1
|
LaMagna S, Umino Y, Solessio E. Signal Detection Theoretic Estimates of the Murine Absolute Visual Threshold Are Independent of Decision Bias. eNeuro 2024; 11:ENEURO.0222-24.2024. [PMID: 39317466 PMCID: PMC11470389 DOI: 10.1523/eneuro.0222-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Decision bias influences estimates of the absolute visual threshold. However, most psychophysical estimates of the murine absolute visual threshold have not taken bias into account. Here we developed a one-alternative forced choice (1AFC) assay to assess the decision bias of mice at the absolute visual threshold via the theory of signal detection and compared our approach with the more conventional high-threshold theoretic approach. In the 1AFC assay, mice of both sexes were trained to signal whether they detected a flash stimulus. We directly measured both hit and false alarm rates, which were used to estimate d' Using the theory of signal detection, we obtained absolute thresholds by interpolating the intensity where d' = 1 from d'-psychometric functions. This gave bias-independent estimates of the absolute visual threshold which ranged over sixfold, averaging ∼1 R* in 1,000 rods (n = 7 mice). To obtain high-threshold theoretic estimates of the absolute visual threshold from the same mice, we estimated threshold intensities from the frequency of seeing curves, corrected for guessing. This gave us thresholds that were strongly correlated with decision bias, ranging over 13-fold and averaged ∼1 R* in 2,500 rods. We conclude that the theory of signal detection uses false alarms to overcome decision bias and narrow the range of threshold estimates in mice, providing a powerful tool for understanding detection behavior near absolute visual threshold.
Collapse
Affiliation(s)
- Sam LaMagna
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Yumiko Umino
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Eduardo Solessio
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
2
|
Fitzpatrick MJ, Krizan J, Hsiang JC, Shen N, Kerschensteiner D. A pupillary contrast response in mice and humans: Neural mechanisms and visual functions. Neuron 2024; 112:2404-2422.e9. [PMID: 38697114 PMCID: PMC11257825 DOI: 10.1016/j.neuron.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.
Collapse
Affiliation(s)
- Michael J Fitzpatrick
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna Krizan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Idrees S, Manookin MB, Rieke F, Field GD, Zylberberg J. Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation. Nat Commun 2024; 15:5957. [PMID: 39009568 PMCID: PMC11251147 DOI: 10.1038/s41467-024-50114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Adaptation is a universal aspect of neural systems that changes circuit computations to match prevailing inputs. These changes facilitate efficient encoding of sensory inputs while avoiding saturation. Conventional artificial neural networks (ANNs) have limited adaptive capabilities, hindering their ability to reliably predict neural output under dynamic input conditions. Can embedding neural adaptive mechanisms in ANNs improve their performance? To answer this question, we develop a new deep learning model of the retina that incorporates the biophysics of photoreceptor adaptation at the front-end of conventional convolutional neural networks (CNNs). These conventional CNNs build on 'Deep Retina,' a previously developed model of retinal ganglion cell (RGC) activity. CNNs that include this new photoreceptor layer outperform conventional CNN models at predicting male and female primate and rat RGC responses to naturalistic stimuli that include dynamic local intensity changes and large changes in the ambient illumination. These improved predictions result directly from adaptation within the phototransduction cascade. This research underscores the potential of embedding models of neural adaptation in ANNs and using them to determine how neural circuits manage the complexities of encoding natural inputs that are dynamic and span a large range of light levels.
Collapse
Affiliation(s)
- Saad Idrees
- Department of Physics and Astronomy, York University, Toronto, ON, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
| | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, ON, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
4
|
Yadav SC, Ganzen L, Nawy S, Kramer RH. Retinal bipolar cells borrow excitability from electrically coupled inhibitory interneurons to amplify excitatory synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601922. [PMID: 39005421 PMCID: PMC11245017 DOI: 10.1101/2024.07.03.601922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca2+ channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way. Here we report the surprising discovery that blocking voltage-gated Na+ channels profoundly reduces the synaptic output of one class of bipolar cell, the type 6 ON bipolar cell (CBC6), despite the fact that the CBC6 itself does not express voltage-gated Na+ channels. Instead, CBC6 borrows voltage-gated Na+ channels from its neighbor, the inhibitory AII amacrine cell, with whom it is connected via an electrical synapse. Thus, an inhibitory neuron aids in amplification of an excitatory signal as it moves through the retina, ensuring that small changes in the membrane potential of bipolar cells are reliably passed onto downstream RGCs.
