1
|
Ke M, Yao X, Cao P, Liu G. Reconstruction and application of multilayer brain network for juvenile myoclonic epilepsy based on link prediction. Cogn Neurodyn 2025; 19:7. [PMID: 39780908 PMCID: PMC11703786 DOI: 10.1007/s11571-024-10191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Juvenile myoclonic epilepsy (JME) exhibits abnormal functional connectivity of brain networks at multiple frequencies. We used the multilayer network model to address the heterogeneous features at different frequencies and assess the mechanisms of functional integration and segregation of brain networks in JME patients. To address the possibility of false edges or missing edges during network construction, we combined multilayer networks with link prediction techniques. Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 40 JME patients and 40 healthy controls. The Multilayer Network framework is utilized to integrate information from different frequency bands and to fuse similarity metrics for link prediction. Finally, calculate the entropy of the multiplex degree and multilayer clustering coefficient of the reconfigured multilayer frequency network. The results showed that the multilayer brain network of JME patients had significantly reduced ability to integrate and separate information and significantly correlated with severity of JME symptoms. This difference was particularly evident in default mode network (DMN), motor and somatosensory network (SMN), and auditory network (AN). In addition, significant differences were found in the precuneus, suboccipital gyrus, middle temporal gyrus, thalamus, and insula. Results suggest that JME patients have abnormal brain function and reduced cross-frequency interactions. This may be due to changes in the distribution of connections within and between the DMN, SMN, and AN in multiple frequency bands, resulting in unstable connectivity patterns. The generation of these changes is related to the pathological mechanisms of JME and may exacerbate cognitive and behavioral problems in patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10191-0.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Xinyi Yao
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Peihui Cao
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030 China
| |
Collapse
|
2
|
De Roeck L, Blommaert J, Dupont P, Sunaert S, Lauwens L, Clement PM, De Vleeschouwer S, Sleurs C, Lambrecht M. Structural Network Hubs as Potential Organs at Risk in Glioma Patients After Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 122:631-642. [PMID: 40122300 DOI: 10.1016/j.ijrobp.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/30/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE Cognitive sequelae are a concern in glioma patients postradiation therapy. As there is uncertainty regarding which brain regions to spare during radiation therapy to preserve cognition, we explored structural brain network hubs as potential organs at risk. METHODS AND MATERIALS We conducted a cross-sectional study, involving 39 irradiated adult WHO grade 2 and 3 gliomas along with 50 healthy controls. Cognitive domains (language, memory, attention, motor-, and executive functioning) were assessed ≥1 year postradiation therapy. Using multishell diffusion-weighted imaging, weighted structural graphs were constructed, and graph measures calculated to define hubs. The association between mean radiation therapy (RT) dose in each region and nodal strength and cognitive domains were tested with a linear regression model and Spearman's rho correlations, respectively. RESULTS Lower nodal strength was significantly associated with increasing RT dose in 9 brain regions, significantly (McNemar test, P < .01) impacting hubs more often than nonhubs (58% vs 7%). Executive performance (r(37) ≥ -.474, PFDR ≤ .045) and attention (r(37) ≥ -.471, PFDR ≤ .045) were significantly correlated with RT doses to the left pre- and postcentral gyrus and right posterior cingulate cortex, whereas poorer language outcomes were observed in patients receiving higher doses to the left insula, superior frontal, and precentral gyrus (r(37) ≥ -.460, PFDR ≤ .045). These correlations were more prevalent in hubs than nonhubs (P = .33), and higher than those between memory and left (r(37) = -.359) and right (r(37) = .059) hippocampal dose. CONCLUSIONS Higher RT doses to specific brain regions, particularly left-sided hubs, were associated with reduced nodal strength (ie, lower network centrality) and poorer cognitive performance. Although baseline cognitive testing is unavailable and cognitive functioning is influenced by multiple factors, this study highlights the potential value of network- or hub-sparing RT dose planning. Future longitudinal studies are needed to validate these findings before clinical implementation.
Collapse
Affiliation(s)
- Laurien De Roeck
- Department of Radiation-Oncology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Radiation-Oncology, AZ Turnhout, Turnhout, Belgium.
| | - Jeroen Blommaert
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lieselotte Lauwens
- Department of Radiation-Oncology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Paul M Clement
- Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Sleurs
- Department of Oncology, KU Leuven, Leuven, Belgium; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Maarten Lambrecht
- Department of Radiation-Oncology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Raj A, Torok J, Ranasinghe K. Understanding the complex interplay between tau, amyloid and the network in the spatiotemporal progression of Alzheimer's disease. Prog Neurobiol 2025; 249:102750. [PMID: 40107380 DOI: 10.1016/j.pneurobio.2025.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The interaction of amyloid and tau in neurodegenerative diseases is a central feature of AD pathophysiology. While experimental studies point to various interaction mechanisms, their causal direction and mode (local, remote or network-mediated) remain unknown in human subjects. The aim of this study was to compare mathematical reaction-diffusion models encoding distinct cross-species couplings to identify which interactions were key to model success. METHODS We tested competing mathematical models of network spread, aggregation, and amyloid-tau interactions on publicly available data from ADNI. RESULTS Although network spread models captured the spatiotemporal evolution of tau and amyloid in human subjects, the model including a one-way amyloid-to-tau aggregation interaction performed best. DISCUSSION This mathematical exposition of the "pas de deux" of co-evolving proteins provides quantitative, whole-brain support to the concept of amyloid-facilitated-tauopathy rather than the classic amyloid-cascade or pure-tau hypotheses, and helps explain certain known but poorly understood aspects of AD.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology, University of California at San Francisco, USA; Bakar Computational Health Sciences Institute, UCSF, USA.
| | - Justin Torok
- Department of Radiology, University of California at San Francisco, USA
| | - Kamalini Ranasinghe
- The Memory and Aging Center, Department of Neurology, University of California at San Francisco, USA
| |
Collapse
|
4
|
Zheng YX, Huai YY, Qiao Y, Zang YF, Luo H, Zhao N. Neural correlates of psychotherapy in mental disorders: A meta-analysis of longitudinal resting-state fMRI studies. Psychiatry Res 2025; 348:116495. [PMID: 40245666 DOI: 10.1016/j.psychres.2025.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Psychotherapy is a crucial approach in the treatment of mental disorders. However, how psychotherapy modulate spontaneous brain activity and finally take therapeutic effects remain unknown. Among countless number of analytic methods of resting-state functional magnetic resonance imaging (rs-fMRI), Regional Homogeneity (ReHo), Degree Centrality (DC), and Amplitude of Low Frequency Fluctuation (ALFF), are commonly used voxel-wise whole-brain (VWWB) metrics, and these studies could be used for coordinate-based meta-analysis. In order to reveal the underlying neural mechanisms of psychotherapy in patients with mental disorders, serving for future precise targeting intervention, we conducted a systematic review and meta-analysis based on rs-fMRI studies at VWWB level. MATERIAL AND METHODS A systematic literature search was conducted in PubMed, PsycINFO, and Web of Science following PRISMA criteria (registration number CRD42023432388) to investigate the differences between pre- and post-psychotherapy. To investigate whether changes in spontaneous brain activity differ across different metrics, distinct psychotherapy approaches or specific patient populations, subgroup analyses were performed. RESULTS Nine studies involving a total of 192 patients were included. We observed a significant decrease in spontaneous activity within the left insular after treatment with psychotherapy. Moreover, the subgroup analysis revealed significantly decreased ReHo in the right inferior frontal gyrus. CONCLUSIONS The current study indicates that the clinical efficacy of psychotherapy may be modulated by insular and right inferior frontal gyrus through neurological perspective. This contributes to our understanding of the neurobiological mechanisms of psychotherapy and provides valuable insights into improving precise targeting interventions for individuals with mental disorders.
Collapse
Affiliation(s)
- Ya-Xin Zheng
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yi-Yuan Huai
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yang Qiao
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; TMS Center, Deqing Hospital, Hangzhou Normal University, Huzhou, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hong Luo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Na Zhao
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Keeling EG, Bergamino M, Ott LR, McElvogue MM, Stokes AM. Repeatability and reliability of cerebrovascular reactivity in young adults using multi-echo, multi-contrast MRI. J Cereb Blood Flow Metab 2025:271678X251345292. [PMID: 40415374 PMCID: PMC12106380 DOI: 10.1177/0271678x251345292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025]
Abstract
Cerebrovascular reactivity (CVR) shows promise as a biomarker of vascular integrity and may benefit from a repeatable, reliable, and microvasculature-sensitive acquisition. A combined spin- and gradient-echo (SAGE) functional MRI (fMRI) acquisition may improve repeatability and reliability compared to single spin- (SE) and gradient-echo (GRE) fMRI and provide a microvascular-weighted analysis. The most repeatable and reliable MRI acquisition CVR maps were compared across three CVR paradigms: a breath-hold task, a breath modulation task, and a resting state acquisition. SAGE-fMRI data was acquired in fifteen young adults at two timepoints. Mean gray matter (GM) within-subject coefficient of variation (wCV) and intraclass correlation coefficient (ICC) were compared within the quantitative and weighted SAGE-fMRI CVR maps and single GRE- and SE-fMRI CVR. Total and microvascular MRI inputs with lowest wCV and highest ICC were used to compare three CVR paradigms. Total and microvascular weighted SAGE-fMRI CVR had the lowest wCV and highest ICC across paradigms. The breath-hold paradigm produced significantly higher GM CVR estimates. SAGE repeatably and reliably measures CVR and offers a simultaneous, complementary analysis on total and microvascular scales. The breath-hold paradigm showed significantly higher CVR estimates, but less compliance-dependent protocols may be ideal for applications in patient populations.
Collapse
Affiliation(s)
- Elizabeth G Keeling
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Maurizio Bergamino
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Lauren R Ott
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Molly M McElvogue
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ashley M Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
6
|
Sacu S, Slattery CF, Friston KJ, Paterson RW, Foulkes AJ, Yong K, Crutch S, Schott JM, Razi A. Neural mechanisms of disease pathology and cognition in young-onset Alzheimer's disease variants. J Alzheimers Dis 2025:13872877251344325. [PMID: 40400344 DOI: 10.1177/13872877251344325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
BackgroundLate-onset Alzheimer's disease is consistently associated with alterations in the default-mode network (DMN)-a large-scale brain network associated with self-related processing and memory. However, the functional organization of DMN is far less clear in young-onset Alzheimer's disease (YOAD).ObjectiveThe current study aimed to identify effective connectivity changes in the core DMN nodes between YOAD variants and healthy controls.MethodsWe assessed resting-state DMN effective connectivity in two common YOAD variants (i.e., amnestic variant (n = 26) and posterior cortical atrophy (n = 13) and healthy participants (n = 24) to identify disease- and variant-specific connectivity differences using spectral dynamic causal modelling.ResultsPatients with the amnestic variant showed increased connectivity from prefrontal cortex to posterior DMN nodes relative to healthy controls, whereas patients with posterior cortical atrophy exhibited decreased posterior DMN connectivity. Right hippocampus connectivity differentiated the two patient groups. Furthermore, disease-related connectivity alterations were also predictive of group membership and cognitive performance.ConclusionsThese findings suggest that resting-state DMN effective connectivity provides a new understanding of neural mechanisms underlying the disease pathology and cognition in YOAD.
