1
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
2
|
Syversen IF, Reznik D, Witter MP, Kobro-Flatmoen A, Navarro Schröder T, Doeller CF. A combined DTI-fMRI approach for optimizing the delineation of posteromedial versus anterolateral entorhinal cortex. Hippocampus 2024; 34:659-672. [PMID: 39305289 DOI: 10.1002/hipo.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subregions using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions. In this study, we used both DTI and resting-state fMRI in 103 healthy adults to investigate both structural and functional connectivity between the EC and associated cortical brain regions. Differential connectivity with these regions was then used to predict the locations of the human homologues of MEC and LEC. Our results from combining DTI and fMRI support a subdivision into posteromedial (pmEC) and anterolateral (alEC) EC and reveal a confined border between the pmEC and alEC. Furthermore, the EC subregions obtained by either imaging modality showed similar distinct whole-brain connectivity profiles. Optimizing the delineation of the human homologues of MEC and LEC with a combined, cross-validated DTI-fMRI approach allows to define a likely border between the two subdivisions and has implications for both cognitive and translational neuroscience research.
Collapse
Affiliation(s)
- Ingrid Framås Syversen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Reznik
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. Eur J Psychotraumatol 2024; 15:2335793. [PMID: 38590134 PMCID: PMC11005872 DOI: 10.1080/20008066.2024.2335793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (β = 0.0099, q = 0.032) and lower EC ODI (β = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.
Collapse
Affiliation(s)
- Steven J. Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Sydney A. Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A. Olson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cameron D. Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos P. Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin Ravichandran
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - William A. Carlezon
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kerry J. Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M. Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294894. [PMID: 37693514 PMCID: PMC10491384 DOI: 10.1101/2023.08.31.23294894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been reported. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analysis), and EC (secondary analysis) using Neurite Orientation Dispersion and Density Imaging. Methods Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion- weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure. Results Higher PACAP levels in blood were associated with greater EC NDI (β=0.31, q=0.034) and lower EC ODI (β=-0.30, q=0.042) and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures. Conclusions Circulating PACAP levels were associated with altered neuronal density of the EC but not hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal- associated memory circuits.
Collapse
|
5
|
Gellersen HM, Trelle AN, Farrar BG, Coughlan G, Korkki SM, Henson RN, Simons JS. Medial temporal lobe structure, mnemonic and perceptual discrimination in healthy older adults and those at risk for mild cognitive impairment. Neurobiol Aging 2023; 122:88-106. [PMID: 36516558 DOI: 10.1016/j.neurobiolaging.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Cognitive tests sensitive to the integrity of the medial temporal lobe (MTL), such as mnemonic discrimination of perceptually similar stimuli, may be useful early markers of risk for cognitive decline in older populations. Perceptual discrimination of stimuli with overlapping features also relies on MTL but remains relatively unexplored in this context. We assessed mnemonic discrimination in two test formats (Forced Choice, Yes/No) and perceptual discrimination of objects and scenes in 111 community-dwelling older adults at different risk status for cognitive impairment based on neuropsychological screening. We also investigated associations between performance and MTL sub-region volume and thickness. The at-risk group exhibited reduced entorhinal thickness and impaired perceptual and mnemonic discrimination. Perceptual discrimination impairment partially explained group differences in mnemonic discrimination and correlated with entorhinal thickness. Executive dysfunction accounted for Yes/No deficits in at-risk adults, demonstrating the importance of test format for the interpretation of memory decline. These results suggest that perceptual discrimination tasks may be useful tools for detecting incipient cognitive impairment related to reduced MTL integrity in nonclinical populations.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge, UK; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | | | - Gillian Coughlan
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Saana M Korkki
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Chow TE, Veziris CR, Mundada N, Martinez-Arroyo AI, Kramer JH, Miller BL, Rosen HJ, Gorno-Tempini ML, Rankin KP, Seeley WW, Rabinovici GD, La Joie R, Sturm VE. Medial Temporal Lobe Tau Aggregation Relates to Divergent Cognitive and Emotional Empathy Abilities in Alzheimer's Disease. J Alzheimers Dis 2023; 96:313-328. [PMID: 37742643 PMCID: PMC10894587 DOI: 10.3233/jad-230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), the gradual accumulation of amyloid-β (Aβ) and tau proteins may underlie alterations in empathy. OBJECTIVE To assess whether tau aggregation in the medial temporal lobes related to differences in cognitive empathy (the ability to take others' perspectives) and emotional empathy (the ability to experience others' feelings) in AD. METHODS Older adults (n = 105) completed molecular Aβ positron emission tomography (PET) scans. Sixty-eight of the participants (35 women) were Aβ positive and symptomatic with diagnoses of mild cognitive impairment, dementia of the Alzheimer's type, logopenic variant primary progressive aphasia, or posterior cortical atrophy. The remaining 37 (22 women) were asymptomatic Aβ negative healthy older controls. Using the Interpersonal Reactivity Index, we compared current levels of informant-rated cognitive empathy (Perspective-Taking subscale) and emotional empathy (Empathic Concern subscale) in the Aβ positive and negative participants. The Aβ positive participants also underwent molecular tau-PET scans, which were used to investigate whether regional tau burden in the bilateral medial temporal lobes related to empathy. RESULTS Aβ positive participants had lower perspective-taking and higher empathic concern than Aβ negative healthy controls. Medial temporal tau aggregation in the Aβ positive participants had divergent associations with cognitive and emotional empathy. Whereas greater tau burden in the amygdala predicted lower perspective-taking, greater tau burden in the entorhinal cortex predicted greater empathic concern. Tau burden in the parahippocampal cortex did not predict either form of empathy. CONCLUSIONS Across AD clinical syndromes, medial temporal lobe tau aggregation is associated with lower perspective-taking yet higher empathic concern.
Collapse
Affiliation(s)
- Tiffany E. Chow
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Christina R. Veziris
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexis I. Martinez-Arroyo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Katherine P. Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
8
|
Slotnick SD. Does working memory activate the hippocampus during the late delay period? Cogn Neurosci 2022; 13:182-207. [PMID: 35699620 DOI: 10.1080/17588928.2022.2075842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of the present discussion paper was to identify whether any fMRI studies have provided convincing evidence that the hippocampus is associated with working memory. The key outcome variable was the phase in which hippocampal activity was observed: study, early delay, late delay, and/or test. During working memory tasks, long-term memory processes can operate during the study phase, early delay phase (due to extended encoding), or test phase. Thus, working memory processes can be isolated from long-term memory processes during only the late delay period. Twenty-six working memory studies that reported hippocampal activity were systematically analyzed. Many experimental protocols and analysis parameters were considered including number of participants, stimulus type(s), number of items during the study phase, delay duration, task during the test phase, behavioral accuracy, relevant fMRI contrast(s), whether the information was novel or familiar, number of phases modeled, and whether activation timecourses were extracted. For studies that were able to identify activity in different phases, familiar information sometimes produced activity during the study phase and/or test phase, but never produced activity during the delay period. When early-delay phase and late-delay phase activity could be distinguished via modeling these phases separately or inspecting activation timecourses, novel information could additionally produce activity during the early delay phase. There was no convincing evidence of hippocampal activity during the late delay period. These results indicate that working memory does not activate the hippocampus and suggest a model of working memory where maintenance of novel information can foster long-term memory encoding.
