinct HMM states were identified based on MI-related EEG data. We found that these states can be divided into three metastates by clustering analysis, showing a highly organized structure. We also assessed the probability activation of each HMM state across time. The results showed that the state probability activation of task-evoked have similar trends to that of event-related desynchronization/synchronization (ERD/ERS). By comparing the differences in temporal features of HMM states between left- and right-hand MI, we found notable variations in fractional occupancy, mean life time, mean interval time, and transition probability matrix across stages and states. Interestingly, we found that HMM states activated in the left occipital lobe had higher occupancy during the left-hand MI task, and conversely, during the right-hand MI task, HMM states activated in the right occipital lobe had higher occupancy. Moreover, significant correlations were observed between BCI performance and features of HMM states. Taken together, our findings explored dynamic networks underlying the MI-related process and provided a complementary understanding of different MI tasks, which may contribute to improving the MI-BCI systems. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10099-9.
Collapse
Affiliation(s)
- Yunhong Liu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Shiqi Yu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Jia Li
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Jiwang Ma
- The Artificial Intelligence Group, Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Fei Wang
- School of Computer and Software, Chengdu Jincheng College, Chengdu, 610097 China
| | - Shan Sun
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Peng Xu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, 610039 China
- The Artificial Intelligence Group, Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
2
|
Rodríguez-Nieto G, Alvarez-Anacona DF, Mantini D, Edden RAE, Oeltzschner G, Sunaert S, Swinnen SP. Association between Inhibitory-Excitatory Balance and Brain Activity Response during Cognitive Flexibility in Young and Older Individuals. J Neurosci 2024; 44:e0355242024. [PMID: 39134417 PMCID: PMC11376334 DOI: 10.1523/jneurosci.0355-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but the performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with the performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Sengupta A, Banerjee S, Ganesh S, Grover S, Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nat Commun 2024; 15:6938. [PMID: 39138185 PMCID: PMC11322534 DOI: 10.1038/s41467-024-51283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation - with either modality - impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants' bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation - an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.
Collapse
Affiliation(s)
- Ankita Sengupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Foundation of Art and Health India, Bangalore, 560066, India
| | - Suhas Ganesh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Verily Life Sciences, San Francisco, CA, 94080, USA
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Guo T, Wang X, Wu J, Schwieter WJ, Liu H. Effects of contextualized emotional conflict control on domain-general conflict control: fMRI evidence of neural network reconfiguration. Soc Cogn Affect Neurosci 2024; 19:nsae001. [PMID: 38174430 PMCID: PMC10868129 DOI: 10.1093/scan/nsae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/24/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Domain-general conflict control refers to the cognitive process in which individuals suppress task-irrelevant information and extract task-relevant information. It supports both effective implementation of cognitive conflict control and emotional conflict control. The present study employed functional magnetic resonance imaging and adopted an emotional valence conflict task and the arrow version of the flanker task to induce contextualized emotional conflicts and cognitive conflicts, respectively. The results from the conjunction analysis showed that the multitasking-related activity in the pre-supplementary motor area, bilateral dorsal premotor cortices, the left posterior intraparietal sulcus (IPS), the left anterior IPS and the right inferior occipital gyrus represents common subprocesses for emotional and cognitive conflict control, either in parallel or in close succession. These brain regions were used as nodes in the domain-general conflict control network. The results from the analyses on the brain network connectivity patterns revealed that emotional conflict control reconfigures the domain-general conflict control network in a connective way as evidenced by different communication and stronger connectivity among the domain-general conflict control network. Together, these findings offer the first empirical-based elaboration on the brain network underpinning emotional conflict control and how it reconfigures the domain-general conflict control network in interactive ways.
Collapse
Affiliation(s)
- Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Tianjin Normal University, Tianjin 300382, China
| | - W. John Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory/Bilingualism Matters, Wilfrid Laurier University, Waterloo N2L3C5, Canada
- Department of Linguistics and Languages, McMaster University, Hamilton L8S4L8, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| |
Collapse
|
5
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
7
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
8
|
Spadone S, Betti V, Sestieri C, Pizzella V, Corbetta M, Della Penna S. Spectral signature of attentional reorienting in the human brain. Neuroimage 2021; 244:118616. [PMID: 34582947 DOI: 10.1016/j.neuroimage.2021.118616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
As we move in the environment, attention shifts to novel objects of interest based on either their sensory salience or behavioral value (reorienting). This study measures with magnetoencephalography (MEG) different properties (amplitude, onset-to-peak duration) of event-related desynchronization/synchronization (ERD/ERS) of oscillatory activity during a visuospatial attention task designed to separate activity related to reorienting vs. maintaining attention to the same location, controlling for target detection and response processes. The oscillatory activity was measured both in fMRI-defined regions of interest (ROIs) of the dorsal attention (DAN) and visual (VIS) networks, previously defined as task-relevant in the same subjects, or whole-brain in a pre-defined set of cortical ROIs encompassing the main brain networks. Reorienting attention (shift cues) as compared to maintaining attention (stay cues) produced a temporal sequence of ERD/ERS modulations at multiple frequencies in specific anatomical regions/networks. An early (∼330 ms), stronger, transient theta ERS occurred in task-relevant (DAN, VIS) and control networks (VAN, CON, FPN), possibly reflecting an alert/reset signal in response to the cue. A more sustained, behaviorally relevant, low-beta band ERD peaking ∼450 ms following shift cues (∼410 for stay cues) localized in frontal and parietal regions of the DAN. This modulation is consistent with a control signal re-routing information across visual hemifields. Contralateral vs. ipsilateral shift cues produced in occipital visual regions a stronger, sustained alpha ERD (peak ∼470 ms) and a longer, transient high beta/gamma ERS (peak ∼490 ms) related to preparatory visual modulations in advance of target occurrence. This is the first description of a cascade of oscillatory processes during attentional reorienting in specific anatomical regions and networks. Among these processes, a behaviorally relevant beta desynchronization in the FEF is likely associated with the control of attention shifts.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy.