Collapse
Affiliation(s)
- Seda Sacu
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catherine F Slattery
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Alexander Jm Foulkes
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Keir Yong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Sebastian Crutch
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| |
Collapse
|
7
|
Roy N, Singleton SP, Jamison K, Mukherjee P, Shah SA, Kuceyeski A. Brain activity dynamics after traumatic brain injury indicate increased state transition energy and preference of lower order states. Neuroimage Clin 2025; 46:103799. [PMID: 40381376 PMCID: PMC12143839 DOI: 10.1016/j.nicl.2025.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Traumatic Brain Injury (TBI) can cause structural damage to the neural tissue and white matter connections in the brain, disrupting its functional coactivation patterns. Although there are a wealth of studies investigating TBI-related changes in the brain's structural and functional connectomes, fewer studies have investigated TBI-related changes to the brain's dynamic landscape. Network control theory is a framework that integrates structural connectomes and functional time-series to quantify brain dynamics. Using this approach, we analyzed longitudinal trajectories of brain dynamics from acute to chronic injury phases in two cohorts of individuals with mild and moderate to severe TBI, and compared them to non-brain-injured, age- and sex-matched control individuals' trajectories. Our analyses suggest individuals with mild TBI initially have brain activity dynamics similar to controls but then shift in the subacute and chronic stages of the injury (1 month and 12 months post-injury) to favor lower-order visual-dominant states compared to higher-order default mode dominant states. We further find that, compared to controls, individuals with mild TBI have overall decreased entropy and increased transition energy demand in the sub-acute and chronic stages that correlates with poorer attention performance. Finally, we found that the asymmetry in top-down to bottom-up transition energies increased in subacute and chronic stages of mild TBI, possibly indicating decreased efficacy of top-down inhibition. We replicate most findings with the moderate to severe TBI dataset, indicating their robustness, with the notable exception of finding the opposite correlation between global transition energy and mean reaction time (MRT). We attribute differences to the cohorts' varied injury severity, with perhaps a stronger compensatory mechanism in moderate to severe TBI. Overall, our findings reveal shifting brain dynamics after mild to severe TBI that relate to behavioral measures of attention, shedding light on post-injury mechanisms of recovery.
Collapse
Affiliation(s)
- Nate Roy
- Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Jiang J, Li L, Suo X, Chen T, Ferraro S, Gao J, Wu D, Wang S. Temporal Dynamics of Intrinsic Brain Activity in Older Women With Subclinical Depression. J Gerontol A Biol Sci Med Sci 2025; 80:glaf084. [PMID: 40247731 DOI: 10.1093/gerona/glaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 04/19/2025] Open
Abstract
Subclinical depression is common in older adults, especially in females, and may correlate with a higher likelihood of health events and poor prognosis. However, the underlying neurobiology remains unclear. This study, employing resting-state functional magnetic resonance imaging (rs-fMRI), identified alterations in temporal dynamics of intrinsic brain activity in older women with subthreshold depression (OWSD) and their potential relationships to depressive symptoms. The sliding window approach was applied to evaluate the temporal variations of the rs-fMRI indices, including the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality in 50 OWSD and 52 healthy older women controls. We then calculated the dynamic voxel-wise concordance index of the rs-fMRI indices. The correlational analyses were used to assess the correlations between the dynamic indices and depressive symptoms. We found that OWSD showed a significant increase in dynamic ALFF in the left dorsolateral prefrontal cortex relative to healthy older women controls. With respect to regional brain function integration, OWSD showed a significantly lower dynamic voxel-wise concordance index in the right parietal lobe, mainly including the precuneus and superior parietal lobule extending to the postcentral gyrus. The regional dynamic ALFF and dynamic concordance index alterations were correlated with depressive symptoms. In conclusion, OWSD showed depression-correlated alterations in temporal variability of intrinsic brain activity, along with regional deficits in brain function integration. The findings reinforce our understanding of subthreshold depression psychopathology in older women.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Radiology, The Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Lei Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Taolin Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stefania Ferraro
- Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jin Gao
- Department of Radiology, The Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Dongmei Wu
- Department of Nursing, Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Senff JR, Tack RWP, Tan BYQ, Prapiadou S, Kimball TN, Ng S, Duskin J, Shah-Ostrowski MJ, Nunley C, Brouwers HB, Chemali Z, Fricchione G, Tanzi RE, Pouwels K, Rosand J, Yechoor N, Anderson CD, Singh SD. Knowledge and practice of healthy behaviors for dementia and stroke prevention in a United States cohort. Sci Rep 2025; 15:15172. [PMID: 40307407 PMCID: PMC12044067 DOI: 10.1038/s41598-025-99246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
At least 45% of dementia and 60% of stroke cases are due to modifiable risk factors and could in part be prevented through healthy behavior. This cross-sectional study clustered and characterized a U.S. cohort's knowledge and practice of healthy behavior associated with dementia and stroke. A total of 1,478 participants (mean age: 45.5 years, 51.8% female) were included. A hierarchical cluster analysis was performed to identify clusters based on the level of knowledge and practice of healthy behavior. We defined knowledge as recognizing eight modifiable risk factors (alcohol, diet, smoking, physical activity, sleep, stress, social relationships, and purpose in life) as important. We defined practice as complying with validated recommendations for each healthy behavior. Three clusters emerged: (I) high knowledge and poor practice (II) high knowledge and good practice, and (III) lower knowledge and poor practice. Participants in the high knowledge and good practice cluster were statistically significantly older, more educated, perceived fewer barriers (financial and time limitations), and more facilitators (motivation or knowing someone with dementia or stroke) compared to the other clusters. Our findings could assist in tailoring preventative strategies to enhance knowledge, translating knowledge into practice, and addressing particular facilitators and barriers per identified cluster.
Collapse
Affiliation(s)
- Jasper R Senff
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Revolution Drive 399, Sommerville, MA, 02145, USA.
| | - Reinier W P Tack
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Benjamin Y Q Tan
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Savvina Prapiadou
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tamara N Kimball
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharon Ng
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Duskin
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Courtney Nunley
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
| | - H Bart Brouwers
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Zeina Chemali
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory Fricchione
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Koen Pouwels
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Rosand
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nirupama Yechoor
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sanjula D Singh
- Brain Care Labs, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Ji R, Deng C, Zhang J, Chen H, Xu Z, Hao Z, Luo B. Abnormalities of regional brain activity in patients with asymptomatic internal carotid artery occlusion: a resting-state fMRI study. BMC Neurol 2025; 25:182. [PMID: 40281414 PMCID: PMC12023367 DOI: 10.1186/s12883-025-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Asymptomatic internal carotid artery occlusion (aICAO) disrupts cerebral blood flow and can impair brain function. While previous research has primarily focused on abnormal functional connectivity between brain networks or regions in aICAO patients, less is known about specific regional brain activity alterations. This study investigated changes in local brain activity and their associations with cognitive function in patients with aICAO. METHODS A total of 26 unilateral patients with aICAO without MRI lesions and 25 matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and neuropsychological assessment. Local brain activity in patients with aICAO was investigated using percentage amplitude of fluctuation (PerAF) and degree centrality (DC). The association between the abnormal regional brain activity in patients with aICAO and cognitive function was also explored. RESULTS Compared with HCs, patients with aICAO showed decreased PerAF in the ipsilateral (occlusion side, right) superior temporal gyrus (temporal pole), ipsilateral inferior frontal gyrus (triangular part). In addition, decreased DC was detected in the ipsilateral cuneus of patients with aICAO, while increased DC was observed in the contralateral (opposite to occlusion side, left) precuneus and contralateral inferior frontal gyrus (triangular part) among patients with aICAO. Furthermore, the DC value of contralateral precuneus in aICAO group was negatively correlated with Montreal Cognitive Assessment (MoCA) (r = -0.612, p = 0.002), Forward Digit Span Test (FDST) (r = -0.677, p = 0.001), and Backward Digit Span Test (BDST) (r = -0.531, p = 0.011) scores. CONCLUSIONS Our findings revealed abnormal local spontaneous brain activity within brain regions associated with cognitive functions in patients with unilateral aICAO. Notably, some of these abnormalities correlated with their cognitive impairments. This study contributes to the understanding of potential neural mechanisms underlying cognitive dysfunction in unilateral aICAO patients.
Collapse
Affiliation(s)
- Renjie Ji
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Chunlan Deng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hanfeng Chen
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Ziqi Xu
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China.
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China.
| |
Collapse
|
11
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of Bidirectional Network Cores in the Brain with Perceptual Awareness and Cognition. J Neurosci 2025; 45:e0802242025. [PMID: 40015987 PMCID: PMC12019110 DOI: 10.1523/jneurosci.0802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa 236-0027, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
12
|
Qian S, Di H, Pei H, Zeqi H, Jiaxi Z, Jun L, Xize J, Xiaomeng X, Haiyan Z. Alterations in degree centrality and functional connectivity associated with cognitive Impairment in myotonic dystrophy type 1:A Preliminary functional MRI study. Neuroscience 2025; 572:49-55. [PMID: 40049389 DOI: 10.1016/j.neuroscience.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES The study aimed to examine alterations in voxel-based degree centrality (DC) and functional connectivity (FC), and their relationship with cognitive impairments in patients with myotonic dystrophy type 1 (DM1). METHODS Eighteen DM1 patients and eighteen healthy controls participated in the study and were assessed using a comprehensive neuropsychological battery. Voxel-wise DC and FC analyses were used to assess abnormalities in functional connections among aberrant hubs. Correlational analyses were used to identify and explore the relationship between DC and FC values and cognitive performance in DM1 patients. RESULTS DM1 patients exhibited reduced DC in the bilateral Rolandic operculum, left inferior frontal gyrus (triangular part), right angular gyrus, right median cingulate and paracingulate gyri, and right middle temporal gyrus. Conversely, increased DC was observed in the right fusiform gyrus, right hippocampus and left inferior temporal gyrus. FC analysis revealed that altered connectivity predominantly occurred among the right middle temporal gyrus, right angular gyrus and left inferior frontal gyrus (triangular part). DC value in left inferior temporal gyrus showed significant correlations with scores from the Digital Span Test-Forward (r = -0.556, p = 0.025), the Digital Span Test -Backward (r = -0.588, p = 0.017), the Auditory Verbal Learning Test (r = -0.586, p = 0.017) and the Rey-Osterrieth Complex Figure test (copying version) (r = 0.536, p = 0.032) in DM1 patients. No significant correlations were discovered between FC values and neurocognitive performances. CONCLUSION The study demonstrated that abnormalities in DC and FC may become potential neuroimaging biomarkers for cognitive decline in DM1 patients.