Collapse
Affiliation(s)
- Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College Boston, MA, USA
| |
Collapse
|
9
|
Schultz H, Sommer T, Peters J. Category-sensitive incidental reinstatement in medial temporal lobe subregions during word recognition. Learn Mem 2022; 29:126-135. [PMID: 35428729 PMCID: PMC9053111 DOI: 10.1101/lm.053553.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
During associative retrieval, the brain reinstates neural representations that were present during encoding. The human medial temporal lobe (MTL), with its subregions hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), plays a central role in neural reinstatement. Previous studies have given compelling evidence for reinstatement in the MTL during explicitly instructed associative retrieval. High-confident recognition may be similarly accompanied by recollection of associated information from the encoding context. It is unclear, however, whether high-confident recognition memory elicits reinstatement in the MTL even in the absence of an explicit instruction to retrieve associated information. Here, we addressed this open question using high-resolution fMRI. Twenty-eight male and female human volunteers engaged in a recognition memory task for words that they had previously encoded together with faces and scenes. Using complementary univariate and multivariate approaches, we show that MTL subregions including the PRC, PHC, and HC differentially reinstate category-sensitive representations during high-confident word recognition, even though no explicit instruction to retrieve the associated category was given. This constitutes novel evidence that high-confident recognition memory is accompanied by incidental reinstatement of associated category information in MTL subregions, and supports a functional model of the MTL that emphasizes content-sensitive representations during both encoding and retrieval.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
| |
Collapse
|
10
|
Frangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andersson M, Andreasen NC, Andreassen OA, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Buckner RL, Calhoun V, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Cervenka S, Chaim‐Avancini TM, Ching CRK, Chubar V, Clark VP, Conrod P, Conzelmann A, Crespo‐Facorro B, Crivello F, Crone EA, Dale AM, Dannlowski U, Davey C, de Geus EJC, de Haan L, de Zubicaray GI, den Braber A, Dickie EW, Di Giorgio A, Doan NT, Dørum ES, Ehrlich S, Erk S, Espeseth T, Fatouros‐Bergman H, Fisher SE, Fouche J, Franke B, Frodl T, Fuentes‐Claramonte P, Glahn DC, Gotlib IH, Grabe H, Grimm O, Groenewold NA, Grotegerd D, Gruber O, Gruner P, Gur RE, Gur RC, Hahn T, Harrison BJ, Hartman CA, Hatton SN, Heinz A, Heslenfeld DJ, Hibar DP, Hickie IB, Ho B, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James A, Jernigan TL, Jiang J, Jönsson EG, Joska JA, Kahn R, Kalnin A, Kanai R, Klein M, Klyushnik TP, Koenders L, Koops S, Krämer B, Kuntsi J, Lagopoulos J, Lázaro L, Lebedeva I, Lee WH, Lesch K, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald C, McDonald BC, McIntosh AM, McMahon KL, McPhilemy G, Meinert S, Menchón JM, Medland SE, Meyer‐Lindenberg A, Naaijen J, Najt P, Nakao T, Nordvik JE, Nyberg L, Oosterlaan J, de la Foz VO, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Potkin SG, Radua J, Reif A, Rinker DA, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sánchez‐Juan P, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Schmaal L, Schnell K, Schumann G, Sim K, Smoller JW, Sommer I, Soriano‐Mas C, Stein DJ, Strike LT, Swagerman SC, Tamnes CK, Temmingh HS, Thomopoulos SI, Tomyshev AS, Tordesillas‐Gutiérrez D, Trollor JN, Turner JA, Uhlmann A, van den Heuvel OA, van den Meer D, van der Wee NJA, van Haren NEM, van 't Ent D, van Erp TGM, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Walton E, Wang L, Wang Y, Wassink TH, Weber B, Wen W, West JD, Westlye LT, Whalley H, Wierenga LM, Wittfeld K, Wolf DH, Worker A, Wright MJ, Yang K, Yoncheva Y, Zanetti MV, Ziegler GC, Thompson PM, Dima D. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. Hum Brain Mapp 2022; 43:431-451. [PMID: 33595143 PMCID: PMC8675431 DOI: 10.1002/hbm.25364] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | | | - Steven C. R. Williams
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Efstathios Papachristou
- Psychology and Human DevelopmentInstitute of Education, University College LondonLondonUnited Kingdom
| | - Gaelle E. Doucet
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
| | - Moji Aghajani
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
- Section Forensic Family & Youth CareInstitute of Education & Child StudiesLeiden UniversityNetherlands
| | - Theophilus N. Akudjedu
- Institute of Medical Imaging and Visualisation, Department of Medical Science and Public Health, Faculty of Health and Social SciencesBournemouth UniversityPooleUnited Kingdom
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and AddictionInstitute of Clinical Medicine, University of OsloOsloNorway
| | | | - Micael Andersson
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Nancy C. Andreasen
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Nuria Bargallo
- Imaging Diagnostic CentreHospital Clinic, Barcelona University ClinicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Ramona Baur‐Streubel
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Stefan Borgwardt
- Department of Psychiatry & PsychotherapyUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Alan Breier
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Rachel M. Brouwer
- Rudolf Magnus Institute of NeuroscienceUniversity Medical Center UtrechtUtrechtNetherlands
| | - Jan K. Buitelaar
- Donders Center of Medical NeurosciencesRadboud UniversityNijmegenNetherlands
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenNetherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Randy L. Buckner
- Department of Psychology, Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Vincent Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory University, USA Neurology, Radiology, Psychiatry and Biomedical Engineering, Emory UniversityAtlantaGeorgiaUSA
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Dara M. Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | | | - Simon Cervenka
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Tiffany M. Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Victoria Chubar
- Mind‐Body Research Group, Department of NeuroscienceKU LeuvenLeuvenBelgium
| | - Vincent P. Clark
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia Conrod
- Department of PsychiatryUniversité de MontréalMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
| | - Benedicto Crespo‐Facorro
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- HU Virgen del Rocio, IBiSUniversity of SevillaSevillaSpain
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Eveline A. Crone
- Erasmus School of Social and Behavioural SciencesErasmus University RotterdamRotterdamNetherlands
- Faculteit der Sociale Wetenschappen, Instituut PsychologieUniversiteit LeidenLeidenNetherlands
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, Department of NeuroscienceUniversity of California‐San DiegoSan DiegoCaliforniaUSA
- Department of RadiologyUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | | | - Eco J. C. de Geus
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Lieuwe de Haan
- Academisch Medisch CentrumUniversiteit van AmsterdamAmsterdamNetherlands
| | - Greig I. de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of TechnologyQueenslandAustralia
| | - Anouk den Braber
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Erin W. Dickie
- Kimel Family Translational Imaging Genetics Laboratory, Campbell Family Mental Health Research InstituteCAMHCampbellCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Annabella Di Giorgio
- Biological Psychiatry LabFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Erlend S. Dørum
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesTechnische Universität DresdenDresdenGermany
- Faculty of MedicineUniversitätsklinikum Carl Gustav Carus an der TU DresdenDresdenGermany
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Thomas Espeseth
- Biological Psychiatry LabFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (FG)Italy
- Bjørknes CollegeOsloNorway
| | - Helena Fatouros‐Bergman
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Simon E. Fisher
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenNetherlands
| | - Thomas Frodl
- Department of Psychiatry and PsychotherapyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - David C. Glahn
- Department of PsychiatryTommy Fuss Center for Neuropsychiatric Disease Research Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ian H. Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans‐Jörgen Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Grimm
- Department for Psychiatry, Psychosomatics and PsychotherapyUniversitätsklinikum Frankfurt, Goethe UniversitatFrankfurtGermany
| | - Nynke A. Groenewold
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Learning Based Recovery CenterVA Connecticut Health SystemWest HavenConnecticutUSA
| | - Rachel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim Hahn
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | - Ben J. Harrison
- Melbourne Neuropsychiatry CenterUniversity of MelbourneMelbourneAustralia
| | - Catharine A. Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Sean N. Hatton
- Brain and Mind CentreUniversity of SydneySydneyAustralia
| | - Andreas Heinz
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dirk J. Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Derrek P. Hibar
- Personalized Healthcare, Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Ian B. Hickie
- Brain and Mind CentreUniversity of SydneySydneyAustralia
| | - Beng‐Choon Ho
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Pieter J. Hoekstra
- Department of PsychiatryUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthHeidelberg UniversityHeidelbergGermany
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
| | - Norbert Hosten
- Norbert Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
| | - Fleur M. Howells
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | | | - Chaim Huyser
- De Bascule, Academic Centre for Children and Adolescent PsychiatryAmsterdamNetherlands
| | - Neda Jahanshad
- Mind‐Body Research Group, Department of NeuroscienceKU LeuvenLeuvenBelgium
| | - Anthony James
- Department of PsychiatryOxford UniversityOxfordUnited Kingdom
| | - Terry L. Jernigan
- Center for Human Development, Departments of Cognitive Science, Psychiatry, and RadiologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - John A. Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Rene Kahn
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Andrew Kalnin
- Department of RadiologyOhio State University College of MedicineColumbusOhioUSA
| | - Ryota Kanai
- Department of NeuroinformaticsAraya, Inc.TokyoJapan
| | - Marieke Klein
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
- Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | | | - Laura Koenders
- Academisch Medisch CentrumUniversiteit van AmsterdamAmsterdamNetherlands
| | - Sanne Koops
- Rudolf Magnus Institute of NeuroscienceUniversity Medical Center UtrechtUtrechtNetherlands
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Jim Lagopoulos
- Sunshine Coast Mind and NeuroscienceThompson Institute, University of the Sunshine CoastQueenslandAustralia
| | - Luisa Lázaro
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital Clinic, University of BarcelonaBarcelonaSpain
| | - Irina Lebedeva
- Mental Health Research CenterRussian Academy of Medical SciencesMoscowRussia
| | - Won Hee Lee
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Klaus‐Peter Lesch
- Department of Psychiatry, Psychosomatics and PsychotherapyJulius‐Maximilians Universität WürzburgWürzburgGermany
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | | | - Sophie Maingault
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Nicholas G. Martin