Collapse
Affiliation(s)
- Shubhash Chandra Yadav
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Logan Ganzen
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Richard H Kramer
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| |
Collapse
|
5
|
Vaughn MJ, Laswick Z, Wang H, Haas JS. Functionally Distinct Circuits Are Linked by Heterocellular Electrical Synapses in the Thalamic Reticular Nucleus. eNeuro 2024; 11:ENEURO.0269-23.2023. [PMID: 38164593 PMCID: PMC10849028 DOI: 10.1523/eneuro.0269-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
The thalamic reticular nucleus (TRN) inhibits sensory thalamocortical relay neurons and is a key regulator of sensory attention as well as sleep and wake states. Recent developments have identified two distinct genetic subtypes of TRN neurons, calbindin-expressing (CB) and somatostatin-expressing (SOM) neurons. These subtypes differ in localization within the TRN, electrophysiological properties, and importantly, targeting of thalamocortical relay channels. CB neurons send inhibition to and receive excitation from first-order thalamic relay nuclei, while SOM neurons send inhibition to and receive excitation from higher-order thalamic areas. These differences create distinct channels of information flow. It is unknown whether TRN neurons form electrical synapses between SOM and CB neurons and consequently bridge first-order and higher-order thalamic channels. Here, we use GFP reporter mice to label and record from CB-expressing and SOM-expressing TRN neurons. We confirm that GFP expression properly differentiates TRN subtypes based on electrophysiological differences, and we identified electrical synapses between pairs of neurons with and without common GFP expression for both CB and SOM types. That is, electrical synapses link both within and across subtypes of neurons in the TRN, forming either homocellular or heterocellular synapses. Therefore, we conclude that electrical synapses within the TRN provide a substrate for functionally linking thalamocortical first-order and higher-order channels within the TRN.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - Zachary Laswick
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - Huaixing Wang
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem 18015, Pennsylvania
| |
Collapse
|
6
|
Barth-Maron A, D'Alessandro I, Wilson RI. Interactions between specialized gain control mechanisms in olfactory processing. Curr Biol 2023; 33:5109-5120.e7. [PMID: 37967554 DOI: 10.1016/j.cub.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Gain control is a process that adjusts a system's sensitivity when input levels change. Neural systems contain multiple mechanisms of gain control, but we do not understand why so many mechanisms are needed or how they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control. Conversely, we find that other interneurons are recruited by strong and widespread network input; they specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations, we show how these mechanisms can work together to improve stimulus discrimination while also minimizing temporal distortions in network activity. Our results demonstrate how the robustness of neural network function can be increased by interactions among diverse and specialized mechanisms of gain control.
Collapse
Affiliation(s)
- Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel D'Alessandro
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Fogg LG, Chung WS, Justin Marshall N, Cortesi F, de Busserolles F. Multiple rod layers increase the speed and sensitivity of vision in nocturnal reef fishes. Proc Biol Sci 2023; 290:20231749. [PMID: 37989239 PMCID: PMC10688437 DOI: 10.1098/rspb.2023.1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Most vertebrates have one layer of the dim-light active rod photoreceptors. However, multiple rod layers, known as a multibank retina, can be found in over 100 species of fish, including several deep-sea species and one family of nocturnally active reef fish, the Holocentridae. Although seemingly associated with increased photon catch, the function of multibank retinas remained unknown. We used an integrative approach, combining histology, electrophysiology and amino acid sequence analysis, applied to three species of nocturnal reef fishes, two holocentrids with a multibank retina (Neoniphon sammara and Myripristis violacea) and an apogonid with a single rod bank (Ostorhinchus compressus), to determine the sensory advantage of multiple rod layers. Our results showed that fish with multibank retinas have both faster vision and enhanced responses to bright- and dim-light intensities. Faster vision was indicated by higher flicker fusion frequencies during temporal resolution electroretinography as well as faster retinal release rates estimated from their rhodopsin proteins. Enhanced sensitivity was demonstrated by broadened intensity-response curves derived from luminous sensitivity electroretinography. Overall, our findings provide the first functional evidence for enhanced dim-light sensitivity using a multibank retina while also suggesting novel roles for the adaptation in enhancing bright-light sensitivity and the speed of vision.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Wen-Sung Chung