Collapse
Affiliation(s)
- Sun Qian
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - He Di
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Huang Pei
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zeqi
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhang Jiaxi
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Liu Jun
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Xize
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Xue Xiaomeng
- School of Foreign Studies, China University of Petroleum (East China), China.
| | - Zhou Haiyan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Gao YJ, Meng LL, Lu ZY, Li XY, Luo RQ, Lin H, Pan ZM, Xu BH, Huang QK, Xiao ZG, Li TT, Yin E, Wei N, Liu C, Lin H. Degree centrality values in the left calcarine as a potential imaging biomarker for anxious major depressive disorder. World J Psychiatry 2025; 15:100289. [PMID: 40309609 PMCID: PMC12038654 DOI: 10.5498/wjp.v15.i4.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) with comorbid anxiety is an intricate psychiatric condition, but limited research is available on the degree centrality (DC) between anxious MDD and nonanxious MDD patients. AIM To examine changes in DC values and their use as neuroimaging biomarkers in anxious and non-anxious MDD patients. METHODS We examined 23 anxious MDD patients, 30 nonanxious MDD patients, and 28 healthy controls (HCs) using the DC for data analysis. RESULTS Compared with HCs, the anxious MDD group reported markedly reduced DC values in the right fusiform gyrus (FFG) and inferior occipital gyrus, whereas elevated DC values in the left middle frontal gyrus and left inferior parietal angular gyrus. The nonanxious MDD group exhibited surged DC values in the bilateral cerebellum IX, right precuneus, and opercular part of the inferior frontal gyrus. Unlike the nonanxious MDD group, the anxious MDD group exhibited declined DC values in the right FFG and bilateral calcarine (CAL). Besides, declined DC values in the right FFG and bilateral CAL negatively correlated with anxiety scores in the MDD group. CONCLUSION This study shows that abnormal DC patterns in MDD, especially in the left CAL, can distinguish MDD from its anxiety subtype, indicating a potential neuroimaging biomarker.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Li-Li Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan Hospital of Psychotherapy, Wuhan 430030, Hubei Province, China
| | - Zhao-Yuan Lu
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Xiang-You Li
- Department of Nephrology, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei Province, China
| | - Ru-Qin Luo
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Hang Lin
- Department of Nephrology, Xiaogan Central Hospital, Xiaogan 432000, Hubei Province, China
| | - Zhi-Ming Pan
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Bao-Hua Xu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Qian-Kun Huang
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Zhi-Gang Xiao
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Ting-Ting Li
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - E Yin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Nian Wei
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Chen Liu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Hong Lin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| |
Collapse
|
14
|
Wang H, Ma X, Xu X, Ning Q, Qiao B, Yang B, Sun N, Xu D, Tang X. Altered connection properties of the left dorsolateral superior frontal gyrus in de novo drug-naïve insomnia disorder. Front Neurosci 2025; 19:1568557. [PMID: 40297535 PMCID: PMC12034625 DOI: 10.3389/fnins.2025.1568557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background Insomnia disorder (ID) is increasingly prevalent, posing significant risks to patients' physical and mental health. However, its neuropathological mechanisms remain unclear. Despite extensive research on ID using resting-state functional magnetic resonance imaging, a unified framework for describing its brain function alterations remains absent. Moreover, most prior studies have not fully accounted for the potential impact of medication on outcomes regarding enrollment criteria. Methods We recruited 22 ID and 22 healthy controls (HC), matched for age and gender. Patients with ID were never prescribed medications for sleep disorders before enrollment. We detected differences in voxel-wise degree centrality (DC) between the two groups and analyzed the correlation between altered DC values and insomnia severity. Additionally, we conducted receiver operating characteristic analysis to evaluate the diagnostic effectiveness of the altered DC values for ID. Results In ID patients, the weighted DC values of the left dorsolateral superior frontal gyrus (SFG) and the left supramarginal gyrus (SMG) were significantly lower than those of HC, with a notable negative correlation between the weighted DC values of the left dorsolateral SFG and PSQI scores. Receiver operating characteristic analysis showed that the weighted DC of the left dorsolateral SFG effectively differentiates between ID and HC, exhibiting high sensitivity and specificity. Conclusion This study offers new insights into brain dysfunction and the pathophysiology of ID through voxel-based DC measurements. The results indicate that altered DC properties of the left dorsolateral SFG might serve as a diagnostic marker for ID and a potential therapeutic target for brain function modulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xingru Xu
- Department of Radiology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Qian Ning
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Benyu Qiao
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Bofeng Yang
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Na Sun
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Dong Xu
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xin Tang
- Department of Neurology, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| |
Collapse
|
15
|
Rogachov A, Carlson HL, Robertson A, Domi T, Kirton A, Dlamini N. Thalamic oscillatory dysrhythmia and disrupted functional connectivity in thalamocortical loops in perinatal stroke. Sci Rep 2025; 15:12542. [PMID: 40216875 PMCID: PMC11992091 DOI: 10.1038/s41598-025-95560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Periventricular venous infarction (PVI) is a subtype of perinatal stroke localized to subcortical white matter occurring before 34 weeks of gestation. An emerging body of literature has reported life-long motor impairments and compromised quality of life in patients with PVI. However, there remains a paucity of foundational knowledge regarding the underlying neurobiological mechanisms that underpin these outcomes. Recent studies (Ferradal et al. in Cereb Cortex 29:1218-1229, 2019) in brain imaging suggest that healthy development of thalamocortical connections is instrumental in coordinating brain connectivity in both prenatal and postnatal periods given the central role the thalamus and basal ganglia play in motor circuitry. Therefore, we provide a regional and cross-network approach to the analysis of interactive pathways of the thalamus, basal ganglia, and cortex to explore possible neurobiological disruptions responsible for clinical motor function in children with PVI. A resting-state fMRI protocol was administered to children with left periventricular venous infarction (PVI) (n = 23) and typically developing children (TDC) (n = 22) to characterize regional oscillatory and thalamocortical disturbances and compare them to clinical motor function. We hypothesized that PVI would affect resting-state measures of both regional and global brain function, marked by abnormally high amplitudes of regional oscillatory activity, as well as lower local and cross-network communication. Using a combination of robust functional metrics to assess spontaneous, oscillatory activity (Amplitude of Low-Frequency Fluctuations [ALFF] and fractional ALFF), as well as local (Regional Homogeneity [ReHo]) and cross-network connectivity (Degree Centrality [DC] and Functional Connectivity [FC]). We found that compared with TDC, children with PVI exhibited higher levels of ALFF, and these functional differences were associated with the severity of motor impairment. Moreover, the thalamus in children with PVI also showed lower connectivity in relaying thalamocortical pathways. These disruptions in thalamocortical pathways from the thalamus were localized to the medial prefrontal cortex (mPFC), a key hub of the default mode network). Collectively, our findings suggest that heightened levels of regional, oscillatory activity in the thalamus may disrupt more widespread thalamocortical cross-network circuity, possibly contributing to motor impairments in children with PVI.
Collapse
Affiliation(s)
- Anton Rogachov
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Robertson
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Trish Domi
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada.
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
16
|
Zhang C, Wu Y, Hu W, Li G, Yang C, Wu T. Frequency-band specific directed connectivity networks reveal functional disruptions and pathogenic patterns in temporal lobe epilepsy: a MEG study. Sci Rep 2025; 15:12326. [PMID: 40210922 PMCID: PMC11985499 DOI: 10.1038/s41598-025-90299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
This study investigates the network mechanisms of temporal lobe epilepsy (TLE) using MEG data, focusing on directed connectivity networks across different frequency bands. Unlike previous studies that primarily localize epileptogenic zones, this research aims to explore whole-brain network differences between left TLE (lTLE), right TLE (rTLE), and healthy controls (HCs). MEG data from 13 lTLE patients, 21 rTLE patients, and 14 HCs were source-reconstructed to 116 brain regions (AAL116). Directed Transfer Function (DTF) was used to construct directed connectivity networks, followed by networks and graph-theoretical analyses. The results indicate that, compared to HCs, TLE subjects exhibited a significant increase in average connectivity strength in the Low Gamma band. The connectivity patterns across frequency bands in TLE patients were found to be unstable. Both HC and TLE subjects demonstrated left hemisphere lateralization. In the mid-to-low frequency bands, TLE subjects showed increases in global clustering coefficient (GCC), global characteristic path length (GCPL), and local efficiency (LE) compared to HCs, which is attributed to enhanced synchronization between local brain regions in TLE subjects.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yutong Wu
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Tiantan Hospital, Beijing, 100070, China
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunlan Yang
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Ting Wu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
17
|
Takagi K. A reduction in energy costs induces integrated states of brain dynamics. Sci Rep 2025; 15:11421. [PMID: 40181147 PMCID: PMC11968916 DOI: 10.1038/s41598-025-96120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
In the human brain, interactions between multiple regions organize stable dynamics that enable enhanced cognitive processes. However, it is unclear how collective activities in the brain network can generate stable states while preserving unity across the whole brain scale under successive environmental changes. Herein, a network model was introduced in which network connections were adjusted to reduce the energy consumption level by avoiding excess changes in the activated states of each region during successive interactions. For time series data obtained from fMRI images, a connection matrix was generated by a simulation, and the predictions made by this matrix yielded accurate results relative to the real data. In this simulation, the adjustment process was activity-dependent, in which the interregional connections between intense active regions were reinforced to prohibit free behaviours. This resulted in a reduced excess energy loss and the integration of multiple regional activities into integrated dynamic states under constraints imposed by other regions. It was suggested that the simple rule of saving excess energy costs plays an important role in the mechanism that regulates large-scale brain networks and dynamics.
Collapse
|
18
|
Yang D, Kim M, Zhang Y, Wu G. Identifying multilayer network hub by graph representation learning. Med Image Anal 2025; 101:103463. [PMID: 39842327 DOI: 10.1016/j.media.2025.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The recent advances in neuroimaging technology allow us to understand how the human brain is wired in vivo and how functional activity is synchronized across multiple regions. Growing evidence shows that the complexity of the functional connectivity is far beyond the widely used mono-layer network. Indeed, the hierarchical processing information among distinct brain regions and across multiple channels requires using a more advanced multilayer model to understand the synchronization across the brain that underlies functional brain networks. However, the principled approach for characterizing network organization in the context of multilayer topologies is largely unexplored. In this work, we present a novel multi-variate hub identification method that takes both the intra- and inter-layer network topologies into account. Specifically, we put the spotlight on the multilayer graph embeddings that allow us to separate connector hubs (connecting across network modules) with their peripheral nodes. The removal of these hub nodes breaks down the entire multilayer brain network into a set of disconnected communities. We have evaluated our novel multilayer hub identification method in task-based and resting-state functional images. Complimenting ongoing findings using mono-layer brain networks, our multilayer network analysis provides a new understanding of brain network topology that links functional connectivities with brain states and disease progression.