- Queensland Institute of Medical ResearchBerghofer Medical Research InstituteQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- Stockholm Health Care ServicesStockholmSweden
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293Université de BordeauxBordeauxFrance
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Brenna C. McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Katie L. McMahon
- School of Clinical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyQueenslandAustralia
| | - Genevieve McPhilemy
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Susanne Meinert
- Department of Psychiatry and PsychotherapyUniversity of MünsterGermany
| | - José M. Menchón
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - Sarah E. Medland
- Queensland Institute of Medical ResearchBerghofer Medical Research InstituteQueenslandAustralia
| | - Andreas Meyer‐Lindenberg
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Heidelberg UniversityHeidelbergGermany
| | - Jilly Naaijen
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenNetherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenNetherlands
| | - Pablo Najt
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive Genomics and NCBES Galway Neuroscience CentreNational University of IrelandGalwayIreland
| | - Tomohiro Nakao
- Department of Clinical MedicineKyushu UniversityFukuokaJapan
| | | | - Lars Nyberg
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Department of Clinical NeuropsychologyAmsterdam University Medical Centre, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Víctor Ortiz‐García de la Foz
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryUniversity Hospital “Marques de Valdecilla”, Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - Yannis Paloyelis
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Paul Pauli
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Centre of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
| | - Maria J. Portella
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Department of PsychiatryHospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Steven G. Potkin
- Department of PsychiatryUniversity of California at IrvineIrvineCaliforniaUSA
| | - Joaquim Radua
- Centre for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetSolnaSweden
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Andreas Reif
- Department for Psychiatry, Psychosomatics and PsychotherapyUniversitätsklinikum Frankfurt, Goethe UniversitatFrankfurtGermany
| | - Daniel A. Rinker
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
| | - Joshua L. Roffman
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D. Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | | | - Pascual Sánchez‐Juan
- Department of PsychiatryUniversity Hospital “Marques de Valdecilla”, Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED)ValderrebolloSpain
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Lianne Schmaal
- OrygenThe National Centre of Excellence in Youth Mental HealthMelbourneAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Knut Schnell
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Gunter Schumann
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for Population Neuroscience and Precision MedicineInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Kang Sim
- Department of General PsychiatryInstitute of Mental HealthSingaporeSingapore
| | - Jordan W. Smoller
- Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenNetherlands
| | - Carles Soriano‐Mas
- Mental Health Research Networking Center (CIBERSAM)MadridSpain
- Department of PsychiatryBellvitge University Hospital‐IDIBELL, University of BarcelonaBarcelonaSpain
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | - Lachlan T. Strike
- Queensland Brain InstituteUniversity of QueenslandQueenslandAustralia
| | | | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | | | - Diana Tordesillas‐Gutiérrez
- FIDMAG Germanes HospitalàriesBarcelonaSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute IDIVALCantabriaSpain
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Jessica A. Turner
- College of Arts and SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Odile A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
| | - Dennis van den Meer
- Norwegian Centre for Mental Disorders Research (NORMENT)Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and AddictionInstitute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtNetherlands
| | - Nic J. A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenNetherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenNetherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical Center, Sophia Children's HospitalRotterdamThe Netherlands
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije UniversiteitAmsterdamNetherlands
| | - Theo G. M. van Erp
- Department of PsychiatryUniversity of California at IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
- Institute of Community MedicineUniversity Medicine, Greifswald, University of GreifswaldGreifswaldGermany
| | - Ilya M. Veer
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamNetherlands
| | - Aristotle Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Campbell Family Mental Health Research InstituteCAMHCampbellCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute of Community MedicineUniversity Medicine, Greifswald, University of GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK), partner site GreifswaldGreifswaldGermany
- German Center for Diabetes Research (DZD), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and PsychotherapyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Esther Walton
- Department of PsychologyUniversity of BathBathUnited Kingdom
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityEvanstonIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Thomas H. Wassink
- Department of Psychiatry, Carver College of MedicineThe University of IowaIowa CityIowaUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesKensingtonNew South WalesAustralia
| | - John D. West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Heather Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUnited Kingdom
| | - Lara M. Wierenga
- Developmental and Educational Psychology Unit, Institute of PsychologyLeiden UniversityLeidenNetherlands
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine Greifswald, University of GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amanda Worker
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | | | - Kun Yang
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Yulyia Yoncheva
- Department of Child and Adolescent Psychiatry, Child Study CenterNYU Langone HealthNew York CityNew YorkUSA
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C. Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | | | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Danai Dima
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Department of Psychology, School of Arts and Social SciencesCity University of LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Syversen IF, Witter MP, Kobro-Flatmoen A, Goa PE, Navarro Schröder T, Doeller CF. Structural connectivity-based segmentation of the human entorhinal cortex. Neuroimage 2021; 245:118723. [PMID: 34780919 PMCID: PMC8756143 DOI: 10.1016/j.neuroimage.2021.118723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy. Here, we used structural, not functional imaging, namely diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC based on differential connectivity to other brain regions known to project selectively to MEC or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum (dCA1pSub) and lateral orbitofrontal cortex (OFC). Although our DTI segmentation had a larger medial-lateral component than in the previous fMRI studies, our results show that the human MEC and LEC homologues have a border oriented both towards the posterior-anterior and medial-lateral axes, supporting the differentiation between pmEC and alEC.
Collapse
Affiliation(s)
- Ingrid Framås Syversen
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Lee TW, Tramontano G. Automatic parcellation of resting-state cortical dynamics by iterative community detection and similarity measurements. AIMS Neurosci 2021; 8:526-542. [PMID: 34877403 PMCID: PMC8611189 DOI: 10.3934/neuroscience.2021028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
To investigate the properties of a large-scale brain network, it is a common practice to reduce the dimension of resting state functional magnetic resonance imaging (rs-fMRI) data to tens to hundreds of nodes. This study presents an analytic streamline that incorporates modular analysis and similarity measurements (MOSI) to fulfill functional parcellation (FP) of the cortex. MOSI is carried out by iteratively dividing a module into sub-modules (via the Louvain community detection method) and unifying similar neighboring sub-modules into a new module (adjacent sub-modules with a similarity index <0.05) until the brain modular structures of successive runs become constant. By adjusting the gamma value, a parameter in the Louvain algorithm, MOSI may segment the cortex with different resolutions. rs-fMRI scans of 33 healthy subjects were selected from the dataset of the Rockland sample. MOSI was applied to the rs-fMRI data after standardized pre-processing steps. The results indicate that the parcellated modules by MOSI are more homogeneous in content. After reducing the grouped voxels to representative neural nodes, the network structures were explored. The resultant network components were comparable with previous reports. The validity of MOSI in achieving data reduction has been confirmed. MOSI may provide a novel starting point for further investigation of the network properties of rs-fMRI data. Potential applications of MOSI are discussed.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The Neuro Cognitive Institute (NCI) Clinical Research Foundation, NJ 07856, US.,Department of Psychiatry, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung 43748, Taiwan
| | - Gerald Tramontano
- The Neuro Cognitive Institute (NCI) Clinical Research Foundation, NJ 07856, US
| |
Collapse
|
13
|
Argyropoulos GPD, Dell’Acqua C, Butler E, Loane C, Roca-Fernandez A, Almozel A, Drummond N, Lage-Martinez C, Cooper E, Henson RN, Butler CR. Functional Specialization of the Medial Temporal Lobes in Human Recognition Memory: Dissociating Effects of Hippocampal versus Parahippocampal Damage. Cereb Cortex 2021; 32:1637-1652. [PMID: 34535797 PMCID: PMC9016283 DOI: 10.1093/cercor/bhab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022] Open
Abstract
A central debate in the systems neuroscience of memory concerns whether different medial temporal lobe (MTL) structures support different processes in recognition memory. Using two recognition memory paradigms, we tested a rare patient (MH) with a perirhinal lesion that appeared to spare the hippocampus. Consistent with a similar previous case, MH showed impaired familiarity and preserved recollection. When compared with patients with hippocampal lesions appearing to spare perirhinal cortex, MH showed greater impairment on familiarity and less on recollection. Nevertheless, the hippocampal patients also showed impaired familiarity compared with healthy controls. However, when replacing this traditional categorization of patients with analyses relating memory performance to continuous measures of damage across patients, hippocampal volume uniquely predicted recollection, whereas parahippocampal, rather than perirhinal, volume uniquely predicted familiarity. We consider whether the familiarity impairment in MH and our patients with hippocampal lesions arises from "subthreshold" damage to parahippocampal cortex (PHC). Our data provide the most compelling neuropsychological support yet for dual-process models of recognition memory, whereby recollection and familiarity depend on different MTL structures, and may support a role for PHC in familiarity. Our study highlights the value of supplementing single-case studies with examinations of continuous brain-behavior relationships across larger patient groups.