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padua, Italy; Padova Neuroscience Center, University of Padua, Italy; Departments of Neurology, Radiology, Neuroscience, Washington University St. Louis, USA
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| |
Collapse
|
9
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
10
|
Ogawa A. Time-varying measures of cerebral network centrality correlate with visual saliency during movie watching. Brain Behav 2021; 11:e2334. [PMID: 34435748 PMCID: PMC8442596 DOI: 10.1002/brb3.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive development of graph-theoretic analysis for functional connectivity has revealed the multifaceted characteristics of brain networks. Network centralities identify the principal functional regions, individual differences, and hub structure in brain networks. Neuroimaging studies using movie-watching have investigated brain function under naturalistic stimuli. Visual saliency is one of the promising measures for revealing cognition and emotions driven by naturalistic stimuli. This study investigated whether the visual saliency in movies was associated with network centrality. The study examined eigenvector centrality (EC), which is a measure of a region's influence in the brain network, and the participation coefficient (PC), which reflects the hub structure in the brain, was used for comparison. Static and time-varying EC and PC were analyzed by a parcel-based technique. While EC was correlated with brain activity in parcels in the visual and auditory areas during movie-watching, it was only correlated with parcels in the visual areas in the retinotopy task. In addition, high PC was consistently observed in parcels in the putative hub both during the tasks and the resting-state condition. Time-varying EC in the parietal parcels and time-varying PC in the primary sensory parcels significantly correlated with visual saliency in the movies. These results suggest that time-varying centralities in brain networks are distinctively associated with perceptual processing and subsequent higher processing of visual saliency.
Collapse
Affiliation(s)
- Akitoshi Ogawa
- Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.,Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
11
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Spadone S, Wyczesany M, Della Penna S, Corbetta M, Capotosto P. Directed Flow of Beta Band Communication During Reorienting of Attention Within the Dorsal Attention Network. Brain Connect 2021; 11:717-724. [PMID: 33926233 DOI: 10.1089/brain.2020.0885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The endogenous allocation of spatial attention to selected environmental stimuli is controlled by prefrontal (frontal eye fields [FEFs]) and parietal (superior parietal lobe [SPL] and intraparietal sulcus [IPS]) regions belonging to the dorsal attention network (DAN) with a subdivision in subsystems devoted to reorienting (or shifting) of attention between locations (SPL) or maintaining attention at contralateral versus ipsilateral locations (ventral IPS [vIPS]). Although previous studies suggested a leading role of prefrontal regions over parietal sites in orienting attention, the spectral signature of communication flow within the DAN for different attention processes is still debated. Methods: We used the directed transfer function (DTF) on magnetoencephalography (MEG) data to examine the causal interaction between prefrontal and parietal regions of the DAN when subjects shifted versus maintained attention to a stream of cued visual stimuli. Results: In the beta band, we found that shift versus stay cues induced stronger connectivity (DTF values) from right FEF to right SPL, in the early phase of reorienting. Conversely, when considering stay versus shift cues, an increase of DTF values and stronger directionality was observed between bilateral vIPS and from right vIPS to FEF. Similar analyses carried out in theta, alpha, and gamma showed no significant frontoparietal increases of DTF for shift versus stay cues, whereas the stay-related increase of DTF observed in beta between ventral parietal areas was preserved in the alpha band. Conclusions: These findings suggest that control processes in DAN regions (in particular between FEF and SPL) can be associated to a beta frequency channel during shift of attention. Impact statement In the present study, we compared the reorienting response to novel stimuli with respect to maintaining response. Results provided new insights into understanding the neural mechanisms of control attention processes by identifying the frequency-specific causal interactions between frontal and parietal regions belonging to the dorsal attention network supporting spatial reorienting response.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| | | | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Padova, Italy.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| |
Collapse
|
13
|
Croce P, Spadone S, Zappasodi F, Baldassarre A, Capotosto P. rTMS affects EEG microstates dynamic during evoked activity. Cortex 2021; 138:302-310. [PMID: 33774580 DOI: 10.1016/j.cortex.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Electrophysiological (EEG) correlates both at time (i.e., event-related potentials, ERP) and frequency (i.e., event-related desynchronization, ERD) domains have been shown to be modulated by external magnetic interference. Parallel studies reported a similar interference also for the EEG microstate at rest and in the period that anticipates a task. Here we investigated whether such interference was prolonged during the evoked activity in the framework of the semantic decision task. To this aim, rTMS was delivered over a core region of both the Default mode network and the language network (i.e., left angular gyrus, AG), previously associated to the current task, and as active control we stimulated the left IPS. When subjects received a non-active stimulation (i.e., Sham), in the period that follows the target onset (i.e., 2 sec after the rTMS) we found an interesting alternation of two dominant microstates (MS1, MS3), previously associated to the phonological network and the Cingulo-Opercular Network (CON), respectively. This dynamic was not altered when TMS was delivered over the left IPS. On the contrary, rTMS over left AG selectively suppressed the phonological-related microstate. These findings provide the first causal evidence of region specificity of the EEG microstates topography during the evoked activity corroborating the idea of a crucial role of AG in the semantic memory. Moreover, the present results might provide insight for understanding the neurophysiological correlates of language disorders e.g., aphasia as well as for planning non-invasive brain stimulation protocols for the rehabilitation.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience Imaging and Clinical Science, ITAB, Institute for Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy
| | - Sara Spadone
- Department of Neuroscience Imaging and Clinical Science, ITAB, Institute for Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Science, ITAB, Institute for Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience Imaging and Clinical Science, ITAB, Institute for Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy
| | - Paolo Capotosto
- Department of Neuroscience Imaging and Clinical Science, ITAB, Institute for Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy.
| |
Collapse
|
14
|
Favaretto C, Spadone S, Sestieri C, Betti V, Cenedese A, Della Penna S, Corbetta M. Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. Neuroimage 2021; 230:117781. [PMID: 33497772 DOI: 10.1016/j.neuroimage.2021.117781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015). Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention-rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.