Collapse
Affiliation(s)
- Defu Yang
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China; Department of Psychiatry, University of North Carolina at Chapel Hill, USA.
| | - Minjeong Kim
- Department of Computer Science, University of North Carolina at Greensboro, USA
| | - Yu Zhang
- Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, China
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; Department of Computer Science, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
19
|
Wang H, Li H, Liu Z, Li C, Luo Z, Chen W, Shang M, Liu H, Naderi Nejad F, Zhou Y, Zhang M, Sun Y. Abnormal sensory processing cortex in insomnia disorder: a degree centrality study. Brain Imaging Behav 2025; 19:302-312. [PMID: 39825157 PMCID: PMC11978550 DOI: 10.1007/s11682-024-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 01/20/2025]
Abstract
Insomnia disorder is a significant global health concern. This research aimed to explore the pathogenesis of insomnia disorder using static and dynamic degree centrality methods at the voxel level. A total of 29 patients diagnosed with insomnia disorder and 28 healthy controls were ultimately included to examine differences in degree centrality between the two groups. Additionally, the relationship between altered degree centrality values and various clinical indicators was analyzed. The results revealed that patients with insomnia disorder exhibited higher static degree centrality in brain regions associated with sensory processing, such as the occipital gyrus, inferior temporal gyrus, and supramarginal gyrus. In contrast, lower static degree centrality was observed in the parahippocampal gyrus, amygdala, insula, and thalamus. Changes in dynamic degree centrality were identified in regions including the parahippocampal gyrus, anterior cingulum, medial superior frontal gyrus, inferior parietal gyrus, and precuneus. Notably, a negative correlation was found between dynamic degree centrality in the inferior parietal gyrus and the Pittsburgh Sleep Quality Index, while a positive correlation was observed between static degree centrality in the inferior temporal gyrus and the Hamilton Depression Scale. These findings suggest that dysfunction in centrality within the sensory processing cortex and subcortical nuclei may be associated with the sleep-wake imbalance in individuals with insomnia disorder, contributing to our understanding of hyperarousal mechanisms in insomnia. Moreover, the abnormalities observed in the default mode network and the salience network provide insights into understanding the neuropathogenesis of insomnia from both static and dynamic centrality perspectives. The clinical trial registration number: ChiCTR2200058768. Date: 2022-04-16.
Collapse
Affiliation(s)
- Hui Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haining Li
- Positron Emission Tomography/Computed Tomography Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ziyi Liu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chiyin Li
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhaoyao Luo
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Chen
- Department of Medical Imaging Center, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| | - Meiling Shang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huiping Liu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fatemeh Naderi Nejad
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanping Zhou
- Department of Medical Imaging Center, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| | - Ming Zhang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yingxiang Sun
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
20
|
Luo Y, Du J, Fang F, Shi P. Cortical functional connectivity and topology based on complex network graph theory analysis during acute pain stimuli. NEUROPHOTONICS 2025; 12:025010. [PMID: 40370479 PMCID: PMC12077576 DOI: 10.1117/1.nph.12.2.025010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
Purpose We aimed to investigate alterations in the topological organization of functional brain networks in acute pain. Methods A total of 29 capsaicin group (CAP) and 19 sham controls (Sham) underwent a 10-min resting-state functional near-infrared spectroscopy scan. The CAP group applied capsaicin cream (0.1%) to the lower back, whereas the Sham group applied a hand cream without capsaicin ingredients to the same area. All subjects were healthy individuals prior to the experiment and did not report any pain or other medical history. The pain in the CAP was only caused by the topical application of capsaicin. Each subject was asked to complete a numerical rating scale. Graph theory-based analysis was used to construct functional connectivity (FC) matrices and extract the features of small-world networks of the brain in both groups. Then, FC differences in the prefrontal cortex were characterized by statistical analysis, and the altered brain features were explored. Results Compared with Sham, CAP had impaired functions in short- and long-distance connectivity ( p < 0.05 ). In particular, there was a greatly significant difference in connectivity associated with the left dorsolateral prefrontal cortex (ldlpfc) (CAP versus Sham: 0.80 ± 0.02 versus 0.70 ± 0.05 , p < 0.0001 ). Global efficiency, local efficiency, and small worldness were significantly lower in the topological parameters in CAP than in Sham (CAP versus Sham: 0.172 ± 0.018 versus 0.191 ± 0.015 , t = 3.758 , p = 0.0005 ; 0.253 ± 0.012 versus 0.283 ± 0.012 , t = 8.209 , p < 0.0001 ; 0.526 ± 0.031 versus 0.628 ± 0.082 , t = 3.856 , p = 0.0009 ). At the regional level, there were deficits in nodal efficiency within the medial prefrontal cortex and ldlpfc (CAP versus Sham: 0.156 ± 0.081 versus 0.175 ± 0.067 , t = 2.305 , p = 0.0257 ; 0.169 ± 0.089 versus 0.156 ± 0.081 , t = 2.194 , p = 0.0033 ). Conclusions Even brief episodes of acute pain can significantly reshape the brain's network architecture and FC, revealing a complex phenomenon beyond a transient sensory experience. Disruptions in brain network topology and connectivity due to pain suggest potential avenues for targeted therapeutic interventions and a reconfiguration of brain networks that could underlie chronic pain formation.
Collapse
Affiliation(s)
- Yijing Luo
- University of Shanghai for Science and Technology, School of Health Sciences and Engineering, Shanghai, China
| | - Jiaohao Du
- University of Shanghai for Science and Technology, School of Health Sciences and Engineering, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital, Naval Medical University, Department of Rehabilitation Medicine, Shanghai, China
| | - Ping Shi
- University of Shanghai for Science and Technology, School of Health Sciences and Engineering, Shanghai, China
| |
Collapse
|
21
|
Gong C, Song W, Zhu Z, Yang D, Zhao X, Xu Y, Zhao H. APOE ε4 influences the dynamic functional connectivity variability and cognitive performance in Alzheimer's disease. J Alzheimers Dis 2025; 104:1103-1114. [PMID: 40151915 DOI: 10.1177/13872877251322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundApolipoprotein E (APOE) ε4 is the most significant genetic risk factor for sporadic Alzheimer's disease (AD). However, its impact on the dynamic changes in resting-state functional connectivity (FC), particularly concerning network formation, interaction, and dissolution over time, remains largely unexplored in AD.ObjectiveThis study aims to explore the effect of APOE ε4 on dynamic FC (dFC) variability and cognitive performance in AD.MethodsWe analyzed the dFC of AD patients, comparing APOE ε4 carriers (n = 33) with non-carriers (n = 41). The whole-brain dFC was assessed by calculating dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic regional homogeneity (dReHo). To further explore the relationship between cognitive function and dFC in AD patients, we conducted a correlation analysis. Mediation analysis was also performed to determine whether dFC mediates the link between the APOE ε4 and cognitive decline in AD patients.ResultsAD patients carrying the APOE ε4 exhibited more severe cognitive impairment, along with reduced dReHo and dfALFF in both the left and right posterior cerebellar lobes. In these carriers, the dFC analysis showed lower dFC between the left posterior cerebellar lobe and the left middle temporal gyrus, which was positively correlated with executive function and information processing speed. Additionally, mediation analysis indicated that APOE ε4 influences dFC in this brain region, contributing to executive dysfunction in AD.ConclusionsThese findings offer preliminary evidence that APOE ε4 modulates fluctuating communication within the cerebellar lobe and the dFC between the cerebellar lobe and the temporal gyrus in AD.
Collapse
Affiliation(s)
- ChengBing Gong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - WenTing Song
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - ZhengYang Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics, Nanjing, China
- Simcere Medical Laboratory Science, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
22
|
Chen M, Wu Y, Wang Y, Li Z. Functional connectivity and white matter microstructural alterations in patients with left basal ganglia acute ischemic stroke. Brain Imaging Behav 2025; 19:421-432. [PMID: 39964657 DOI: 10.1007/s11682-025-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Lesions in the basal ganglia present different neuroimaging manifestations compared to other regions. The functional connectivity and white matter (WM) microstructural alterations in patients with left basal ganglia acute ischemic stroke (AIS) remain unknown. This study aimed to explore the alterations of functional connectivity and WM microstructure, as well as their relationship with cognitive performance in patients with left basal ganglia AIS. We acquired resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI) data from 41 individuals with left basal ganglia AIS and 41 healthy controls (HC). The degree centrality (DC) method was applied to calculate the functional connectivity and Tract-Based Spatial Statistics was employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), radial diffusivity, mean kurtosis (MK), axial kurtosis, and radial kurtosis (RK). AIS showed attenuated DC in the bilateral precuneus and enhanced DC in the left caudate nucleus, compared with HC. In AIS, DC in the left caudate nucleus correlated positively with the Montreal Cognitive Assessment (MoCA) score (r = 0.681, p < 0.05). AIS had significantly decreased FA, AD, MK, and RK in WM tracts, including the internal capsule (IC), genu of corpus callosum (CC), body of CC, left superior longitudinal fasciculus (SLF), left cerebral peduncle, left corticospinal tract, anterior corona radiata (ACR), and left cingulum gyrus (CG). The MK in a cluster including the body of CC, right IC, left cingulate, SLF, ACR, and left CG was also significantly negatively correlated with MoCA scores (r = -0.508, p < 0.05). This study revealed that left basal ganglia AIS not only disrupted the functional connectivity of the whole brain but also had a pervasive impact on the WM microstructure of the whole brain. These findings provide novel insights into the underlying neural mechanisms of early cognitive decline in patients after AIS.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yufan Wu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China.
| |
Collapse
|
23
|
Wang W, Huang J, Cheng R, Liu X, Luo T. Concurrent brain structural and functional alterations related to cognition in patients with cerebral small vessel disease. Neuroradiology 2025; 67:833-844. [PMID: 39937266 PMCID: PMC12041081 DOI: 10.1007/s00234-025-03557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE To investigate the concurrent brain structural and functional alterations related to cognition in patients with cerebral small vessel disease (CSVD). METHODS Thirty normal controls and 65 CSVD patients, including 33 patients with mild cognitive impairment and 32 patients with no cognitive impairment were included. Structural and resting-state functional MRI measures, including gray matter volume (GMV) and white matter volume (WMV) using voxel-based morphometry (VBM) analysis and amplitude of low-frequency fluctuation (ALFF), were obtained and compared among the three groups. Associations between cognitive scores and ALFF/VBM coupling in the co-altered regions were investigated in CSVD groups. RESULTS Multiple brain regions showed significant differences in GMV and WMV among the three groups (P < 0.01). Abnormal ALFF among the three groups was identified in the left putamen, Rolandic operculum, fusiform gyrus, caudate, parahippocampal gyrus, insula, middle cingulum, bilateral lingual gyrus, and right frontal lobe (P < 0.01). Importantly, a decrease in VBM and increase in ALFF in the left parahippocampal gyrus, caudate and Rolandic operculum, a reduction of the WMV and ALFF in the right superior frontal lobe, and a united rise of GMV and ALFF in the left caudate were detected in CSVD groups. In addition, abnormal ALFF/VBM coupling was significantly related to multiple cognitive assessments. CONCLUSION The study indicated a reversed pattern of the brain structural deficits and functional activation in the left parahippocampal gyrus, caudate, and Rolandic operculum, suggesting structure-function decoupling in CSVD groups. These might help further understand the pathophysiological mechanism of CSVD.