Collapse
Affiliation(s)
- Georgios P D Argyropoulos
- Address correspondence to Georgios P. D. Argyropoulos, Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Carola Dell’Acqua
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of General Psychology and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Emily Butler
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Basic and Clinical Neuroscience Department, Maurice Wohl Clinical Neuroscience Institute, King’s College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Adriana Roca-Fernandez
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Azhaar Almozel
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Nikolas Drummond
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Carmen Lage-Martinez
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Valdecilla Biomedical Research Institute, University Hospital Marqués de Valdecilla, 39011 Santander, Spain
| | - Elisa Cooper
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK
| | - Christopher R Butler
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of Brain Sciences, Imperial College London, London W12 0NN, UK,Departamento de Neurología, Pontificia Universidad Católica de Chile, Avda. Libertador Bernando O'Higgins 340, Santiago, Chile
| |
Collapse
|
14
|
Dautricourt S, de Flores R, Landeau B, Poisnel G, Vanhoutte M, Delcroix N, Eustache F, Vivien D, de la Sayette V, Chételat G. Longitudinal Changes in Hippocampal Network Connectivity in Alzheimer's Disease. Ann Neurol 2021; 90:391-406. [PMID: 34279043 PMCID: PMC9291910 DOI: 10.1002/ana.26168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/05/2022]
Abstract
Objective The hippocampus is connected to 2 distinct cortical brain networks, the posterior–medial and the anterior–temporal networks, involving different medial temporal lobe (MTL) subregions. The aim of this study was to assess the functional alterations of these 2 networks, their changes over time, and links to cognition in Alzheimer's disease. Methods We assessed MTL connectivity in 53 amyloid‐β–positive patients with mild cognitive impairment and AD dementia and 68 healthy elderly controls, using resting‐state functional magnetic resonance imaging, cross‐sectionally and longitudinally. First, we compared the functional connectivity of the posterior–medial and anterior–temporal networks within the control group to highlight their specificities. Second, we compared the connectivity of these networks between groups, and between baseline and 18‐month follow‐up in patients. Third, we assessed the association in the connectivity changes between the 2 networks, and with cognitive performance. Results We found decreased connectivity in patients specifically between the hippocampus and the posterior–medial network, together with increased connectivity between several MTL subregions and the anterior–temporal network. Moreover, changes in the posterior–medial and anterior–temporal networks were interrelated such that decreased MTL–posterior–medial connectivity was associated with increased MTL–anterior–temporal connectivity. Finally, both MTL–posterior–medial decrease and MTL–anterior–temporal increase predicted cognitive decline. Interpretation Our findings demonstrate that longitudinal connectivity changes in the posterior–medial and anterior–temporal hippocampal networks are linked together and that they both contribute to cognitive decline in Alzheimer's disease. These results shed light on the critical role of the posterior–medial and anterior–temporal networks in Alzheimer's disease pathophysiology and clinical symptoms. ANN NEUROL 2021;90:391–406
Collapse
Affiliation(s)
- Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, PhIND.,Neurology Department, Caen-Normandie University Hospital, Caen, France
| | | | | | | | | | - Nicolas Delcroix
- CNRS, Unité Mixte de Service-3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Vincent de la Sayette
- Neurology Department, Caen-Normandie University Hospital, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | |
Collapse
|
15
|
Regional Tau Effects on Prospective Cognitive Change in Cognitively Normal Older Adults. J Neurosci 2020; 41:366-375. [PMID: 33219003 DOI: 10.1523/jneurosci.2111-20.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of β-amyloid (Aβ) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer's disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using 18F-flortaucipir (FTP) and 11C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aβ in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aβ+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aβ, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aβ, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages.SIGNIFICANCE STATEMENT Tau and β-amyloid (Aβ) are hallmarks of Alzheimer's disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aβ may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aβ, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aβ+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.
Collapse
|
16
|
Anterolateral entorhinal cortex volume is associated with memory retention in clinically unimpaired older adults. Neurobiol Aging 2020; 98:134-145. [PMID: 33278686 DOI: 10.1016/j.neurobiolaging.2020.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex is subdivided into anterolateral entorhinal cortex (alERC) and posteromedial entorhinal cortex (pmERC) subregions, which are theorized to support distinct cognitive roles. This distinction is particularly important as the alERC is one of the earliest cortical regions affected by Alzheimer's pathology and related neurodegeneration. The relative associations of alERC/pmERC with neuropsychological test performance have not been examined. We examined how alERC/pmERC volumes differentially relate to performance on 1) the Modified Rey Auditory Learning Test (ModRey), a verbal memory test designed to assess normal/preclinical populations, 2) the Montreal Cognitive Assessment (MoCA), and 3) the National Alzheimer's Coordinating Center neuropsychological battery. We also examined whether alERC/pmERC volumes correlate with Alzheimer's disease cerebrospinal fluid (CSF) biomarkers. In 65 cognitively healthy (CDR = 0) older adults, alERC, but not pmERC, volume was associated with ModRey memory retention. Only alERC volume differentiated between participants who scored above and below the MoCA cutoff score for impairment. Evaluating the MoCA subdomains revealed that alERC was particularly associated with verbal recall. On the National Alzheimer's Coordinating Center battery, both alERC and pmERC volumes were associated with Craft story recall and Benson figure copy, but only alERC volume was associated with Craft story retention and semantic fluency. Neither alERC nor pmERC volume correlated with CSF levels of amyloid or tau, and regression analyses showed that alERC volume and CSF amyloid levels were independently associated with ModRey retention performance. Taken together, these results suggest that the alERC is important for memory performance and that alERC volume differences are related to a pattern of neuropsychological test performance (i.e., impairments in episodic memory and semantic fluency) typically seen in clinical Alzheimer's disease.
Collapse
|
17
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
18
|
Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans. Neuroimage 2019; 202:116074. [DOI: 10.1016/j.neuroimage.2019.116074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/05/2019] [Accepted: 08/02/2019] [Indexed: 11/19/2022] Open
|
19
|
Ross DA, Sadil P, Wilson DM, Cowell RA. Hippocampal Engagement during Recall Depends on Memory Content. Cereb Cortex 2019; 28:2685-2698. [PMID: 28666344 DOI: 10.1093/cercor/bhx147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/22/2023] Open
Abstract
The hippocampus is considered pivotal to recall, allowing retrieval of information not available in the immediate environment. In contrast, neocortex is thought to signal familiarity, contributing to recall only when called upon by the hippocampus. However, this view is not compatible with representational accounts of memory, which reject the mapping of cognitive processes onto brain regions. According to representational accounts, the hippocampus is not engaged by recall per se, rather it is engaged whenever hippocampal representations are required. To test whether hippocampus is engaged by recall when hippocampal representations are not required, we used functional imaging and a non-associative recall task, with images (objects, scenes) studied in isolation, and image patches as cues. As predicted by a representational account, hippocampal activation was modulated by the content of the recalled memory, increasing during recall of scenes-which are known to be processed by hippocampus-but not during recall of objects. Object recall instead engaged neocortical regions known to be involved in object-processing. Further supporting the representational account, effective connectivity analyses revealed that changes in functional activation during recall were driven by increased information flow from neocortical sites, rather than by the spreading of recall-related activation from hippocampus back to neocortex.
Collapse
Affiliation(s)
- David A Ross
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Patrick Sadil
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - D Merika Wilson
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Rosemary A Cowell
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
20
|
Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP. Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Rep 2019; 29:617-627.e7. [DOI: 10.1016/j.celrep.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
21
|
Content Tuning in the Medial Temporal Lobe Cortex: Voxels that Perceive, Retrieve. eNeuro 2019; 6:ENEURO.0291-19.2019. [PMID: 31451605 PMCID: PMC6751376 DOI: 10.1523/eneuro.0291-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/25/2022] Open
Abstract
How do we recall vivid details from our past based only on sparse cues? Research suggests that the phenomenological reinstatement of past experiences is accompanied by neural reinstatement of the original percept. This process critically depends on the medial temporal lobe (MTL). Within the MTL, perirhinal cortex (PRC) and parahippocampal cortex (PHC) are thought to support encoding and recall of objects and scenes, respectively, with the hippocampus (HC) serving as a content-independent hub. If the fidelity of recall indeed arises from neural reinstatement of perceptual activity, then successful recall should preferentially draw upon those neural populations within content-sensitive MTL cortex that are tuned to the same content during perception. We tested this hypothesis by having eighteen human participants undergo functional MRI (fMRI) while they encoded and recalled objects and scenes paired with words. Critically, recall was cued with the words only. While HC distinguished successful from unsuccessful recall of both objects and scenes, PRC and PHC were preferentially engaged during successful versus unsuccessful object and scene recall, respectively. Importantly, within PRC and PHC, this content-sensitive recall was predicted by content tuning during perception: Across PRC voxels, we observed a positive relationship between object tuning during perception and successful object recall, while across PHC voxels, we observed a positive relationship between scene tuning during perception and successful scene recall. Our results thus highlight content-based roles of MTL cortical regions for episodic memory and reveal a direct mapping between content-specific tuning during perception and successful recall.