Collapse
Affiliation(s)
- Chiara Favaretto
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| | - Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Angelo Cenedese
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Department of Neurology, Radiology, Neuroscience, and Biomedical Engineering Washington University Saint Louis, MO 63110, USA; Venetian Institute of Molecular Medicine, VIMM, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
15
|
Doricchi F, Pellegrino M, Marson F, Pinto M, Caratelli L, Cestari V, Rossi-Arnaud C, Lasaponara S. Deconstructing Reorienting of Attention: Cue Predictiveness Modulates the Inhibition of the No-target Side and the Hemispheric Distribution of the P1 Response to Invalid Targets. J Cogn Neurosci 2020; 32:1046-1060. [DOI: 10.1162/jocn_a_01534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Orienting of attention produces a “sensory gain” in the processing of visual targets at attended locations and an increase in the amplitude of target-related P1 and N1 ERPs. P1 marks gain reduction at unattended locations; N1 marks gain enhancement at attended ones. Lateral targets that are preceded by valid cues also evoke a larger P1 over the hemisphere contralateral to the no-target side, which reflects inhibition of this side of space [Slagter, H. A., Prinssen, S., Reteig, L. C., & Mazaheri, A. Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125, 25–35, 2016]. To clarify the relationships among cue predictiveness, sensory gain, and the inhibitory P1 response, we compared cue- and target-related ERPs among valid, neutral, and invalid trials with predictive (80% valid/20% invalid) or nonpredictive (50% valid/50% invalid) directional cues. Preparatory facilitation over the visual cortex contralateral to the cued side of space (lateral directing attention positivity component) was reduced during nonpredictive cueing. With predictive cues, the target-related inhibitory P1 was larger over the hemisphere contralateral to the no-target side not only in response to valid but also in response to neutral and invalid targets: This result highlights a default inhibitory hemispheric asymmetry that is independent from cued orienting of attention. With nonpredictive cues, valid targets reduced the amplitude of the inhibitory P1 over the hemisphere contralateral to the no-target side whereas invalid targets enhanced the amplitude of the same inhibitory component. Enhanced inhibition was matched with speeded reorienting to invalid targets and drop in attentional costs. These findings show that reorienting of attention is modulated by the combination of cue-related facilitatory and target-related inhibitory activity.
Collapse
Affiliation(s)
- Fabrizio Doricchi
- Università degli Studi di Roma “La Sapienza”
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michele Pellegrino
- Università degli Studi di Roma “La Sapienza”
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | - Mario Pinto
- Università degli Studi di Roma “La Sapienza”
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | - Stefano Lasaponara
- Fondazione Santa Lucia IRCCS, Rome, Italy
- Libera Università Maria Santissima Assunta, Rome, Italy
| |
Collapse
|
16
|
Elkin-Frankston S, Rushmore RJ, Valero-Cabré A. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli. Sci Rep 2020; 10:3162. [PMID: 32081939 PMCID: PMC7035391 DOI: 10.1038/s41598-020-59662-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022] Open
Abstract
Research in humans and animal models suggests that visual responses in early visual cortical areas may be modulated by top-down influences from distant cortical areas, particularly in the frontal and parietal regions. The right posterior parietal cortex is part of a broad cortical network involved in aspects of visual search and attention, but its role in modulating activity in early visual cortical areas is less well understood. This study evaluated the influence of right posterior parietal cortex (PPC) on a direct measure of visual processing in humans. Contrast sensitivity (CS) and detection response times were recorded using a visual detection paradigm to two types of centrally-presented stimuli. Participants were tested on the detection task before, after, and 1 hour after low-frequency repetitive transcranial magnetic stimulation (rTMS) to the right PPC or to the scalp vertex. Low-frequency rTMS to the right PPC did not significantly change measures of contrast sensitivity, but increased the speed at which participants responded to visual stimuli of low spatial frequency. Response times returned to baseline 1-hour after rTMS. These data indicate that low frequency rTMS to the right PPC speeds up aspects of early visual processing, likely due to a disinhibition of the homotopic left posterior parietal cortex.
Collapse
Affiliation(s)
- Seth Elkin-Frankston
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.,U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Richard J Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, United States. .,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States.
| | - Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States. .,Cerebral Dynamics Plasticity and Rehabilitation Group, FRONTLAB Team ICM & CNRS UMR 7225, INSERM UMR 1127, Sorbone Universtité & LPNC CNRS UMR 5105-TREAT vision, Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
17
|
Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cereb Cortex 2019; 28:2085-2099. [PMID: 28472289 DOI: 10.1093/cercor/bhx114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/14/2022] Open
Abstract
We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When "shift" events were compared with "stay" events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - John T Arsenault
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.,Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| |
Collapse
|
18
|
Worringer B, Langner R, Koch I, Eickhoff SB, Eickhoff CR, Binkofski FC. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Struct Funct 2019; 224:1845-1869. [PMID: 31037397 PMCID: PMC7254756 DOI: 10.1007/s00429-019-01870-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/27/2019] [Indexed: 01/27/2023]
Abstract
Although there are well-known limitations of the human cognitive system in performing two tasks simultaneously (dual-tasking) or alternatingly (task-switching), the question for a common vs. distinct neural basis of these multitasking limitations is still open. We performed two Activation Likelihood Estimation meta-analyses of neuroimaging studies on dual-tasking or task-switching and tested for commonalities and differences in the brain regions associated with either domain. We found a common core network related to multitasking comprising bilateral intraparietal sulcus (IPS), left dorsal premotor cortex (dPMC), and right anterior insula. Meta-analytic contrasts revealed eight fronto-parietal clusters more consistently activated in dual-tasking (bilateral frontal operculum, dPMC, and anterior IPS, left inferior frontal sulcus and left inferior frontal gyrus) and, conversely, four clusters (left inferior frontal junction, posterior IPS, and precuneus as well as frontomedial cortex) more consistently activated in task-switching. Together with sub-analyses of preparation effects in task-switching, our results argue against purely passive structural processing limitations in multitasking. Based on these findings and drawing on current theorizing, we present a neuro-cognitive processing model of multitasking.