Collapse
Affiliation(s)
- Wenwen Wang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Yao L, Hikida K, Lu Y, Wang L, Dai Q, Aki M, Shibata M, Zakia H, Yang J, Oishi N, Tei S, Murai T, Zhang Z, Fujiwara H. Brain network alterations in mobile phone use problem severity: A multimodal neuroimaging analysis. J Behav Addict 2025; 14:416-429. [PMID: 40116856 PMCID: PMC11974426 DOI: 10.1556/2006.2025.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Background and aims Problematic mobile phone use can disrupt social interaction and well-being, potentially influencing cognitive processes. This study investigated whether mobile phone use problem severity is associated with alterations in the topological organization of brain networks. Methods Rs-fMRI and DTI data were collected from 81 healthy participants. Graph theory analyses were applied. The Mobile Phone Problem Use Scale-10 (MPPUS-10) was used to assess mobile phone use problem severity. Correlation analyses were conducted between each graph metric and questionnaire scores. Results MPPUS-10 scores correlated with global fMRI metrics: higher scores linked to longer shortest path length (reduced integration) and lower global efficiency (reduced information transfer). Conversely, higher MPPUS-10 scores were correlated with a greater clustering coefficient and higher local efficiency, which reflect increased local connectivity. Furthermore, higher MPPUS-10 scores were associated with a higher sigma value from DTI, indicating altered structural network properties. Some specific brain regions also showed significant correlations with MPPUS-10 scores. Discussion and conclusion These findings indicate that higher mobile phone use problem severity is associated with decreased integration and increased segregation of functional networks, alongside enhanced small-worldness in structural networks. Reduced integration aligns with addiction theories suggesting digital overload worsens network dysfunction, disrupting brain connectivity. Additionally, higher severity was correlated with altered connectivity in multiple regions, such as the precentral gyrus, supplementary motor area, and postcentral gyrus. These regions are associated with motor control, sensorimotor processing, and memory function. Further research is needed to explore whether these findings reflect shifts in the integration and integrity of brain information-processing modules.
Collapse
Affiliation(s)
- Lichang Yao
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Keigo Hikida
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yinping Lu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Luyao Wang
- School of Life Science, Shanghai University, Shanghai, China
| | - Qi Dai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Morio Aki
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mami Shibata
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Halwa Zakia
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Naoya Oishi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Japan
| | - Shisei Tei
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- School of Human and Social Sciences, Tokyo International University, Saitama, Japan
- Institute of Applied Brain Sciences, Waseda University, Saitama, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan
- The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan
| |
Collapse
|
25
|
Zhang Y, Wang T, Zhou C, Wang S, Liu Z, Lei J. Brain functional and structural alteration following acute carbon monoxide poisoning contribute to delayed neurological sequelae. Sci Rep 2025; 15:10417. [PMID: 40140479 PMCID: PMC11947078 DOI: 10.1038/s41598-025-94787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
PURPOSE To investigate whether altered functional activity, functional connectivity (FC), and structural connectivity (SC) following acute carbon monoxide (CO) poisoning contribute to delayed neurological sequelae (DNS) occurrence. METHODS Binary degree centrality (DC) and seed-based FC were investigated in 18 patients with DNS, 26 patients without DNS, and 30 healthy controls. Duration of CO exposure and coma severity indices-related fibers was detected by connectometry analysis and the identified fiber tracts were tracked and their SC alteration was quantify by fractional anisotropy (FA). RESULTS Acute CO exposure induced DC change in the prefrontal cortex (PFC), visual cortex, primary sensory cortex, and anterior cerebellum, and FC alteration between the right fusiform gyrus (seed) and bilateral PFC and left inferior occipital gyrus (Gaussian random field corrected, P < 0.05). Poisoning severity indices-related WM fibers consisted of corpus callosum and some association and projection fibers (false discovery rate corrected, P < 0.05). Only altered DC in the right fusiform gyrus and right postcentral gyrus and reduced FC of the PFC could identify DNS occurrence (P < 0.05). CONCLUSIONS The functional abnormalities in the visual- and sensory- cortex and PFC subsequent to acute CO poisoning represent one of the potential neural mechanisms underlying the occurrence of DNS.
Collapse
Affiliation(s)
- Yanli Zhang
- Deparment of Radiology, The First Hospital of Lanzhou University, No. 1, Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu, China
- Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, China
- The Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chaoning Zhou
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shuaiwen Wang
- Deparment of Radiology, The First Hospital of Lanzhou University, No. 1, Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu, China
- Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, China
- The Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Zhaodong Liu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Junqiang Lei
- Deparment of Radiology, The First Hospital of Lanzhou University, No. 1, Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu, China.
- Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, China.
- The Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China.
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China.
| |
Collapse
|
26
|
Wang J, Gao S, Tian J, Hong H, Zhou C. The role of cerebellar-cortical connectivity in modulating attentional abilities: insight from football athletes. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:9. [PMID: 40128842 PMCID: PMC11934456 DOI: 10.1186/s12993-025-00272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Neuroplasticity, a phenomenon present throughout the lifespan, is thought to be influenced by physical training. However, the relationship between neuroplastic differences and attentional abilities remains unclear. This study explored the differences in brain function and attentional abilities between professional football athletes and novices, and further investigated the relationship between the two. To address this question, we included 49 football athletes and 63 novices in our study, collecting data on resting-state functional connectivity and Attention Network Test (ANT). Behavioral results from the ANT indicated that football experts had superior orienting attention but weaker alerting functions compared to novices, with no difference in executive control attention. fMRI results revealed that football experts exhibited higher fractional Amplitude of Low-Frequency Fluctuations (fALFF) values in the bilateral anterior cerebellar lobes, bilateral insula, and left superior temporal gyrus. Functional connectivity analysis showed increased connectivity between the left anterior cerebellar lobe and various cortical regions, including the right supramarginal gyrus, left precuneus, left superior frontal gyrus, bilateral posterior cerebellar lobes, and bilateral precentral gyri in experts compared to novices. More importantly, in the expert group but not in novice group, functional connectivity differences significantly predicted attentional orienting scores. Graph theoretical analysis showed that experts exhibited higher betweenness centrality and node efficiency in the right cerebellar lobule III (Cerebelum_3_R) node. Our findings demonstrate that long-term professional football training may significantly affect neuroplasticity and attentional functions. Importantly, our analysis reveals a substantive connection between these two aspects, suggesting that the integration of neuroplastic and attentional changes is likely mediated by cerebellar-cortical connectivity.
Collapse
Affiliation(s)
- Jian Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Siyu Gao
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Junfu Tian
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Hao Hong
- College of Wushu, Henan University, Kaifeng, 475001, China.
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
27
|
Adegboro AA, Chen Z, Peters JJ, Dantio CD, Wanggou S, Teng C, Li X. Brain structural alterations in vestibular schwannoma beyond tinnitus and hearing loss. Brain Commun 2025; 7:fcaf107. [PMID: 40144300 PMCID: PMC11937892 DOI: 10.1093/braincomms/fcaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Brain tumours alter brain structures and functions. However, morphometric alterations induced by unilateral vestibular schwannoma, a benign tumour of the vestibulocochlear nerve, have not been extensively explored. Recent studies have suggested that the tumour does not grow bigger following diagnosis in several patients, suggesting an avenue for conservative therapy. This study aims to comprehensively investigate brain structural re-organizations in vestibular schwannoma patients taking into account the effects of hearing loss and tinnitus-the most common symptoms. To this end, preoperative data from 48 vestibular schwannoma pathology-confirmed patients and a healthy control group of 30 volunteers were retrospectively included in this study. The clinical and imaging data from these participants were processed. General linear models were designed to identify tumour-related brain alterations in grey matter volume and cortical thickness, alongside three other surface measures: sulcal depth, gyrification index and fractal dimension. The differences obtained were further analysed for correlation with tumour size and pure tone audiometry. Interestingly, grey matter volume, cortical thickness and for the first time, fractal dimension measures were increased in vestibular schwannoma patients across key frontal regions (PFWE < 0.05). The precuneus, superior and inferior frontal gyrus had increased grey matter volumes and cortical thickening in patients compared to controls, among other changes (P FWE < 0.05). Meanwhile, the sulcal depth and gyrification index measures demonstrated no significant alterations. Furthermore, grey matter volume changes at the paracentral lobule and precuneus were positively correlated to the tumour size, while the fractal dimension at the superior frontal sulcus was negatively correlated. Finally, grey matter volume increase at the inferior frontal gyrus and cortical thickening at the supramarginal gyrus were negatively correlated to pure tone audiometry. These findings suggest that factors beyond hearing loss and tinnitus contribute to brain structural alterations in this tumour, a better understanding of which might pave the way for non-surgical symptomatic therapies.
Collapse
Affiliation(s)
- Abraham A Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ziyan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jens J Peters
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Cyrille D Dantio
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumour Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
28
|
Weiller C, Reisert M, Levan P, Hosp J, Coenen VA, Rijntjes M. Hubs and interaction: the brain's meta-loop. Cereb Cortex 2025; 35:bhaf035. [PMID: 40077916 PMCID: PMC11903256 DOI: 10.1093/cercor/bhaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
We must reconcile the needs of the internal world and the demands of the external world to make decisions relevant to homeostasis, well-being, and flexible behavior. Engagement with the internal (eg interoceptive) world is linked to medial brain systems, whereas the extrapersonal space (eg exteroceptive) is associated with lateral brain systems. Using Human Connectome Project data, we found three association tracts connecting the action-related frontal lobe with perception-related posterior lobes. A lateral dorsal tract and a medial dorsal tract interact independently with a ventral tract at frontal and posterior hubs. The two frontal and the two posterior hubs are interconnected, forming a meta-loop that integrates lateral and medial brain systems. The four anatomical hubs correspond to the common nodes of the intrinsic cognitive brain networks such as the default mode network. These functional networks depend on the integration of both realms. Thus, the positioning of functional cognitive networks can be understood as the intersection of long anatomical association tracts. The strength of structural connectivity within lateral and medial brain systems correlates with performance on behavioral tests assessing theory of mind. The meta-loop provides an anatomical framework to associate neurological and psychiatric symptoms with functional and structural changes.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Pierre Levan
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jonas Hosp
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| |
Collapse
|
29
|
Nassan M, Daghlas I, Diamond BR, Martersteck A, Rogalski E. The causal association between resting state intrinsic functional networks and neurodegeneration. Brain Commun 2025; 7:fcaf098. [PMID: 40103583 PMCID: PMC11913654 DOI: 10.1093/braincomms/fcaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/30/2024] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
Alterations of resting state intrinsic functional networks have been associated with neurodegenerative diseases even before the onset of cognitive symptoms. Emerging hypotheses propose a role of resting state intrinsic functional networks alterations in the risk or vulnerability to neurodegeneration. It is unknown whether intrinsic functional network alterations can be causal for neurodegenerative diseases. We sought to answer this question using two-sample Mendelian randomization. Using the largest genome-wide association study of resting state intrinsic functional connectivity (n = 47 276), we generated genetic instruments (at the significance level 2.8 ×10-11) to proxy resting state intrinsic functional network features. Based on the known brain regions implicated in different neurodegenerative diseases, we generated genetically proxied resting state intrinsic functional features and tested their association with their paired neurodegenerative outcomes: features in parieto-temporal regions and Alzheimer dementia (111 326 cases, 677 663 controls); frontal region and frontotemporal dementia (2154 cases, 4308 controls); temporal pole region and semantic dementia (308 cases, 616 controls), and occipital region with Lewy body dementia (LBD) (2591 cases, 4027 controls). Major depressive disorder outcome (170 756 cases, 329 443 controls) was included as a positive control and tested for its association with genetically proxied default mode network (DMN) exposure. Inverse-variance weighted analysis was used to estimate the association between the exposures (standard deviation units) and outcomes. Power and sensitivity analyses were completed to assess the robustness of the results. None of the genetically proxied functional network features were significantly associated with neurodegenerative outcomes (adjusted P value >0.05), despite sufficient calculated power. Two resting state features in the visual cortex showed a nominal level of association with LBD (P = 0.01), a finding that was replicated using a different instrument (P = 0.03). The genetically proxied DMN connectivity was associated with the risk of depression (P = 0.024), supporting the validity of the genetic instruments. Sensitivity analyses were supportive of the main results. This is the first study to comprehensively assess the potential causal effect of resting state intrinsic functional network features on the risk of neurodegeneration. Overall, the results do not support a causal role for the tested associations. However, we report a nominal association between visual network connectivity and Lewy body dementia that requires further evaluation.