Collapse
|
22
|
Adams JN, Maass A, Harrison TM, Baker SL, Jagust WJ. Cortical tau deposition follows patterns of entorhinal functional connectivity in aging. eLife 2019; 8:e49132. [PMID: 31475904 PMCID: PMC6764824 DOI: 10.7554/elife.49132] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 02/02/2023] Open
Abstract
Tau pathology first appears in the transentorhinal and anterolateral entorhinal cortex (alEC) in the aging brain. The transition to Alzheimer's disease (AD) is hypothesized to involve amyloid-β (Aβ) facilitated tau spread through neural connections. We contrasted functional connectivity (FC) of alEC and posteromedial EC (pmEC), subregions of EC that differ in functional specialization and cortical connectivity, with the hypothesis that alEC-connected cortex would show greater tau deposition than pmEC-connected cortex. We used resting state fMRI to measure FC, and PET to measure tau and Aβ in cognitively normal older adults. Tau preferentially deposited in alEC-connected cortex compared to pmEC-connected or non-connected cortex, and stronger connectivity was associated with increased tau deposition. FC-tau relationships were present regardless of Aβ, although strengthened with Aβ. These results provide an explanation for the anatomic specificity of neocortical tau deposition in the aging brain and reveal relationships between normal aging and the evolution of AD.
Collapse
Affiliation(s)
- Jenna N Adams
- Helen Wills Neuroscience Institute, UC BerkeleyBerkeleyUnited States
| | - Anne Maass
- Helen Wills Neuroscience Institute, UC BerkeleyBerkeleyUnited States
- German Center for Neurodegenerative DiseaseMagdeburgGermany
| | | | | | - William J Jagust
- Helen Wills Neuroscience Institute, UC BerkeleyBerkeleyUnited States
- Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
23
|
Elliott Wimmer G, Büchel C. Learning of distant state predictions by the orbitofrontal cortex in humans. Nat Commun 2019; 10:2554. [PMID: 31186425 PMCID: PMC6560030 DOI: 10.1038/s41467-019-10597-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Abstract
Representations of our future environment are essential for planning and decision making. Previous research in humans has demonstrated that the hippocampus is a critical region for forming and retrieving associations, while the medial orbitofrontal cortex (OFC) is an important region for representing information about recent states. However, it is not clear how the brain acquires predictive representations during goal-directed learning. Here, we show using fMRI that while participants learned to find rewards in multiple different Y-maze environments, hippocampal activity was highest during initial exposure and then decayed across the remaining repetitions of each maze, consistent with a role in rapid encoding. Importantly, multivariate patterns in the OFC-VPFC came to represent predictive information about upcoming states approximately 30 s in the future. Our findings provide a mechanism by which the brain can build models of the world that span long-timescales to make predictions.
Collapse
Affiliation(s)
- G Elliott Wimmer
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, UK.
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
24
|
Yeung LK, Olsen RK, Hong B, Mihajlovic V, D'Angelo MC, Kacollja A, Ryan JD, Barense MD. Object-in-place Memory Predicted by Anterolateral Entorhinal Cortex and Parahippocampal Cortex Volume in Older Adults. J Cogn Neurosci 2019; 31:711-729. [DOI: 10.1162/jocn_a_01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lateral portion of the entorhinal cortex is one of the first brain regions affected by tau pathology, an important biomarker for Alzheimer disease. Improving our understanding of this region's cognitive role may help identify better cognitive tests for early detection of Alzheimer disease. Based on its functional connections, we tested the idea that the human anterolateral entorhinal cortex (alERC) may play a role in integrating spatial information into object representations. We recently demonstrated that the volume of the alERC was related to processing the spatial relationships of the features within an object [Yeung, L. K., Olsen, R. K., Bild-Enkin, H. E. P., D'Angelo, M. C., Kacollja, A., McQuiggan, D. A., et al. Anterolateral entorhinal cortex volume predicted by altered intra-item configural processing. Journal of Neuroscience, 37, 5527–5538, 2017]. In this study, we investigated whether the human alERC might also play a role in processing the spatial relationships between an object and its environment using an eye-tracking task that assessed visual fixations to a critical object within a scene. Guided by rodent work, we measured both object-in-place memory, the association of an object with a given context [Wilson, D. I., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus, 23, 352–366, 2013], and object-trace memory, the memory for the former location of objects [Tsao, A., Moser, M. B., & Moser, E. I. Traces of experience in the lateral entorhinal cortex. Current Biology, 23, 399–405, 2013]. In a group of older adults with varying stages of brain atrophy and cognitive decline, we found that the volume of the alERC and the volume of the parahippocampal cortex selectively predicted object-in-place memory, but not object-trace memory. These results provide support for the notion that the alERC may integrate spatial information into object representations.
Collapse
Affiliation(s)
| | - Rosanna K. Olsen
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | | | | | | | - Arber Kacollja
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Jennifer D. Ryan
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Morgan D. Barense
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| |
Collapse
|
25
|
Recollection in the human hippocampal-entorhinal cell circuitry. Nat Commun 2019; 10:1503. [PMID: 30944325 PMCID: PMC6447634 DOI: 10.1038/s41467-019-09558-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/18/2019] [Indexed: 01/23/2023] Open
Abstract
Imagine how flicking through your photo album and seeing a picture of a beach sunset brings back fond memories of a tasty cocktail you had that night. Computational models suggest that upon receiving a partial memory cue (‘beach’), neurons in the hippocampus coordinate reinstatement of associated memories (‘cocktail’) in cortical target sites. Here, using human single neuron recordings, we show that hippocampal firing rates are elevated from ~ 500–1500 ms after cue onset during successful associative retrieval. Concurrently, the retrieved target object can be decoded from population spike patterns in adjacent entorhinal cortex (EC), with hippocampal firing preceding EC spikes and predicting the fidelity of EC object reinstatement. Prior to orchestrating reinstatement, a separate population of hippocampal neurons distinguishes different scene cues (buildings vs. landscapes). These results elucidate the hippocampal-entorhinal circuit dynamics for memory recall and reconcile disparate views on the role of the hippocampus in scene processing vs. associative memory. The hippocampus is involved both in episodic memory recall and scene processing. Here, the authors show that hippocampal neurons first process scene cues before coordinating memory-guided pattern completion in adjacent entorhinal cortex.
Collapse
|
26
|
Burke SN, Foster TC. Animal models of cognitive aging and circuit-specific vulnerability. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:19-36. [PMID: 31753133 DOI: 10.1016/b978-0-12-804766-8.00002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Medial temporal lobe and prefrontal cortical structures are particularly vulnerable to dysfunction in advanced age and neurodegenerative diseases. This review focuses on cognitive aging studies in animals to illustrate the important aspects of the animal model paradigm for investigation of age-related memory and executive function loss. Particular attention is paid to the discussion of the face, construct, and predictive validity of animal models for determining the possible mechanisms of regional vulnerability in aging and for identifying novel therapeutic strategies. Aging is associated with a host of regionally specific neurobiologic alterations. Thus, targeted interventions that restore normal activity in one brain region may exacerbate aberrant activity in another, hindering the restoration of function at the behavioral level. As such, interventions that target the optimization of "cognitive networks" rather than discrete brain regions may be more effective for improving functional outcomes in the elderly.
Collapse
Affiliation(s)
- Sara N Burke
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
27
|
Robin J, Rai Y, Valli M, Olsen RK. Category specificity in the medial temporal lobe: A systematic review. Hippocampus 2018; 29:313-339. [PMID: 30155943 DOI: 10.1002/hipo.23024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/30/2023]
Abstract
Theoretical accounts of medial temporal lobe (MTL) function ascribe different functions to subregions of the MTL including perirhinal, entorhinal, parahippocampal cortices, and the hippocampus. Some have suggested that the functional roles of these subregions vary in terms of their category specificity, showing preferential coding for certain stimulus types, but the evidence for this functional organization is mixed. In this systematic review, we evaluate existing evidence for regional specialization in the MTL for three categories of visual stimuli: faces, objects, and scenes. We review and synthesize across univariate and multivariate neuroimaging studies, as well as neuropsychological studies of cases with lesions to the MTL. Neuroimaging evidence suggests that faces activate the perirhinal cortex, entorhinal cortex, and the anterior hippocampus, while scenes engage the parahippocampal cortex and both the anterior and posterior hippocampus, depending on the contrast condition. There is some evidence for object-related activity in anterior MTL regions when compared to scenes, and in posterior MTL regions when compared to faces, suggesting that aspects of object representations may share similarities with face and scene representations. While neuroimaging evidence suggests some hippocampal specialization for faces and scenes, neuropsychological evidence shows that hippocampal damage leads to impairments in scene memory and perception, but does not entail equivalent impairments for faces in cases where the perirhinal cortex remains intact. Regional specialization based on stimulus categories has implications for understanding the mechanisms of MTL subregions, and highlights the need for the development of theoretical models of MTL function that can accommodate the differential patterns of specificity observed in the MTL.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Yeshith Rai
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Mikaeel Valli
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Williams ME, Graves LV, DeJesus SY, Holden HM, DeFord NE, Gilbert PE. Spatial memory ability during middle age may depend on level of spatial similarity. ACTA ACUST UNITED AC 2018; 26:20-23. [PMID: 30559116 PMCID: PMC6298540 DOI: 10.1101/lm.048280.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
Spatial memory impairment is well documented in old age; however, less is known about spatial memory during middle age. We examined the performance of healthy young, middle-aged, and older adults on a spatial memory task with varying levels of spatial similarity (distance). On low similarity trials, young adults significantly outperformed middle-aged adults, who significantly outperformed older adults (Ps < 0.05). On high similarity trials, young adults significantly outperformed middle-aged and older adults (Ps < 0.05); however, middle-aged and older adults did not differ. Subtle age-related changes in spatial memory may emerge during middle age, particularly when spatial similarity is high.