Collapse
Affiliation(s)
- Britta Worringer
- Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
- Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Iring Koch
- Institute of Psychology, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ferdinand C Binkofski
- Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich, Pauwelsstr. 30, Jülich, Germany
- Jülich Aachen Research Alliance JARA-BRAIN, Pauwelsstr. 30, Aachen, Germany
| |
Collapse
|
19
|
Martín-Arévalo E, Lupiáñez J, Narganes-Pineda C, Marino G, Colás I, Chica AB. The causal role of the left parietal lobe in facilitation and inhibition of return. Cortex 2019; 117:311-322. [PMID: 31185374 DOI: 10.1016/j.cortex.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
Following non-informative peripheral cues, responses are facilitated at the cued compared to the uncued location at short cue-target intervals. This effect reverses at longer intervals, giving rise to Inhibition of Return (IOR). The integration-segregation hypothesis (Lupiáñez, 2010) suggests that peripheral cues always produce an onset-detection cost regardless the behavioral cueing effect that is measured - either facilitation or IOR. In the present study, we used transcranial magnetic stimulation (TMS) to investigate the causal contribution of this detection cost to performance. We used a cueing paradigm with a target discrimination task that was preceded by a non-informative peripheral cue. The presence-absence of a central intervening event was manipulated. Online TMS to the left superior parietal lobe (compared to an active vertex stimulation) lead to an overall more positive effect (faster responses for cued as compared to uncued trials), by putatively impairing the detection cost contribution to performance. The data revealed a strong association between overall RT and the TMS effect, and also between overall RT and the integrity of the first branch of the left superior longitudinal fascicule. These results have critical implications not only for the open debate about the mechanism/s underlying spatial orienting effects, but also for the growing literature demonstrating that white matter connectivity is crucial for explaining inter-individual behavioral variability.
Collapse
Affiliation(s)
- E Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - J Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - C Narganes-Pineda
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - G Marino
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - I Colás
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
20
|
Theta-burst stimulation causally affects side perception in the Deutsch's octave illusion. Sci Rep 2018; 8:12844. [PMID: 30150659 PMCID: PMC6110737 DOI: 10.1038/s41598-018-31248-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
Deutsch’s octave illusion is produced by a sequence of two specular dichotic stimuli presented in alternation to the left and right ear causing an illusory segregation of pitch (frequency) and side (ear of origin). Previous studies have indicated that illusory perception of pitch takes place in temporo-frontal areas, whereas illusory perception of side is primarily associated to neural activity in parietal cortex and in particular in the inferior parietal lobule (IPL). Here we investigated the causal role of left IPL in the perception of side (ear of origin) during the octave illusion by following its inhibition through continuous theta-burst stimulation (cTBS), as compared to the left posterior intraparietal sulcus (pIPS), whose activity is thought to be unrelated to side perception during the illusion. We observed a prolonged modification in the side of the illusory perceived tone during the first 10 minutes following the stimulation. Specifically, while after cTBS over the left IPS subjects reported to perceive the last tone more often at the right compared to the left ear, cTBS over left IPL significantly reverted this distribution, as the number of last perceived tones at the right ear was smaller than at the left ear. Such alteration was not maintained in the successive 10 minutes. These results provide the first evidence of the causal involvement of the left IPL in the perception of side during the octave illusion.
Collapse
|
21
|
Capotosto P, Baldassarre A, Sestieri C, Spadone S, Romani GL, Corbetta M. Task and Regions Specific Top-Down Modulation of Alpha Rhythms in Parietal Cortex. Cereb Cortex 2018; 27:4815-4822. [PMID: 27600845 DOI: 10.1093/cercor/bhw278] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023] Open
Abstract
Alpha (8-12 Hz) power desynchronization is strongly associated to visual perception but has been observed in a large variety of tasks, indicating a general role in task anticipation. We previously reported in human observers that interference by repetitive transcranial magnetic stimulation (rTMS) of core regions of the dorsal attention network (DAN) disrupts both anticipatory alpha desynchronization and performance during a visuospatial attention (VSA) task. Here, we test the hypothesis that alpha desynchronization is task specific, and can be selectively modulated by interfering with activity in different higher-order parietal regions. We contrast the effects of rTMS on alpha rhythms and behavior on 2 different tasks: a VSA and a semantic decision task, by targeting the posterior intraparietal sulcus (pIPS), a core region of the DAN, or the angular gyrus (AG), a core region of the default mode network (DMN). We found that both performance and anticipatory alpha desynchronization were affected by stimulation of IPS only during VSA, and of AG only during semantic decisions. These findings indicate the existence of multiple dedicated parietal channels for the modulation of anticipatory alpha rhythms, which in turn reflect task-specific modulation of excitability in human parieto-occipital cortex.
Collapse
Affiliation(s)
- Paolo Capotosto
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Sara Spadone
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging, and Clinical Science, Institute of Advanced Biomedical Technologies (ITAB), University "G. D'Annunzio", Via dei Vestini 33, Chieti 66100, Italy
| | - Maurizio Corbetta
- Department of Neurology, Radiology, Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
22
|
Schulz L, Ischebeck A, Wriessnegger SC, Steyrl D, Müller-Putz GR. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Brain Cogn 2018; 124:37-46. [PMID: 29723681 DOI: 10.1016/j.bandc.2018.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Imagining a complex action requires not only motor-related processing but also visuo-spatial imagery. In the current study, we examined visuo-spatial complexity and action affordances in motor imagery (MI). Using functional magnetic resonance imaging, we investigated the neural activity in MI of reach-to-grasp movements of the right hand in five conditions. Thirty participants were scanned while imagining grasping an everyday object, grasping a geometrical shape, grasping next to an everyday object, grasping next to a geometrical shape, and grasping at nothing (no object involved). We found that MI of grasping next to an object recruited the visuo-spatial cognition network including posterior parietal and premotor regions more strongly than MI of grasping an object. This indicates that grasping next to an object requires additional processing resources rendering MI more complex. MI of a grasping movement involving a familiar everyday object compared to a geometrical shape yielded stronger activation in motor-related regions, including the bilateral supplementary motor area. This activation might be due to inhibitory processes preventing motor execution of motor scripts evoked by everyday objects (action affordances). Our results indicate that visuo-spatial cognition plays a significant role in MI.