Collapse
Affiliation(s)
- Malik Nassan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL 60611, USA
| | - Iyas Daghlas
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bram R Diamond
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL 60611, USA
| | - Adam Martersteck
- Healthy Aging and Alzheimer's Research Care (HAARC) Center, University of Chicago, Chicago, IL 60637, USA
| | - Emily Rogalski
- Healthy Aging and Alzheimer's Research Care (HAARC) Center, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Yang D, Shen H, Chen M, Wang S, Chen J, Cai H, Chen X, Wu G, Zhu W. A Novel Spatio-Temporal Hub Identification in Brain Networks by Learning Dynamic Graph Embedding on Grassmannian Manifolds. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1454-1467. [PMID: 40030385 DOI: 10.1109/tmi.2024.3502545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Mounting evidence has revealed that functional brain networks are intrinsically dynamic, undergoing changes over time, even in the resting-state environment. Notably, recent studies have highlighted the existence of a small number of critical brain regions within each functional brain network that exhibit a flexible role in adapting the geometric pattern of brain connectivity over time, referred to as "temporal hub" regions. Therefore, the identification of these temporal hubs becomes pivotal for comprehending the mechanisms that underlie the dynamic evolution of brain connectivity. However, existing spatio-temporal hub identification methods rely on static network-based approaches, wherein each temporal hub region is independently inferred from individual time-segmented networks without considering their temporal consistency and consequently fails to align the evolution of hubs with the dynamic changes in brain states. To address this limitation, we propose a novel spatio-temporal hub identification method that fully leverages dynamic graph embedding to distinguish temporal hubs from peripheral nodes, in which dynamic graph embeddings are learned from both spatial and temporal dimensions. Specifically, to preserve the temporal consistency of evolving networks, we model the dynamic graph embedding as a physical model of time, where the network-to-network transition is mathematically expressed as a total variation of dynamic graph embedding with respect to time. Furthermore, a Grassmannian manifold optimization scheme is introduced to enhance graph embedding learning and capture the time-varying topology of brain networks. Experimental results on both synthetic and real fMRI data demonstrate superior temporal consistency in hub identification, surpassing conventional approaches.
Collapse
|
31
|
Suárez-Pellicioni M, McDonough IM. Separating neurocognitive mechanisms of maintenance and compensation to support financial ability in middle-aged and older adults: The role of language and the inferior frontal gyrus. Arch Gerontol Geriatr 2025; 130:105705. [PMID: 39616875 DOI: 10.1016/j.archger.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the role of brain regions involved in arithmetic processing in explaining individual differences in financial ability in 67 50-74-year-old cognitively normal adults. Structural integrity and resting-state functional connectivity measures were collected in the MRI scanner. Outside the scanner, participants performed financial ability and other cognitive tasks, and answered questionnaires to determine dementia risk, and financial risk and protective factors. Regions of interest involved in arithmetic processing were defined, focusing on language- and quantity-processing areas in temporo-frontal and parieto-frontal cortices, respectively. Our results showed that structural integrity and functional connectivity in brain regions associated with arithmetic retrieval were positively associated with financial ability, with language skill mediating left IFG structural integrity and financial ability. Connectivity patterns suggested that reliance on quantity mechanisms (i.e. calculation) was associated with poorer financial ability. Analyses revealed that reliance on these brain mechanisms did not depend on participants' age or risk of dementia and that protective factors such as household income or financial literacy supported the maintenance of connectivity related to financial abilities.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, BOX 870348, Tuscaloosa, AL 35487, USA
| | - Ian M McDonough
- Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| |
Collapse
|
32
|
Ozturk G, Hari E, Yildirim K, Bayram A, Yildirim Z, Demiralp T, Gurvit H. Prospective memory performance and its resting-state functional connectivity correlates in individuals with memory complaints. Neuropsychologia 2025; 208:109082. [PMID: 39855424 DOI: 10.1016/j.neuropsychologia.2025.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to investigate prospective memory (PM) in patients with memory complaints but without dementia (PWD) and correlate findings with resting-state functional connectivity (rsFC) alterations. We hypothesized that PM impairment would be evident at a certain relatively early point in the continuum and specific rsFC patterns would be the neuroimaging signature of this impairment. Sixty PWD participated in the study. The Memory Screening Test for Intentions and the Virtual Week were used to assess PM. Using the participants' PM scores as a regressor, the rsFC for PM was analyzed by Network-Based Statistics (NBS). Participants were divided into high and low PM groups (HPMG, LPMG) according to their PM scores and then their neuropsychological scores, rsFC patterns, and CSF biomarker levels were compared. The effect of education on the relationship between connectivity and CSF Aβ42 level was examined by moderation analysis. Compared with HPMG, LPMG was impaired in both event- and time-based PM tasks, but the difference was more distinct in the event-based ones. While HPMG was more successful in event-based tasks than time-based ones, LPMG was not. As a result of NBS analysis, the middle frontal gyrus (MFG), supramarginal gyrus (SMG), and anterior cingulate cortex (ACC) were determined as central seeds. The HPMG's performance and connectivity were higher for most comparisons but had lower CSF Aβ42 than LPMG and therefore was closer to the positivity threshold. When the education level was at the mean and above, there was a negative correlation between CSF Aβ42 level and overall connectivity. The connectivities of MFG, SMG, and ACC play an important role in PM performance in the PWD. In more advanced PM impairment, the impairment of spontaneous processes is more prominent. At the onset of amyloidosis, the cognitive reserve may compensate for cognitive impairment by increasing connectivity.
Collapse
Affiliation(s)
- Gulcan Ozturk
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| | - Emre Hari
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Kardelen Yildirim
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
| | - Zerrin Yildirim
- Department of Neurology, Bagcilar Training and Research Hospital, University of Health Sciences, 34200, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Hakan Gurvit
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
33
|
Putcha D, Katsumi Y, Touroutoglou A, Eloyan A, Taurone A, Thangarajah M, Aisen P, Dage JL, Foroud T, Jack CR, Kramer JH, Nudelman KNH, Raman R, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Grant IM, Honig LS, Johnson ECB, Jones DT, Masdeu JC, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha S, Turner RS, Wingo TS, Wolk DA, Womack K, Carrillo MC, Rabinovici GD, Dickerson BC, Apostolova LG, Hammers DB. Heterogeneous clinical phenotypes of sporadic early-onset Alzheimer's disease: a neuropsychological data-driven approach. Alzheimers Res Ther 2025; 17:38. [PMID: 39915859 PMCID: PMC11800584 DOI: 10.1186/s13195-025-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND The clinical presentations of early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease are distinct, with EOAD having a more aggressive disease course with greater heterogeneity. Recent publications from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) described EOAD as predominantly amnestic, though this phenotypic description was based solely on clinical judgment. To better understand the phenotypic range of EOAD presentation, we applied a neuropsychological data-driven method to subtype the LEADS cohort. METHODS Neuropsychological test performance from 169 amyloid-positive EOAD participants were analyzed. Education-corrected normative comparisons were made using a sample of 98 cognitively normal participants. Comparing the relative levels of impairment between each cognitive domain, we applied a cut-off of 1 SD below all other domain scores to indicate a phenotype of "predominant" impairment in a given cognitive domain. Individuals were otherwise considered to have multidomain impairment. Whole-cortex general linear modeling of cortical atrophy was applied as an MRI-based validation of these distinct clinical phenotypes. RESULTS We identified 6 phenotypic subtypes of EOAD: Dysexecutive Predominant (22% of sample), Amnestic Predominant (11%), Language Predominant (11%), Visuospatial Predominant (15%), Mixed Amnestic/Dysexecutive Predominant (11%), and Multidomain (30%). These phenotypes did not differ by age, sex, or years of education. The APOE ɛ4 genotype was enriched in the Amnestic Predominant group, who were also rated as least impaired. Cortical thickness analysis validated these clinical phenotypes with dissociations in atrophy patterns observed between the Dysexecutive and Amnestic Predominant groups. In contrast to the heterogeneity observed from our neuropsychological data-driven approach, diagnostic classifications for this same sample based solely on clinical judgment indicated that 82% of individuals were amnestic-predominant, 9% were non-amnestic, 4% met criteria for Posterior Cortical Atrophy, and 5% met criteria for Primary Progressive Aphasia. CONCLUSION A neuropsychological data-driven method to phenotype EOAD individuals uncovered a more detailed understanding of the presenting heterogeneity in this atypical AD sample compared to clinical judgment alone. Clinicians and patients may over-report memory dysfunction at the expense of non-memory symptoms. These findings have important implications for diagnostic accuracy and treatment considerations.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Boston, MA, 02129, USA.
| | - Yuta Katsumi
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Boston, MA, 02129, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Boston, MA, 02129, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, 92093, USA
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Joel H Kramer
- Department of Neurology, University of CA - San Francisco, San Francisco, CA, 94143, USA
| | - Kelly N H Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, 92093, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, 32224, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | | | - Ian M Grant
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lawrence S Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Emily Rogalski
- Department of Neurology, University of Chicago, Chicago, IL, 60615, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Sharon Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, 20057, USA
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Maria C Carrillo
- Medical & Scientific Relations Division, Alzheimer's Association, Chicago, IL, 60631, USA
| | - Gil D Rabinovici
- Department of Neurology, University of CA - San Francisco, San Francisco, CA, 94143, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Boston, MA, 02129, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA
| | - Dustin B Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
34
|
Chen M, Gao M, Ma J, Lee TMC. Intrinsic brain functional connectivity mediates the relationship between psychological resilience and cognitive decline in ageing. GeroScience 2025:10.1007/s11357-025-01529-5. [PMID: 39899190 DOI: 10.1007/s11357-025-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Ageing individuals often experience cognitive decline and intrinsic functional connectivity (FC) changes. Psychological resilience, a personality trait that reflects the capacity to adapt and cope with age-related challenges, plays a key role in mitigating cognitive decline. In this study involving 101 older adults, we investigated how psychological resilience influences cognitive decline measured by processing speed. Particularly, we obtained resting-state functional magnetic resonance imaging (fMRI) to assess how intrinsic FC, represented by degree centrality, modulates the relationship between resilience and processing speed. Our results indicated while psychological resilience positively predicted processing speed, this relationship was mainly driven by education. Additionally, the degree centrality of both thalamus and caudate negatively correlated with processing speed and resilience. Notably, the degree centrality of both thalamus and caudate significantly mediated the relationship between resilience and processing speed. These findings suggest that psychological resilience could protect against age-related cognitive decline via its influence on FC in the thalamus and caudate, highlighting these areas as potential intervention targets for reducing cognitive decline in ageing people.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Junji Ma
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
35
|
Cacciaglia R, Falcón C, Benavides GS, Brugulat‐Serrat A, Alomà MM, Calvet MS, Molinuevo JL, Fauria K, Minguillón C, Kollmorgen G, Quijano‐Rubio C, Blennow K, Zetterberg H, Lorenzini L, Wink AM, Ingala S, Barkhof F, Ritchie CW, Gispert JD, for the ALFA study. Soluble Aβ pathology predicts neurodegeneration and cognitive decline independently on p-tau in the earliest Alzheimer's continuum: Evidence across two independent cohorts. Alzheimers Dement 2025; 21:e14415. [PMID: 39898436 PMCID: PMC11848178 DOI: 10.1002/alz.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Identifying the link between early Alzheimer's disease (AD) pathological changes and neurodegeneration in asymptomatic individuals may lead to the discovery of preventive strategies. We assessed longitudinal brain atrophy and cognitive decline as a function of cerebrospinal fluid (CSF) AD biomarkers in two independent cohorts of cognitively unimpaired (CU) individuals. METHODS We used longitudinal voxel-based morphometry (VBM) in combination with hippocampal subfield segmentation. Changes in neuroimaging and cognitive variables were inspected using general linear models (GLMs) adjusting by age, sex, apolipoprotein E (APOE) status, follow-up time, and years of education. RESULTS In both cohorts, baseline CSF amyloid beta (Aβ) biomarkers significantly predicted medial temporal lobe (MTL) atrophy rates and episodic memory (EM) decline independently of CSF phosphorylated tau (p-tau). DISCUSSION Our data suggest that soluble Aβ dyshomeostasis triggers MTL longitudinal atrophy and EM decline independently of CSF p-tau. Our data underscore the need for secondary preventive strategies at the earliest stages of the AD pathological cascade. HIGHLIGHTS We assessed brain atrophy and cognitive decline in asymptomatic individuals. Aβ biomarkers predicted MTL atrophy independently of p-tau. Our results underscore the importance of undertaking Alzheimer's preclinical trials.