Collapse
Affiliation(s)
- McKenna E Williams
- Department of Psychology, San Diego State University, San Diego, California 92182, USA
| | - Lisa V Graves
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego/La Jolla, California 92120, USA
| | | | - Heather M Holden
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego/La Jolla, California 92120, USA
| | - Nicole E DeFord
- Department of Psychology, San Diego State University, San Diego, California 92182, USA
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, California 92182, USA.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego/La Jolla, California 92120, USA
| |
Collapse
|
29
|
Collins JA, Dickerson BC. Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 2018; 29:440-450. [PMID: 30009477 DOI: 10.1002/hipo.23003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category-selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting-state functional MRI (fMRI) scan, followed by face- and place-encoding tasks, followed by another resting-state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face-responsive regions of the fusiform gyrus and perirhinal cortex increased following the face-encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene-selective region of the retrosplenial cortex before and after the place-encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
30
|
Peng L, Zeng LL, Liu Q, Wang L, Qin J, Xu H, Shen H, Li H, Hu D. Functional connectivity changes in the entorhinal cortex of taxi drivers. Brain Behav 2018; 8:e01022. [PMID: 30112812 PMCID: PMC6160637 DOI: 10.1002/brb3.1022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION As a major interface between the hippocampus and the neocortex, the entorhinal cortex (EC) is widely known to play a pivotal role in spatial memory and navigation. Previous studies have suggested that the EC can be divided into the anterior-lateral (alEC) and the posterior-medial subregions (pmEC), with the former receiving object-related information from the perirhinal cortex and the latter receiving scene-related information from the parahippocampal cortex. However, the functional connectivity maps of the EC subregions in the context of extensive navigation experience remain elusive. In this study, we analyzed the functional connectivity of the EC in subjects with long-term navigation experience and aimed to find the navigation-related change in the functional properties of the human EC. METHODS We investigated the resting-state functional connectivity changes in the EC subregions by comparing the EC functional connectivity maps of 20 taxi drivers with those of 20 nondriver controls. Furthermore, we examined whether the functional connectivity changes of the EC were related to the number of taxi driving years. RESULTS Significantly reduced functional connectivity was found in the taxi drivers between the left pmEC and the right anterior cingulate cortex (ACC), right angular gyrus, and bilateral precuneus as well as some temporal regions, and between the right pmEC and the left inferior temporal gyrus. Notably, the strength of the functional connectivity between the left pmEC and the left precuneus, as well as the right ACC, was negatively correlated with the years of taxi driving. CONCLUSION This is the first study to explore the impact of long-term navigation experience on the connectivity patterns of the EC, the results of which may shed new light on the potential influence of extensive navigational training on the functional organization of the EC in healthy human brains.
Collapse
Affiliation(s)
- Limin Peng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Ling-Li Zeng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Qiang Liu
- Research Centre of Brain Function and Psychological Science, Shenzhen University, Shenzhen, Guangdong, China
| | - Lubin Wang
- Cognitive and Mental Health Research Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jian Qin
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Huaze Xu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Hui Shen
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Hong Li
- Research Centre of Brain Function and Psychological Science, Shenzhen University, Shenzhen, Guangdong, China
| | - Dewen Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
31
|
Berron D, Neumann K, Maass A, Schütze H, Fliessbach K, Kiven V, Jessen F, Sauvage M, Kumaran D, Düzel E. Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiol Aging 2018; 65:86-97. [DOI: 10.1016/j.neurobiolaging.2017.12.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
|
32
|
Fan LY, Lai YM, Chen TF, Hsu YC, Chen PY, Huang KZ, Cheng TW, Tseng WYI, Hua MS, Chen YF, Chiu MJ. Diminution of context association memory structure in subjects with subjective cognitive decline. Hum Brain Mapp 2018. [PMID: 29516634 DOI: 10.1002/hbm.24022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Alzheimer's disease (AD) progresses insidiously from the preclinical stage to dementia. While people with subjective cognitive decline (SCD) have normal cognitive performance, some may be in the preclinical stage of AD. Neurofibrillary tangles appear first in the transentorhinal cortex, followed by the entorhinal cortex in the clinically silent stage of AD. We expected the earliest changes in subjects with SCD to occur in medial temporal subfields other than the hippocampal proper. These selective structural changes would affect specific memory subcomponents. We used the Family Picture subtest of the Wechsler Memory Scale-III, which was modified to separately compute character, activity, and location subscores for episodic memory subcomponents. We recruited 43 subjects with SCD, 44 subjects with amnesic mild cognitive impairment, and 34 normal controls. MRI was used to assess cortical thickness, subcortical gray matter volume, and fractional anisotropy. The results demonstrated that SCD subjects showed significant cortical atrophy in their bilateral parahippocampus and perirhinal and the left entorhinal cortices but not in their hippocampal regions. SCD subjects also exhibited significantly decreased mean fractional anisotropy in their bilateral uncinate fasciculi. The diminution of cortical thickness over the mesial temporal subfields corresponded to brain areas with early tangle deposition, and early degradation of the uncinate fasciculus was in accordance with the retrogenesis hypothesis. The parahippocampus and perirhinal cortex contribute mainly to context association memory while the entorhinal cortex, along with the uncinate fasciculus, contributes to content-related contextual memory. We proposed that context association and related memory structures are vulnerable in the SCD stage.
Collapse
Affiliation(s)
- Ling-Yun Fan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Mei Lai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center for Clinical Psychology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chin Hsu
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Yu Chen
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Zhou Huang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Wen Cheng
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Isaac Tseng
- Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mau-Sun Hua
- Department of Psychology, Asia University, Taichung, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Reagh ZM, Noche JA, Tustison NJ, Delisle D, Murray EA, Yassa MA. Functional Imbalance of Anterolateral Entorhinal Cortex and Hippocampal Dentate/CA3 Underlies Age-Related Object Pattern Separation Deficits. Neuron 2018; 97:1187-1198.e4. [PMID: 29518359 PMCID: PMC5937538 DOI: 10.1016/j.neuron.2018.01.039] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
The entorhinal cortex (EC) is among the earliest brain areas to deteriorate in Alzheimer's disease (AD). However, the extent to which functional properties of the EC are altered in the aging brain, even in the absence of clinical symptoms, is not understood. Recent human fMRI studies have identified a functional dissociation within the EC, similar to what is found in rodents. Here, we used high-resolution fMRI to identify a specific hypoactivity in the anterolateral EC (alEC) commensurate with major behavioral deficits on an object pattern separation task in asymptomatic older adults. Only subtle deficits were found in a comparable spatial condition, with no associated differences in posteromedial EC between young and older adults. We additionally linked this condition to dentate/CA3 hyperactivity, and the ratio of activity between the regions was associated with object mnemonic discrimination impairment. These results provide novel evidence of alEC-dentate/CA3 circuit dysfunction in cognitively normal aged humans.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Department of Neurology, Center for Neuroscience, University of California Davis, Davis, CA 95616, USA.
| | - Jessica A Noche
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, UC Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | - Derek Delisle
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, UC Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth A Murray
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, UC Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, UC Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Connor CE, Knierim JJ. Integration of objects and space in perception and memory. Nat Neurosci 2017; 20:1493-1503. [PMID: 29073645 PMCID: PMC5920781 DOI: 10.1038/nn.4657] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023]
Abstract
Distinct processing of objects and space has been an organizing principle for studying higher-level vision and medial temporal lobe memory. Here, however, we discuss how object and spatial information are in fact closely integrated in vision and memory. The ventral, object-processing visual pathway carries precise spatial information, transformed from retinotopic coordinates into relative dimensions. At the final stages of the ventral pathway, including the dorsal anterior temporal lobe (TEd), object-sensitive neurons are intermixed with neurons that process large-scale environmental space. TEd projects primarily to perirhinal cortex (PRC), which in turn projects to lateral entorhinal cortex (LEC). PRC and LEC also combine object and spatial information. For example, PRC and LEC neurons exhibit place fields that are evoked by landmark objects or the remembered locations of objects. Thus, spatial information, on both local and global scales, is deeply integrated into the ventral (temporal) object-processing pathway in vision and memory.