Collapse
Affiliation(s)
- Laura Schulz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - David Steyrl
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
23
|
Croce P, Zappasodi F, Capotosto P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci Rep 2018; 8:1287. [PMID: 29352255 PMCID: PMC5775423 DOI: 10.1038/s41598-018-19698-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/02/2018] [Indexed: 01/31/2023] Open
Abstract
The interference effects of transcranial magnetic stimulation (TMS) on several electroencephalographic (EEG) measures in both temporal and frequency domains have been reported. We tested the hypothesis whether the offline external inhibitory interference, although focal, could result in a global reorganization of the functional brain state, as assessed by EEG microstates. In 16 healthy subjects, we inhibited five parietal areas and used a pseudo stimulation (Sham) at rest. The EEG microstates were extracted before and after each stimulation. The canonical A, B, C and D templates were found before and after all stimulation conditions. The Sham, as well as the stimulation of a ventral site did not modify any resting EEG microstates’ topography. On the contrary, interfering with parietal key-nodes of both dorsal attention (DAN) and default mode networks (DMN), we observed that the microstate C clearly changes, whereas the other three topographies are not affected. These results provide the first causal evidence of a microstates modification following magnetic interference. Since the microstate C has been associated to the activity in regions belonging to the cingulo-opercular network (CON), the regional specificity of such inhibition seems to support the theory of a link between CON and both DAN and DMN at rest.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.,Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy. .,Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti, Italy.
| | - Paolo Capotosto
- Department of Neuroscience Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.,Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
24
|
Temporal dynamics of TMS interference over preparatory alpha activity during semantic decisions. Sci Rep 2017; 7:2372. [PMID: 28539601 PMCID: PMC5443784 DOI: 10.1038/s41598-017-02616-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
The mean amplitude of the EEG alpha (8–12 Hz) power de-synchronization (ERD) is a robust electrophysiological correlate of task anticipation. Furthermore, in paradigms using a fixed period between warning and target stimuli, such alpha de-synchronization tends to increase and to peak just before target presentation. Previous studies from our group showed that the anticipatory alpha ERD can be modulated when magnetic stimulation is delivered over specific cortical regions during a variety of cognitive tasks. In this study we investigate the temporal dynamics of the anticipatory alpha ERD and test whether the magnetic stimulation produces either a general attenuation or an interruption of the typical development of alpha ERD. We report that, during a semantic decision task, rTMS over left AG, a region previously associated to semantic memory retrieval, shortened the peak latency and decreased the peak amplitude of the anticipatory alpha de-synchronization as compared to both active (left IPS) and non-active (Sham) TMS conditions. These results, while supporting the causal role of the left AG in the anticipation of a semantic decision task, suggest that magnetic interference not simply reduces the mean amplitude of anticipatory alpha ERD but also interrupts its typical temporal evolution in paradigms employing fixed cue-target intervals.
Collapse
|
25
|
Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia 2017; 99:81-91. [PMID: 28254653 PMCID: PMC5415819 DOI: 10.1016/j.neuropsychologia.2017.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/13/2016] [Accepted: 02/26/2017] [Indexed: 11/20/2022]
Abstract
It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20 min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Thetaburst stimulation to the right FEF temporarily impairs bilateral attention shifts. Lateralised behavioural deficits in the contralateral hemifield are observed when cued to maintain attention. These effects recover ca. 20 min post stimulation. During shifts, neural activity is suppressed following right FEF TBS in the dorsal attention network and supramarginal gyri. Influences from right FEF to SMG causally underlie attention shifts, presumably by enabling disengagement from current focus.
Collapse
|
26
|
Baldassarre A, Capotosto P, Committeri G, Corbetta M. Magnetic stimulation of visual cortex impairs perceptual learning. Neuroimage 2016; 143:250-255. [DOI: 10.1016/j.neuroimage.2016.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
|
27
|
Battaglia-Mayer A, Babicola L, Satta E. Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience 2016; 334:76-92. [DOI: 10.1016/j.neuroscience.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
|
28
|
Farr OM, Upadhyay J, Gavrieli A, Camp M, Spyrou N, Kaye H, Mathew H, Vamvini M, Koniaris A, Kilim H, Srnka A, Migdal A, Mantzoros CS. Lorcaserin Administration Decreases Activation of Brain Centers in Response to Food Cues and These Emotion- and Salience-Related Changes Correlate With Weight Loss Effects: A 4-Week-Long Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Diabetes 2016; 65:2943-53. [PMID: 27385157 PMCID: PMC5033259 DOI: 10.2337/db16-0635] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Lorcaserin is a serotonin 5-hydroxytryptamine 2c receptor agonist effective in treating obesity. Studies in rodents have shown that lorcaserin acts in the brain to exert its weight-reducing effects, but this has not yet been studied in humans. We performed a randomized, placebo-controlled, double-blind trial with 48 obese participants and used functional MRI to study the effects of lorcaserin on the brain. Subjects taking lorcaserin had decreased brain activations in the attention-related parietal and visual cortices in response to highly palatable food cues at 1 week in the fasting state and in the parietal cortex in response to any food cues at 4 weeks in the fed state. Decreases in emotion- and salience-related limbic activity, including the insula and amygdala, were attenuated at 4 weeks. Decreases in caloric intake, weight, and BMI correlated with activations in the amygdala, parietal, and visual cortices at baseline. These data suggest that lorcaserin exerts its weight-reducing effects by decreasing attention-related brain activations to food cues (parietal and visual cortices) and emotional and limbic activity (insula, amygdala). Results indicating that baseline activation of the amygdala relates to increased efficacy suggest that lorcaserin would be of particular benefit to emotional eaters.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jagriti Upadhyay
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Anna Gavrieli
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Michelle Camp
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Nikolaos Spyrou
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Harper Kaye
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Maria Vamvini
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Anastasia Koniaris
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Holly Kilim
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexandra Srnka
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexandra Migdal
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Cieslik EC, Seidler I, Laird AR, Fox PT, Eickhoff SB. Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades. Neurosci Biobehav Rev 2016; 68:256-269. [PMID: 27211526 DOI: 10.1016/j.neubiorev.2016.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
The antisaccade task has been widely used to investigate cognitive action control. While the general network for saccadic eye movements is well defined, the exact location of eye fields within the frontal cortex strongly varies between studies. It is unknown whether this inconsistency reflects spatial uncertainty or is the result of different involvement of subregions for specific aspects of eye movement control. The aim of the present study was to examine functional differentiations within the frontal cortex by integrating results from neuroimaging studies analyzing pro- and antisaccade behavior using meta-analyses. The results provide evidence for a differential functional specialization of neighboring oculomotor frontal regions, with lateral frontal eye fields (FEF) and supplementary eye field (SEF) more often involved in prosaccades while medial FEF and anterior midcingulate cortex (aMCC) revealed consistent stronger involvement for antisaccades. This dissociation was furthermore mirrored by functional connectivity analyses showing that the lateral FEF and SEF are embedded in a motor output network, while medial FEF and aMCC are integrated in a multiple demand network.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany.