Collapse
Grants
- #ALFGBG-715986 the Swedish state under the agreement between the Swedish government and the County Councils, the Avtal om Läkarutbildning och Forskning (ALF)-agreement
- #RDAPB-201809-2016615 the Alzheimer Drug Discovery Foundation (ADDF), USA
- #AF-968270 the Swedish Alzheimer Foundation
- JPND2021-00694 the European Union Joint Programme - Neurodegenerative Disease Research
- Project "PI19/00155" European Union's Horizon 2020 Research and Innovation Programme (Grant agreement No. 948677)
- No. 101053962 the European Union's Horizon Europe Research and Innovation Programme under Grant Agreement
- #FO2017-0243 Hjärnfonden, Sweden
- ZEN-21-848495 the Alzheimer's Association 2021 Zenith Award
- #2018-02532 HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council
- MSC receives funding from the European Research Council (ERC)
- #ALZ2022-0006 Hjärnfonden, Sweden
- #AF-939721 the Swedish Alzheimer Foundation
- the European Union Next Generation EU/Plan de Recuperación
- #ADSF-21-831377-C the AD Strategic Fund and the Alzheimer's Association
- MCIN/AEI/10.13039/501100011033/FEDER RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- PID2021-125433OA-100 RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- Transformación y Resiliencia (PRTR)
- LCF/BQ/PR21/11840004 the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847648
- the Bluefield Project, the Olav Thon Foundation
- SG-23-1038904 QC the Alzheimer's Association 2022-2025
- R01 AG068398 NIA NIH HHS
- MCIN/AEI/10.13039/501100011033 RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
- #ALFGBG-965240 the Swedish state under the agreement between the Swedish government and the County Councils, the Avtal om Läkarutbildning och Forskning (ALF)-agreement
- #FO2022-0270 the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860197 (MIRIADE)
- JPND2019-466-236 the European Union Joint Program for Neurodegenerative Disorders
- #1R01AG068398-01 the National Institute of Health (NIH), USA
- UKDRI-1003 the UK Dementia Research Institute at University College London (UCL)
- #ALFGBG-71320 Swedish State Support for Clinical Research
- #201809-2016862 the Alzheimer Drug Discovery Foundation (ADDF), USA
- #ADSF-21-831376-C the AD Strategic Fund and the Alzheimer's Association
- #AF-930351 the Swedish Alzheimer Foundation
- #2017-00915 KB is supported by the Swedish Research Council
- ID 100010434 Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union, and from a fellowship from "la Caixa" Foundation
- #ADSF-21-831381-C the AD Strategic Fund and the Alzheimer's Association
- RYC2021-031128-I RC receives funding from "Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación"
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
| | - Gonzalo Sánchez Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Global Brain Health InstituteSan FranciscoCaliforniaUSA
| | - Marta Milà Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Marc Suárez Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Present address:
Ottiliavej 9, 2500KøbenhavnDenmark
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | | | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Luigi Lorenzini
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
| | - Alle Meije Wink
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
| | - Silvia Ingala
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Craig W. Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghScotlandUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | | |
Collapse
|
36
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
37
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2025; 47:227-246. [PMID: 39343862 PMCID: PMC11872831 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
38
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Zeng X, Li M, Zhou F. Decreases in frequency-dependent intrinsic activity of the default mode network are associated with depression and cognition in patients with postacute sequelae of SARS-CoV-2 infection. Brain Struct Funct 2025; 230:36. [PMID: 39869209 DOI: 10.1007/s00429-025-02895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited. The voxel-level fractional amplitude of low-frequency fluctuation (fALFF) was calculated in different frequency bands (typical frequency band: 0.01-0.10 Hz; slow 5: 0.01-0.023 Hz; slow 4: 0.023-0.073 Hz) to assess regional intrinsic activity patterns within different groups. Correlation analyses were performed to explore the associations between frequency-dependent alterations and clinical variables. Significant frequency-dependent alterations in intrinsic activity patterns were observed in both the PASC and non-PASC groups, primarily involving regions of the default mode network (DMN). The decreased fALFF values of the DMN in different frequency bands were associated with different symptoms in PASC. For example, decreased fALFF in the left precuneus in the typical frequency band was related to general attention impairment in PASC, whereas decreased fALFF in the left superior frontal gyrus appeared in non-PASC. The fALFF alterations in the left precuneus/posterior cingulate gyrus in the slow 5 band were also related to cognitive performance in PASC. Additionally, in the slow 4 band, decreased fALFF in the right angular gyrus was associated with depressive symptoms in the PASC. Our results may provide insights into the potential neural mechanisms underlying symptoms in PASC patients.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiankun Dai
- MR Research, GE Healthcare, Beijing, 100000, China
| | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
39
|
Xie J, Tandon R, Mitchell CS. Network Diffusion-Constrained Variational Generative Models for Investigating the Molecular Dynamics of Brain Connectomes Under Neurodegeneration. Int J Mol Sci 2025; 26:1062. [PMID: 39940829 PMCID: PMC11817396 DOI: 10.3390/ijms26031062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative condition with significant societal impact. Understanding the temporal dynamics of its pathology is essential for advancing therapeutic interventions. Empirical and anatomical evidence indicates that network decoupling occurs as a result of gray matter atrophy. However, the scarcity of longitudinal clinical data presents challenges for computer-based simulations. To address this, a first-principles-based, physics-constrained Bayesian framework is proposed to model time-dependent connectome dynamics during neurodegeneration. This temporal diffusion network framework segments pathological progression into discrete time windows and optimizes connectome distributions for biomarker Bayesian regression, conceptualized as a learning problem. The framework employs a variational autoencoder-like architecture with computational enhancements to stabilize and improve training efficiency. Experimental evaluations demonstrate that the proposed temporal meta-models outperform traditional static diffusion models. The models were evaluated using both synthetic and real-world MRI and PET clinical datasets that measure amyloid beta, tau, and glucose metabolism. The framework successfully distinguishes normative aging from AD pathology. Findings provide novel support for the "decoupling" hypothesis and reveal eigenvalue-based evidence of pathological destabilization in AD. Future optimization of the model, integrated with real-world clinical data, is expected to improve applications in personalized medicine for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajia Xie
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raghav Tandon
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
40
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Sun X, Zhu J, Li R, Peng Y, Gong L. The global research of magnetic resonance imaging in Alzheimer's disease: a bibliometric analysis from 2004 to 2023. Front Neurol 2025; 15:1510522. [PMID: 39882364 PMCID: PMC11774745 DOI: 10.3389/fneur.2024.1510522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disorder worldwide and the using of magnetic resonance imaging (MRI) in the management of AD is increasing. The present study aims to summarize MRI in AD researches via bibliometric analysis and predict future research hotspots. Methods We searched for records related to MRI studies in AD patients from 2004 to 2023 in the Web of Science Core Collection (WoSCC) database. CiteSpace was applied to analyze institutions, references and keywords. VOSviewer was used for the analysis of countries, authors and journals. Results A total of 13,659 articles were obtained in this study. The number of published articles showed overall exponential growth from 2004 to 2023. The top country and institution were the United States and the University of California System, accounting for 40.30% and 9.88% of the total studies, respectively. Jack CR from the United States was the most productive author. The most productive journal was the Journal of Alzheimers Disease. Keyword burst analysis revealed that "machine learning" and "deep learning" were the keywords that frequently appeared in the past 6 years. Timeline views of the references revealed that "#0 tau pathology" and "#1 deep learning" are currently the latest research focuses. Conclusion This study provides an in-depth overview of publications on MRI studies in AD. The United States is the leading country in this field with a concentration of highly productive researchers and high-level institutions. The current research hotspot is deep learning, which is being applied to develop noninvasive diagnosis and safer treatment of AD.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Jianghua Zhu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Ruowei Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Yun Peng
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China
| |
Collapse
|
42
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Khan AF, Saleh N, Smith ZA. The Brain's Aging Resting State Functional Connectivity. J Integr Neurosci 2025; 24:25041. [PMID: 39862002 DOI: 10.31083/jin25041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 01/27/2025] Open
Abstract
Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states. As we age, these spatiotemporal properties change. Moreover, RSNs exhibit neural plasticity to compensate for the loss of cognitive functions. This narrative review aims to summarize current knowledge from functional magnetic resonance imaging (fMRI) studies on age-related alterations in RSNs. Underlying mechanisms influencing such changes are discussed. Methodological challenges and future directions are also addressed. By providing an overview of the current state of knowledge in this field, this review aims to guide future research endeavors aimed at promoting healthy brain aging and developing effective interventions for age-related cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nada Saleh
- Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
44
|
Shan AD, Zhang H, Gao MX, Wang LN, Cao XY, Gan CT, Sun HM, Lu QL, Zhang L, Yuan YS, Zhang KZ. Altered effective connectivity in Parkinson's disease patients with rapid eye movement sleep behavior disorder: a resting-state functional magnetic resonance imaging study and support vector machine analysis. Quant Imaging Med Surg 2025; 15:352-369. [PMID: 39839023 PMCID: PMC11744126 DOI: 10.21037/qims-24-1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025]
Abstract
Background Rapid eye movement sleep behavior disorder (RBD) is associated with pathological α-synuclein deposition and may have different damage directions due to α-synuclein spreading orientations. Recent functional imaging studies of Parkinson's disease (PD) with RBD have identified abnormalities in connectivity, but effective connectivity (EC) for this altered orientation is understudied. Here, we aimed to explore altered intrinsic functional connectivity (FC) and EC in PD patients with probable RBD (pRBD). Methods This was a cross-sectional study. A total of 31 PD patients with pRBD (PD-pRBD), 35 PD without pRBD (PD-npRBD), and 32 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (RS-fMRI) scans. The voxel-wise degree centrality (DC) calculation was first performed to investigate the inherent connectivity of the PD-pRBD patients. Subsequently, we applied Granger causality analysis (GCA) to probe the causal effects of anomalous brain regions. Finally, the support vector machine (SVM) method was executed to evaluate the DC values in identifying PD-pRBD. Results PD-pRBD patients exhibited reduced z-DC values in the right precentral gyrus relative to PD-npRBD (voxel-level P<0.001, cluster-level P<0.05), as well as decreased z-DC values in the right postcentral gyrus and the superior parietal lobule compared to HCs. Then, our GCA revealed that decreased EC was located predominantly from the right precentral gyrus to the right caudate nucleus in the PD-pRBD group. Additionally, the SVM results revealed that the z-DC values of the right precentral gyrus could discriminate PD-pRBD from the PD-npRBD group [area under the curve (AUC) =0.905]. Conclusions The altered z-DC in the right precentral gyrus and the anomaly causal effects from the precentral motor cortex to the ipsilateral striatum represented by the caudate nucleus might play vital roles in the pathogenesis of PD-pRBD. It was speculated that the attenuation of FC from the precentral motor cortex to the subcortical striatum might be associated with nocturnal muscle dyskinesia and behavioral abnormalities in PD-pRBD patients. This disruption pattern may be a prospective imaging marker in the characterization of PD with pRBD.