Collapse
Affiliation(s)
- Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Kuruvilla MV, Ainge JA. Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks. Front Syst Neurosci 2017; 11:30. [PMID: 28567006 PMCID: PMC5434111 DOI: 10.3389/fnsys.2017.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 11/14/2022] Open
Abstract
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task.
Collapse
Affiliation(s)
| | - James A. Ainge
- School of Psychology and Neuroscience, University of St AndrewsSt Andrews, UK
| |
Collapse
|
36
|
Anterolateral Entorhinal Cortex Volume Predicted by Altered Intra-Item Configural Processing. J Neurosci 2017; 37:5527-5538. [PMID: 28473640 DOI: 10.1523/jneurosci.3664-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/03/2023] Open
Abstract
Recent functional imaging studies have proposed that the human entorhinal cortex (ERC) is subdivided into functionally distinct anterolateral (alERC) and posteromedial (pmERC) subregions. The alERC overlaps with regions that are affected earliest by Alzheimer's disease pathology, yet its cognitive function remains poorly understood. Previous human fMRI studies have focused on its role in object memory, but rodent studies on the putatively homologous lateral entorhinal cortex suggest that it also plays an important role in representing spatial properties of objects. To investigate the cognitive effects of human alERC volume differences, we developed an eye-tracking-based task to evaluate intra-item configural processing (i.e., processing the arrangement of an object's features) and used manual segmentation based on a recently developed protocol to delineate the alERC/pmERC and other medial temporal lobe (MTL) subregions. In a group of older adult men and women at varying stages of brain atrophy and cognitive decline, we found that intra-item configural processing, regardless of an object's novelty, was strongly predicted by alERC volume, but not by the volume of any other MTL subregion. These results provide the first evidence that the human alERC plays a role in supporting a distinct aspect of object processing, namely attending to the arrangement of an object's component features.SIGNIFICANCE STATEMENT Alzheimer's disease pathology appears earliest in brain regions that overlap with the anterolateral entorhinal cortex (alERC). However, the cognitive role of the alERC is poorly understood. Previous human studies treat the alERC as an extension of the neighboring perirhinal cortex, supporting object memory. Animal studies suggest that the alERC may support the spatial properties of objects. In a group of older adult humans at the earliest stages of cognitive decline, we show here that alERC volume selectively predicted configural processing (attention to the spatial arrangement of an object's parts). This is the first study to demonstrate a cognitive role related to alERC volume in humans. This task can be adapted to serve as an early detection method for Alzheimer's disease pathology.
Collapse
|
37
|
Cognitive deficits in patients with a chronic vestibular failure. J Neurol 2017; 264:554-563. [DOI: 10.1007/s00415-016-8386-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022]
|
38
|
Schultz H, Sommer T, Peters J. The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Front Hum Neurosci 2015; 9:628. [PMID: 26635581 PMCID: PMC4653609 DOI: 10.3389/fnhum.2015.00628] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Connectivity studies in animals form the basis for a representational view of medial temporal lobe (MTL) subregions. In this view, distinct subfields of the entorhinal cortex (EC) relay object-related and spatial information from the perirhinal and parahippocampal cortices (PRC, PHC) to the hippocampus (HC). Relatively recent advances in functional magnetic resonance imaging (fMRI) methodology allow examining properties of human EC subregions directly. Antero-lateral and posterior-medial EC subfields show remarkable consistency to their putative rodent and nonhuman primate homologs with regard to intra- and extra-MTL functional connectivity. Accordingly, there is now evidence for a dissociation of object-related vs. spatial processing in human EC subfields. Here, variance in localization may be integrated in the antero-lateral vs. posterior-medial distinction, but may additionally reflect process differences. Functional results in rodents further suggest material-specific representations may be more integrated in EC compared to PRC/PHC. In humans, however, evidence for such a dissociation between EC and PRC/PHC is lacking. Future research may elucidate on the unique contributions of human EC to memory, especially in light of its high degree of intrinsic and extrinsic connectivity. A thorough characterization of EC subfield function may not only advance our understanding of human memory, but also have important clinical implications.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Education and Psychology, Freie Universität Berlin Berlin, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
39
|
Chao OY, Huston JP, Li JS, Wang AL, de Souza Silva MA. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus 2015; 26:633-45. [DOI: 10.1002/hipo.22547] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Owen Y. Chao
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Joseph P. Huston
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Jay-Shake Li
- Department of Psychology; National Chung Cheng University, Minhsiung; Chiayi 62102 Taiwan
| | - An-Li Wang
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| | - Maria A. de Souza Silva
- Center for Behavioral Neuroscience; University of Düsseldorf; Universitätsstr. 1 Düsseldorf 40225 Germany
| |
Collapse
|
40
|
Siman R, Cocca R, Dong Y. The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy. PLoS One 2015; 10:e0142340. [PMID: 26540269 PMCID: PMC4634963 DOI: 10.1371/journal.pone.0142340] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive gliosis. The findings support the potential for slowing the progression of AD by abrogating tau-mediated neurotoxicity at its earliest neuropathological stages.
Collapse
Affiliation(s)
- Robert Siman
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan Cocca
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yina Dong
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Navarro Schröder T, Haak KV, Zaragoza Jimenez NI, Beckmann CF, Doeller CF. Functional topography of the human entorhinal cortex. eLife 2015; 4. [PMID: 26052748 PMCID: PMC4458840 DOI: 10.7554/elife.06738] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans. DOI:http://dx.doi.org/10.7554/eLife.06738.001 In the early 1950s, an American named Henry Molaison underwent an experimental type of brain surgery to treat his severe epilepsy. The surgeon removed a region of the brain known as the temporal lobe from both sides of his brain. After the surgery, Molaison's epilepsy was greatly improved, but he was also left with a profound amnesia, unable to form new memories of recent events. Subsequent experiments, including many with Molaison himself as a subject, have attempted to identify the roles of the various structures within the temporal lobes. The hippocampus—which is involved in memory and spatial navigation—has received the most attention, but in recent years a region called the entorhinal cortex has also come to the fore. Known as the gateway to the hippocampus, the entorhinal cortex relays sensory information from the outer cortex of the brain to the hippocampus. In rats and mice the entorhinal cortex can be divided into two subregions that have distinct connections to other parts of the temporal lobe and to the rest of the brain. These are the medial entorhinal cortex, which is the subregion nearest the centre of the brain, and the lateral entorhinal cortex, which is to the left or right of the centre. For many years researchers had assumed that human entorhinal subregions were located simply to the center or to the sides of the brain. However, it was difficult to check this as the entorhinal cortex measures less than 1 cm across, which placed it beyond the reach of most brain-imaging techniques. Now, two independent groups of researchers have used a technique called functional magnetic resonance imaging to show a different picture. The fMRI data—which were collected in a magnetic field of 7 Tesla, rather than the 1.5 Tesla used in previous experiments—reveal that the entorhinal cortex is predominantly divided from front-to-back in humans. One of the groups—Navarro Schröder, Haak et al.—used three different sets of functional MRI data to show that the human entorhinal cortex has anterior-lateral and posterior-medial subregions. In one of these experiments, functional MRI was used to measure activity across the whole brain as subjects performed a virtual reality task: this task included some components that involved spatial navigation and other components that did not. The other group—Maass, Berron et al.—used the imaging data to show that the pattern of connections between the anterior-lateral subregion and the hippocampus was different to that between the posterior-medial subregion and the hippocampus. The discovery of these networks in the temporal lobe in humans will help to bridge the gap between studies of memory in rodents and in humans. Given that the lateral entorhinal cortex is one of the first regions to be affected in Alzheimer's disease, identifying the specific properties and roles of these networks could also provide insights into disease mechanisms. DOI:http://dx.doi.org/10.7554/eLife.06738.002
Collapse
Affiliation(s)
- Tobias Navarro Schröder
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | | | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Christian F Doeller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
42
|
Maass A, Berron D, Libby LA, Ranganath C, Düzel E. Functional subregions of the human entorhinal cortex. eLife 2015; 4. [PMID: 26052749 PMCID: PMC4458841 DOI: 10.7554/elife.06426] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC.
Collapse
Affiliation(s)
- Anne Maass
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Laura A Libby
- Center for Neuroscience, University of California at Davis, Davis, United States
| | - Charan Ranganath
- Department of Psychology, University of California at Davis, Davis, United States
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
43
|
Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun 2014; 5:5547. [PMID: 25424131 PMCID: PMC4263140 DOI: 10.1038/ncomms6547] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC-EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2-3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC-EC input pathways, the memory fate of a novel stimulus depends more on HC-EC output.