| | - Isabelle Seidler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Jülich, Germany
| |
Collapse
|
30
|
Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni-Balafouta S, Mantzoros CS. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia 2016; 59:954-65. [PMID: 26831302 PMCID: PMC4826792 DOI: 10.1007/s00125-016-3874-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that has been demonstrated to successfully treat diabetes and promote weight loss. The mechanisms by which liraglutide confers weight loss remain to be fully clarified. Thus, we investigated whether GLP-1 receptors are expressed in human brains and whether liraglutide administration affects neural responses to food cues in diabetic individuals (primary outcome). METHODS In 22 consecutively studied human brains, expression of GLP-1 receptors in the hypothalamus, medulla oblongata and parietal cortex was examined using immunohistochemistry. In a randomised (assigned by the pharmacy using a randomisation enrolment table), placebo-controlled, double-blind, crossover trial, 21 individuals with type 2 diabetes (18 included in analysis due to lack or poor quality of data) were treated with placebo and liraglutide for a total of 17 days each (0.6 mg for 7 days, 1.2 mg for 7 days, and 1.8 mg for 3 days). Participants were eligible if they had type 2 diabetes and were currently being treated with lifestyle changes or metformin. Participants, caregivers, people doing measurements and/or examinations, and people assessing the outcomes were blinded to the medication assignment. We studied metabolic changes as well as neurocognitive and neuroimaging (functional MRI) of responses to food cues at the clinical research centre of Beth Israel Deaconess Medical Center. RESULTS Immunohistochemical analysis revealed the presence of GLP-1 receptors on neurons in the human hypothalamus, medulla and parietal cortex. Liraglutide decreased activation of the parietal cortex in response to highly desirable (vs less desirable) food images (p < 0.001; effect size: placebo 0.53 ± 0.24, liraglutide -0.47 ± 0.18). No significant adverse effects were noted. In a secondary analysis, we observed decreased activation in the insula and putamen, areas involved in the reward system. Furthermore, we showed that increased ratings of hunger and appetite correlated with increased brain activation in response to highly desirable food cues while on liraglutide, while ratings of nausea correlated with decreased brain activation. CONCLUSIONS/INTERPRETATION For the first time, we demonstrate the presence of GLP-1 receptors in human brains. We also observe that liraglutide alters brain activity related to highly desirable food cues. Our data point to a central mechanism contributing to, or underlying, the effects of liraglutide on metabolism and weight loss. Future studies will be needed to confirm and extend these findings in larger samples of diabetic individuals and/or with the higher doses of liraglutide (3 mg) recently approved for obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT01562678 FUNDING : The study was funded by Novo Nordisk, NIH UL1 RR025758 and 5T32HD052961.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA.
| | - Michail Sofopoulos
- Department of Pathology, St Savvas Anticancer-Oncology Hospital, Athens, Greece
| | - Michael A Tsoukas
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Fadime Dincer
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Bindiya Thakkar
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Ayse Sahin-Efe
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Andreas Filippaios
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Jennifer Bowers
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Alexandra Srnka
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Anna Gavrieli
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Byung-Joon Ko
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chrysoula Liakou
- Department of Pathology, St Savvas Anticancer-Oncology Hospital, Athens, Greece
| | - Nickole Kanyuch
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | | | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Kauffmann L, Bourgin J, Guyader N, Peyrin C. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes. J Cogn Neurosci 2015; 27:2394-405. [DOI: 10.1162/jocn_a_00861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Current models of visual perception suggest that during scene categorization, low spatial frequencies (LSF) are processed rapidly and activate plausible interpretations of visual input. This coarse analysis would then be used to guide subsequent processing of high spatial frequencies (HSF). The present fMRI study examined how processing of LSF may influence that of HSF by investigating the neural bases of the semantic interference effect. We used hybrid scenes as stimuli by combining LSF and HSF from two different scenes, and participants had to categorize the HSF scene. Categorization was impaired when LSF and HSF scenes were semantically dissimilar, suggesting that the LSF scene was processed automatically and interfered with categorization of the HSF scene. fMRI results revealed that this semantic interference effect was associated with increased activation in the inferior frontal gyrus, the superior parietal lobules, and the fusiform and parahippocampal gyri. Furthermore, a connectivity analysis (psychophysiological interaction) revealed that the semantic interference effect resulted in increasing connectivity between the right fusiform and the right inferior frontal gyri. Results support influential models suggesting that, during scene categorization, LSF information is processed rapidly in the pFC and activates plausible interpretations of the scene category. These coarse predictions would then initiate top–down influences on recognition-related areas of the inferotemporal cortex, and these could interfere with the categorization of HSF information in case of semantic dissimilarity to LSF.