Collapse
Affiliation(s)
- Ai-Di Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Xi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Na Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing-Yue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Ting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Min Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian-Ling Lu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Cayuela N, Izquierdo C, Vaquero L, Càmara E, Bruna J, Simó M. Mapping glioma's impact on cognition: Insights from macrostructure, microstructure, and beyond. Neurooncol Adv 2025; 7:vdaf003. [PMID: 39911704 PMCID: PMC11795312 DOI: 10.1093/noajnl/vdaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Background Cognitive impairment (CI) significantly impacts the quality of life of glioma patients. The main contributing risk factors include tumor characteristics, treatment-related factors, and their complex interplay. This review explores the role of advanced structural neuroimaging techniques in understanding CI in glioma patients. Methods A literature search was conducted in PubMed, PsycINFO, and ISI Web of Knowledge using specific keywords. We included studies with advanced magnetic resonance imaging techniques and objective neuropsychological exams. Results At diagnosis, during the pre-surgery phase, associations between glioma characteristics and cognitive outcomes have been described. Specifically, patients with isocitrate dehydrogenase (IDH)-wild-type gliomas exhibit more adverse cognitive outcomes, accompanied by disruptions in gray (GM) and white matter (WM) networks when compared to IDH-mutant. In addition, pre- and post-surgery imaging analyses highlight the importance of preserving specific WM tracts, such as the inferior longitudinal and arcuate fasciculus, in mitigating verbal memory and language processing decline. Furthermore, examining gliomas in perisylvian regions emphasizes deleterious effects on various cognitive domains. Additionally, it has been suggested that neuroplastic reorganization could serve as a compensatory mechanism against CI. Lastly, a limited number of studies suggest long-term CI linked to GM atrophy and leukoencephalopathy induced by radiotherapy ± chemotherapy in glioma survivors, highlighting the need for improving treatment approaches, particularly for patients with extended survival expectations. Conclusion This review underscores the need for nuanced understanding and an individual approach in the management of glioma patients. Neuroplastic insights offer clinicians valuable guidance in surgical decision-making and personalized therapeutic approaches thus improving patient outcomes in neuro-oncology.
Collapse
Affiliation(s)
- Nuria Cayuela
- Neurology Department, Complex Hospitalari Moisès Broggi, Barcelona, Spain
| | - Cristina Izquierdo
- Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Music and Audio Research Lab (MARL), New York University, New York, USA
- Center for Language Music and Emotion (CLaME) – Max Plank Institute of Empirical Aesthetics, New York University, New York, USA
- Research Group in Digital Culture and Social Movements (Cibersomosaguas), and Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid, Madrid, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Group, IDIBELL, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO l’Hospitalet, IDIBELL (Oncobell Program), Barcelona, Spain
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO l’Hospitalet, IDIBELL (Oncobell Program), Barcelona, Spain
- Cognition and Brain Plasticity Group, IDIBELL, Barcelona, Spain
| |
Collapse
|
46
|
Qureshi AY, Stevens RD. Neuroscience of coma. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:29-47. [PMID: 39986726 DOI: 10.1016/b978-0-443-13408-1.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Coma and disorders of consciousness are frequently considered in terms of two linked anatomic-functional systems: the arousal system and the awareness system. The mesopontine tegmentum (namely the cuneiform/subcuneiform nuclei of the caudal midbrain and the pontis oralis nucleus of the rostral pons) and the monoamine nuclei generate signals of arousal. These signals are augmented in lateral hypothalamus and basal forebrain, which then project to the thalamus and diffusely across the cortex. The medial dorsal tegmental tract is the main conduit for the ascending arousal system to directly activate the thalamic intralaminar nuclei and modulate thalamocortical networks, while the lateral dorsal tegmental tract connects to the thalamic reticular nucleus for regulation of intrathalamic inhibitory networks. The central thalamus (particularly the intralaminar nuclei) and the mesocircuit regulate the arousal system. Lesions to any part of this system, particularly paramedian and bilateral lesions, result in a depressed level of arousal. Distinct from the arousal pathways, the awareness system runs continuously as a stream of consciousness. It consists of large-scale distributed cortical networks that are necessary for representations of the external (executive control network with the dorsal/ventral attention networks) and the internal world (executive control network in conjunction with the default network). A feature of the awareness system is that it does not capture external and internal worlds at once and instead, holds singular representations, serially moment-by-moment. The medial dorsal nucleus of the thalamus serves as the associative nuclei of the default network, and the thalamic reticular nucleus regulates the awareness system. Lesions that disrupt large-scale networks, particularly nodes of cortical hubs, result in lack of awareness. Integrative paradigms such as the integrated information theory and the global neuronal workspace models are attempts to bind awareness and arousal into a unified experience of consciousness.
Collapse
Affiliation(s)
- Abid Y Qureshi
- Department of Neurology, University of Kansas Medical Center, Kansas, MO, United States
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
47
|
Desai N, Baladandayuthapani V, Shinohara RT, Morris JS. Connectivity Regression. Biostatistics 2024; 26:kxaf002. [PMID: 40272849 PMCID: PMC12020475 DOI: 10.1093/biostatistics/kxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 04/27/2025] Open
Abstract
Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.
Collapse
Affiliation(s)
- Neel Desai
- Division of Biostatistics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, United States
| | - Veera Baladandayuthapani
- Department of Biostatistics, University of Michigan Ann-Arbor, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Russell T Shinohara
- Division of Biostatistics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, United States
| | - Jeffrey S Morris
- Division of Biostatistics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, United States
| |
Collapse
|
48
|
Rocha RP, Zorzi M, Corbetta M. Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions. Sci Rep 2024; 14:31631. [PMID: 39738232 PMCID: PMC11685905 DOI: 10.1038/s41598-024-80196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun. 13, 2022). The loss of criticality in a cohort of stroke patients was associated with structural brain disconnections, while its recovery was accompanied by the re-modeling of specific white-matter tracts. These results were challenged by Janarek et al. (Sci. Rep. 13, 2023), who proposed an alternative interpretation for the anomalous monotonic decaying of the second cluster size, which is the neural signature originally used to infer loss of criticality. The present study tackles this controversy and provides evidence that the theoretical framework proposed by Janarek et al. cannot explain the anomalous cluster dynamics observed in our patients. Notably, this invalidates the claim that the brain maintains its critical dynamics regardless of the lesion severity. In addition, we explore biological mechanisms beyond white-matter remodeling that may facilitate the recovery of criticality over time. We considered two distinct scenarios: one where we suppress homeostatic plasticity, and another where we increase the excitability of brain regions. We find that suppressing homeostatic plasticity - specifically, the inhibition-excitation balance - disfavors the emergence of criticality. Conversely, increasing brain excitability can help to restore criticality when the latter is disrupted. Our results suggest that normalizing the excitation-inhibition balance is crucial for supporting recovery of critical brain dynamics.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center, Università di Padova, Padova, Italy.
- IRCCS San Camillo Hospital, Venice, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
49
|
Biljman K, Gozes I, Lam JCK, Li VOK. An experimental framework for conjoint measures of olfaction, navigation, and motion as pre-clinical biomarkers of Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1722-1744. [PMID: 40034341 PMCID: PMC11863766 DOI: 10.1177/25424823241307617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Elucidating Alzheimer's disease (AD) prodromal symptoms can resolve the outstanding challenge of early diagnosis. Based on intrinsically related substrates of olfaction and spatial navigation, we propose a novel experimental framework for their conjoint study. Artificial intelligence-driven multimodal study combining self-collected olfactory and motion data with available big clinical datasets can potentially promote high-precision early clinical screenings to facilitate timely interventions targeting neurodegenerative progression.
Collapse
Affiliation(s)
- Katarina Biljman
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, The Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jacqueline CK Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Victor OK Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Menelaou G, Diez I, Zelano C, Zhou G, Persson J, Sepulcre J, Olofsson JK. Stepwise pathways from the olfactory cortex to central hub regions in the human brain. Hum Brain Mapp 2024; 45:e26760. [PMID: 39688149 PMCID: PMC11651219 DOI: 10.1002/hbm.26760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 12/18/2024] Open
Abstract
The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default-mode network (DMN). The DMN regions are believed to be critical for representing concepts and, hence, language acquisition and use. Although prior research has established that major senses are placed at a similar distance from the DMN-five to six connective steps-it is still unknown how the olfactory system functionally connects to the large-scale cortical hubs of the human brain. In this study, we investigated the connective distance from olfactory seed areas to the DMN. The connective distance involves a series of three to four intermediate steps. Furthermore, we parcellated the olfactory cortical subregions and found evidence of two distinct olfactory pathways. One emerges from the anterior olfactory nucleus and olfactory tubercle; it involves early access to the orbitofrontal cortex, known for processing reward and multisensory signals. The other emerges from the frontal and temporal regions of the piriform cortex, involving the anterior insula, intermediate frontal sulcus, and parietal operculum. The results were confirmed in a replication cohort. Our results provide evidence that olfaction has unique early access to the central cortical networks via dual pathways.
Collapse
Affiliation(s)
- G. Menelaou
- Department of PsychologyStockholm UniversityStockholmSweden
- Karolinska InstituteStockholmSweden
| | - I. Diez
- Department of RadiologyGordon Center for Medical ImagingBostonMassachusettsUSA
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - C. Zelano
- Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - G. Zhou
- Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - J. Persson
- Karolinska InstituteStockholmSweden
- Center for Lifespan Developmental Research (LEADER)School of Behavioral, Social and Legal Sciences, Örebro UniversityÖrebroSweden
| | - J. Sepulcre
- Department of RadiologyGordon Center for Medical ImagingBostonMassachusettsUSA
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - J. K. Olofsson
- Department of PsychologyStockholm UniversityStockholmSweden
| |
Collapse
|