Collapse
|
44
|
Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proc Natl Acad Sci U S A 2014; 111:E4264-73. [PMID: 25246569 DOI: 10.1073/pnas.1411250111] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies in human subjects have demonstrated a perirhinal/parahippocampal division, such a division among subregions of the human entorhinal cortex has been elusive. Other recent work has implicated pattern separation computations in the dentate gyrus and CA3 subregions of the hippocampus as a mechanism supporting the resolution of mnemonic interference. However, the nature of contributions of medial temporal lobe cortices to downstream hippocampal computations is largely unknown. We used high-resolution fMRI during a task selectively taxing mnemonic discrimination of object identity or spatial location, designed to differentially engage the two information pathways in the medial temporal lobes. Consistent with animal models, we demonstrate novel evidence for a domain-selective dissociation between lateral and medial entorhinal cortex in humans, and between perirhinal and parahippocampal cortex as a function of information content. Conversely, hippocampal dentate gyrus/CA3 demonstrated signals consistent with resolution of mnemonic interference across domains. These results provide insight into the information processing capacities and hierarchical interference resolution throughout the human medial temporal lobe.
Collapse
|
45
|
Park H, Abellanoza C, Schaeffer J, Gandy K. Source recognition by stimulus content in the MTL. Brain Res 2014; 1553:59-68. [PMID: 24486613 DOI: 10.1016/j.brainres.2014.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/15/2022]
Abstract
Source memory is considered to be the cornerstone of episodic memory that enables us to discriminate similar but different events. In the present fMRI study, we investigated whether neural correlates of source retrieval differed by stimulus content in the medial temporal lobe (MTL) when the item and context had been integrated as a perceptually unitized entity. Participants were presented with a list of items either in verbal or pictorial form overlaid on a colored square and instructed to integrate both the item and context into a single image. At test, participants judged the study status of test items and the color in which studied items were presented. Source recognition invariant of stimulus content elicited retrieval activity in both the left anterior hippocampus extending to the perirhinal cortex and the right posterior hippocampus. Word-selective source recognition was related to activity in the left perirhinal cortex, whereas picture-selective source recognition was identified in the left posterior hippocampus. Neural activity sensitive to novelty detection common to both words and pictures was found in the left anterior and right posterior hippocampus. Novelty detection selective to words was associated with the left perirhinal cortex, while activity sensitive to new pictures was identified in the bilateral hippocampus and adjacent MTL cortices, including the parahippocampal, entorhinal, and perirhinal cortices. These findings provide further support for the integral role of the hippocampus both in source recognition and in detection of new stimuli across stimulus content. Additionally, novelty effects in the MTL reveal the integral role of the MTL cortex as the interface for processing new information. Collectively, the present findings demonstrate the importance of the MTL for both previously experienced and novel events.
Collapse
Affiliation(s)
- Heekyeong Park
- Department of Psychology, University of Texas at Arlington, College of Science, 501S. Nedderman Drive, Arlington, TX 76019, United States.
| | - Cheryl Abellanoza
- Department of Psychology, University of Texas at Arlington, College of Science, 501S. Nedderman Drive, Arlington, TX 76019, United States
| | - James Schaeffer
- Department of Psychology, University of Texas at Arlington, College of Science, 501S. Nedderman Drive, Arlington, TX 76019, United States
| | - Kellen Gandy
- Department of Psychology, University of Texas at Arlington, College of Science, 501S. Nedderman Drive, Arlington, TX 76019, United States
| |
Collapse
|
46
|
Abstract
How are new experiences transformed into memories? Recent findings have shown that activation in brain regions involved in the initial task performance reemerges during postlearning rest, suggesting that "offline activity" might be important for this transformation. It is unclear, however, whether such offline activity indeed reflects reactivation of individual learning experiences, whether the amount of event-specific reactivation is directly related to later memory performance, and what brain regions support such event-specific reactivation. Here, we used functional magnetic resonance imaging to assess whether event-specific reactivation occurs spontaneously during an active, postlearning delay period in the human brain. Applying representational similarity analysis, we found that successful recall of individual study events was predicted by the degree of their endogenous reactivation during the delay period. Within the medial temporal lobe, this reactivation was observed in the entorhinal cortex. Beyond the medial temporal lobe, event-specific reactivation was found in the retrosplenial cortex. Controlling for the levels of blood oxygen level-dependent activation and the serial position during encoding, the data suggest that offline reactivation might be a key mechanism for bolstering episodic memory beyond initial study processes. These results open a unique avenue for the systematic investigation of reactivation and consolidation of episodic memories in humans.
Collapse
|
47
|
Jia J, Zhao J, Hu Z, Lindberg D, Li Z. Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat Neurosci 2013; 16:1627-36. [PMID: 24121738 PMCID: PMC3832846 DOI: 10.1038/nn.3542] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 12/14/2022]
Abstract
Dopamine D2 receptors (D2R) are G protein-coupled receptors that modulate synaptic transmission and are important for various brain functions, including learning and working memory. Abnormal D2R signaling has been implicated in psychiatric disorders such as schizophrenia. Here we report a new function of D2R in dendritic spine morphogenesis. Activation of D2R reduced spine number via GluN2B- and cAMP-dependent mechanisms in mice. Notably, this regulation occurred only during adolescence. During this period, D2R overactivation caused by mutations in the schizophrenia risk gene Dtnbp1 led to spine deficiency, dysconnectivity in the entorhinal-hippocampal circuit and impairment of spatial working memory. Notably, these defects could be ameliorated by D2R blockers administered during adolescence. Our findings suggest an age-dependent function of D2R in spine development, provide evidence that D2R dysfunction during adolescence impairs neuronal circuits and working memory, and indicate that adolescent interventions to prevent aberrant D2R activity protect against cognitive impairment.
Collapse
Affiliation(s)
- Jie–Min Jia
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhonghua Hu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Lindberg
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Reversible information flow across the medial temporal lobe: the hippocampus links cortical modules during memory retrieval. J Neurosci 2013; 33:14184-92. [PMID: 23986252 DOI: 10.1523/jneurosci.1987-13.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple cue can be sufficient to elicit vivid recollection of a past episode. Theoretical models suggest that upon perceiving such a cue, disparate episodic elements held in neocortex are retrieved through hippocampal pattern completion. We tested this fundamental assumption by applying functional magnetic resonance imaging (fMRI) while objects or scenes were used to cue participants' recall of previously paired scenes or objects, respectively. We first demonstrate functional segregation within the medial temporal lobe (MTL), showing domain specificity in perirhinal and parahippocampal cortices (for object-processing vs scene-processing, respectively), but domain generality in the hippocampus (retrieval of both stimulus types). Critically, using fMRI latency analysis and dynamic causal modeling, we go on to demonstrate functional integration between these MTL regions during successful memory retrieval, with reversible signal flow from the cue region to the target region via the hippocampus. This supports the claim that the human hippocampus provides the vital associative link that integrates information held in different parts of cortex.
Collapse
|
49
|
Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflugers Arch 2013; 466:1437-50. [PMID: 24132829 DOI: 10.1007/s00424-013-1368-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/20/2013] [Accepted: 09/23/2013] [Indexed: 01/06/2023]
Abstract
The entorhinal cortex (EC) is divided into medial (MEC) and lateral (LEC) anatomical areas, and layer II neurons of these two regions project to granule cells of the dentate gyrus through the medial and lateral perforant pathways (MPP and LPP), respectively. Stellate cells (SCs) represent the main neurons constituting the MPP inputs, while fan cells (FCs) represent the main LPP inputs. Here, we first characterized the excitability properties of SCs and FCs in adult wild-type (WT) mouse brain. Our data indicate that, during sustained depolarization, action potentials (APs) generated by SCs exhibit increased fast afterhyperpolarization and overshoot, making them able to fire at higher frequencies and to exhibit higher spike frequency adaptation (SFA) than FCs. Since the EC is one of the earliest brain regions affected during Alzheimer's disease (AD) progression, we compared SCs and FCs firing in 4-month-old WT and transgenic Tg2576 mice, a well-established AD mouse model. Tg2576-SCs displayed a slight increase in firing frequency during mild depolarization but otherwise normal excitability properties during higher stimulations. On the contrary, Tg2576-FCs exhibited a decreased firing frequency during mild and higher depolarizations, as well as an increased SFA. Our data identify the FCs as a neuronal population particularly sensitive to early pathological effects of chronic accumulation of APP-derived peptides, as it occurs in Tg2576 mice. As FCs represent the major input of sensory information to the hippocampus during memory acquisition, early alterations in their excitability profile could significantly contribute to the onset of cognitive decline in AD.
Collapse
|
50
|
Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behav Brain Res 2013; 254:22-33. [DOI: 10.1016/j.bbr.2013.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 12/29/2022]
|