Collapse
|
32
|
Abstract
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area.
Collapse
|
33
|
Zhang S, Tsai SJ, Hu S, Xu J, Chao HH, Calhoun VD, Li CSR. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time. Hum Brain Mapp 2015; 36:3289-302. [PMID: 26089095 DOI: 10.1002/hbm.22819] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/06/2015] [Accepted: 04/06/2015] [Indexed: 01/11/2023] Open
Abstract
Cognitive control is a critical executive function. Many studies have combined general linear modeling and the stop signal task (SST) to delineate the component processes of cognitive control. For instance, by contrasting stop success (SS) and stop error (SE) trials in the SST, investigators examined regional responses to stop signal inhibition. In contrast to this parameterized approach, independent component analysis (ICA) elucidates brain networks subserving cognitive control. In our earlier work of 59 adults performing the SST during fMRI, we characterized six independent components (ICs). However, none of these ICs correlated with stop signal performance, raising questions about their behavioral validity. Here, in a larger sample (n = 100), we identified and explored 23 ICs for correlation with the stop signal reaction time (SSRT), a measure of the efficiency of response inhibition. At a corrected threshold (P < 0.0005), a paracentral lobule-midcingulate network and a left inferior parietal-supplementary motor-somatomotor network showed a positive correlation between SE beta weight and SSRT. In contrast, a midline cerebellum-thalamus-pallidum network showed a negative correlation between SE beta weight and SSRT. These findings suggest that motor preparation and execution prolongs the SSRT, likely via an interaction between the go and stop processes as suggested by the race model. Behaviorally, consistent with this hypothesis, the difference in G and SE reaction times is positively correlated with SSRT across subjects. These new results highlight the importance of cognitive motor regions in response inhibition and support the utility of ICA in uncovering functional networks for cognitive control in the SST.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Shang-Jui Tsai
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Jiansong Xu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, Connecticut.,Medical Service, VA Connecticut Health Care System, West Haven, Connecticut
| | - Vince D Calhoun
- Department of Psychiatry, Yale University, New Haven, Connecticut.,The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, Connecticut.,Department of Neurobiology, Yale University, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| |
Collapse
|
34
|
Dynamic reorganization of human resting-state networks during visuospatial attention. Proc Natl Acad Sci U S A 2015; 112:8112-7. [PMID: 26080395 DOI: 10.1073/pnas.1415439112] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.
Collapse
|
35
|
Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study. J Neurosci 2015; 35:721-30. [PMID: 25589765 DOI: 10.1523/jneurosci.2066-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-α (8-10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-α (10-12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of α parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of δ (2-4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions.
Collapse
|
36
|
Coubard OA. Attention is complex: causes and effects. Front Psychol 2015; 6:246. [PMID: 25814966 PMCID: PMC4357217 DOI: 10.3389/fpsyg.2015.00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/18/2015] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olivier A Coubard
- The Neuropsychological Laboratory, CNS-Fed Paris, France ; Laboratoire Psychologie de la Perception, UMR 8242 CNRS-Université Paris Descartes Paris, France
| |
Collapse
|
37
|
Farr OM, Fiorenza C, Papageorgiou P, Brinkoetter M, Ziemke F, Koo BB, Rojas R, Mantzoros CS. Leptin therapy alters appetite and neural responses to food stimuli in brain areas of leptin-sensitive subjects without altering brain structure. J Clin Endocrinol Metab 2014; 99:E2529-38. [PMID: 25279500 PMCID: PMC4255115 DOI: 10.1210/jc.2014-2774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin is a key regulator of energy intake and expenditure. Individuals with congenital leptin deficiency demonstrate structural and functional brain changes when given leptin. However, whether acquired leptin deficiency may operate similarly is unclear. OBJECTIVE We set out to determine whether the brains of individuals with acquired leptin deficiency may react to leptin in a similar manner. DESIGN We used functional magnetic resonance imaging before and after short- and long-term metreleptin treatment in three leptin-sensitive patients with acquired hypoleptinemia. Nine healthy women were scanned as normoleptinemic controls. SETTING The setting was an academic medical center. PATIENTS OR OTHER PARTICIPANTS The participants were 3 hypoleptinemic women and nine normoleptinemic, matched women. INTERVENTIONS We used metreleptin, recombinant leptin, therapy for 24 weeks in hypoleptinemic women only. MAIN OUTCOME MEASURE We measured neural changes in response to viewing food as compared to nonfood images. We hypothesized that metreleptin treatment would increase brain activity in areas related to cognitive control and inhibition and would decrease brain activity in areas related to reward processing, as compared to the normoleptinemic counterparts. RESULTS Unlike patients with congenital leptin deficiency, hypoleptinemic patients demonstrated no structural brain differences from healthy controls and/or structural changes in response to treatment. Short-term metreleptin treatment in leptin-sensitive hypoleptinemic subjects enhances areas involved in detecting the salience and rewarding value of food during fasting, whereas long-term treatment decreases attention to food and the rewarding value of food after feeding. Furthermore, hypothalamic activity is modulated by metreleptin treatment, and leptin decreases functional connectivity of the hypothalamus to key feeding-related areas in these hypoleptinemic subjects. CONCLUSIONS Leptin replacement in acutely hypoleptinemic women did not alter brain structure but did alter functional cortical activity to food cues in key feeding and reward-related areas.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology (O.M.F., C.F., P.P., M.B., F.Z., C.S.M.), VA Boston Healthcare System and Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts 02215; Department of Anatomy and Neurobiology (B.-B.K.), Boston University School of Medicine, Boston, Massachusetts 02215; and Division of Radiology (R.R.), Beth-Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cieslik EC, Mueller VI, Eickhoff CR, Langner R, Eickhoff SB. Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2014; 48:22-34. [PMID: 25446951 DOI: 10.1016/j.neubiorev.2014.11.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/08/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022]
Abstract
The supervisory attentional system has been proposed to mediate non-routine, goal-oriented behaviour by guiding the selection and maintenance of the goal-relevant task schema. Here, we aimed to delineate the brain regions that mediate these high-level control processes via neuroimaging meta-analysis. In particular, we investigated the core neural correlates of a wide range of tasks requiring supervisory control for the suppression of a routine action in favour of another, non-routine one. Our sample comprised n=173 experiments employing go/no-go, stop-signal, Stroop or spatial interference tasks. Consistent convergence across all four paradigm classes was restricted to right anterior insula and inferior frontal junction, with anterior midcingulate cortex and pre-supplementary motor area being consistently involved in all but the go/no-go task. Taken together with lesion studies in patients, our findings suggest that the controlled activation and maintenance of adequate task schemata relies, across paradigms, on a right-dominant midcingulo-insular-inferior frontal core network. This also implies that the role of other prefrontal and parietal regions may be less domain-general than previously thought.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany.
| | - Veronika I Mueller
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen, University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Robert Langner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| |
Collapse
|
39
|
Cacioppo S, Fontang F, Patel N, Decety J, Monteleone G, Cacioppo JT. Intention understanding over T: a neuroimaging study on shared representations and tennis return predictions. Front Hum Neurosci 2014; 8:781. [PMID: 25339886 PMCID: PMC4186286 DOI: 10.3389/fnhum.2014.00781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/15/2014] [Indexed: 12/30/2022] Open
Abstract
Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction.
Collapse
Affiliation(s)
- Stephanie Cacioppo
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago Chicago, IL, USA ; High-Performance Electrical NeuroImaging Laboratory, Center for Cognitive and Social Neuroscience, The University of Chicago Chicago, IL, USA
| | | | - Nisa Patel
- Department of Graduate Nursing, Western University of Health Sciences Pomona, CA, USA
| | - Jean Decety
- Department of Psychology, Brain Imaging Center, The University of Chicago Chicago, IL, USA
| | - George Monteleone
- High-Performance Electrical NeuroImaging Laboratory, Center for Cognitive and Social Neuroscience, The University of Chicago Chicago, IL, USA
| | - John T Cacioppo
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago Chicago, IL, USA ; High-Performance Electrical NeuroImaging Laboratory, Center for Cognitive and Social Neuroscience, The University of Chicago Chicago, IL, USA ; Department of Psychology, Brain Imaging Center, The University of Chicago Chicago, IL, USA
| |
Collapse
|
40
|
Vandenberghe R, Gillebert CR. Dissociations between spatial-attentional processes within parietal cortex: insights from hybrid spatial cueing and change detection paradigms. Front Hum Neurosci 2013; 7:366. [PMID: 23882202 PMCID: PMC3712144 DOI: 10.3389/fnhum.2013.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022] Open
Abstract
Spatial cueing has been used by many different groups under multiple forms to study spatial attention processes. We will present evidence obtained in brain-damaged patients and healthy volunteers using a variant of this paradigm, the hybrid spatial cueing paradigm, which, besides single-target trials with valid and invalid cues, also contains trials where a target is accompanied by a contralateral competing stimulus (competition trials). This allows one to study invalidity-related processes and selection between competing stimuli within the same paradigm. In brain-damaged patients, lesions confined to the intraparietal sulcus result in contralesional attentional deficits, both during competition and invalid trials, according to a pattern that does not differ from that observed following inferior parietal lesions. In healthy volunteers, however, selection between competing stimuli and invalidity-related processes are partially dissociable, the former relying mainly on cytoarchitectonic areas hIP1-3 in the intraparietal sulcus, the latter on cytoarchitectonic area PF in the right inferior parietal lobule. The activity profile in more posterior inferior parietal areas PFm and PGa, does not distinguish between both types of trials. The functional account for right PF and adjacent areas is further constrained by the activity profile observed during other experimental paradigms. In a change detection task with variable target and distracter set size, for example, these inferior parietal areas show highest activity when the stimulus array consists of only one single target, while the intraparietal sulcus show increased activity as the array contains more targets and distracters. Together, these findings lead us to the hypothesis that right PF functions as a target singleton detector, which is activated when a target stands out from the background, referring both to the temporal background (expectancy) and the momentaneous background (stimulus-driven saliency).
Collapse
Affiliation(s)
- Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Katholieke Universiteit Leuven Leuven, Belgium ; Neurology Department, University Hospitals Leuven Leuven, Belgium
| | | |
Collapse
|
41
|
Ciavarro M, Ambrosini E, Tosoni A, Committeri G, Fattori P, Galletti C. rTMS of medial parieto-occipital cortex interferes with attentional reorienting during attention and reaching tasks. J Cogn Neurosci 2013; 25:1453-62. [PMID: 23647519 DOI: 10.1162/jocn_a_00409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unexpected changes in the location of a target for an upcoming action require both attentional reorienting and motor planning update. In both macaque and human brain, the medial posterior parietal cortex is involved in both phenomena but its causal role is still unclear. Here we used on-line rTMS over the putative human V6A (pV6A), a reach-related region in the dorsal part of the anterior bank of the parieto-occipital sulcus, during an attention and a reaching task requiring covert shifts of attention and planning of reaching movements toward cued targets in space. We found that rTMS increased RTs to invalidly cued but not to validly cued targets during both the attention and reaching task. Furthermore, we found that rTMS induced a deviation of reaching endpoints toward visual fixation and that this deviation was larger for invalidly cued targets. The results suggest that reorienting signals are used by human pV6A area to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly occurs in an unattended location. The current findings suggest a direct involvement of the action-related dorso-medial visual stream in attentional reorienting and a more specific role of pV6A area in the dynamic, on-line control of reaching actions.
Collapse
Affiliation(s)
- Marco Ciavarro
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|