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Saha A, Zuniga J, Mian K, Zhai H, Derr PJ, Hoon M, Sinha R. Regional variation in the organization and connectivity of the first synapse in the primate night vision pathway. iScience 2023; 26:108113. [PMID: 37915604 PMCID: PMC10616377 DOI: 10.1016/j.isci.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Sensitivity of primate daylight vision varies across the visual field. This is attributed to regional variations in cone photoreceptor density and synaptic connectivity of the underlying circuitry. In contrast, we have limited understanding of how synapse organization of the primate night vision pathway changes across space. Using serial electron microscopy, we reconstructed the first synapse of the night vision pathway between rod photoreceptors and second-order neurons, at multiple locations from the central part of the primate retina, fovea, to the periphery. We find that most facets of the rod synapse connectivity vary across retinal regions. However, rod synaptic divergence and convergence patterns do not change in the same manner across locations. Moreover, patterns of rod synapse organization are tightly correlated with photoreceptor density. Such regional heterogeneities revise the connectivity diagram of the primate rod synapse which will shape synapse function and sensitivity of the night vision pathway across visual space.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Juan Zuniga
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Kainat Mian
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Haoshen Zhai
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Paul J. Derr
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
9
|
Griffis KG, Fehlhaber KE, Rieke F, Sampath AP. Light Adaptation of Retinal Rod Bipolar Cells. J Neurosci 2023; 43:4379-4389. [PMID: 37208176 PMCID: PMC10278674 DOI: 10.1523/jneurosci.0444-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
The sensitivity of retinal cells is altered in background light to optimize the detection of contrast. For scotopic (rod) vision, substantial adaptation occurs in the first two cells, the rods and rod bipolar cells (RBCs), through sensitivity adjustments in rods and postsynaptic modulation of the transduction cascade in RBCs. To study the mechanisms mediating these components of adaptation, we made whole-cell, voltage-clamp recordings from retinal slices of mice from both sexes. Adaptation was assessed by fitting the Hill equation to response-intensity relationships with the parameters of half-maximal response (I1/2 ), Hill coefficient (n), and maximum response amplitude (Rmax ). We show that rod sensitivity decreases in backgrounds according to the Weber-Fechner relation with an I1/2 of ∼50 R* s-1 The sensitivity of RBCs follows a near-identical function, indicating that changes in RBC sensitivity in backgrounds bright enough to adapt the rods are mostly derived from the rods themselves. Backgrounds too dim to adapt the rods can however alter n, relieving a synaptic nonlinearity likely through entry of Ca2+ into the RBCs. There is also a surprising decrease of Rmax , indicating that a step in RBC synaptic transduction is desensitized or that the transduction channels became reluctant to open. This effect is greatly reduced after dialysis of BAPTA at a membrane potential of +50 mV to impede Ca2+ entry. Thus the effects of background illumination in RBCs are in part the result of processes intrinsic to the photoreceptors and in part derive from additional Ca2+-dependent processes at the first synapse of vision.SIGNIFICANCE STATEMENT Light adaptation adjusts the sensitivity of vision as ambient illumination changes. Adaptation for scotopic (rod) vision is known to occur partly in the rods and partly in the rest of the retina from presynaptic and postsynaptic mechanisms. We recorded light responses of rods and rod bipolar cells to identify different components of adaptation and study their mechanisms. We show that bipolar-cell sensitivity largely follows adaptation of the rods but that light too dim to adapt the rods produces a linearization of the bipolar-cell response and a surprising decrease in maximum response amplitude, both mediated by a change in intracellular Ca2+ These findings provide a new understanding of how the retina responds to changing illumination.
Collapse
Affiliation(s)
- Khris G Griffis
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Katherine E Fehlhaber
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
10
|
Nonspiking Interneurons in the Drosophila Antennal Lobe Exhibit Spatially Restricted Activity. eNeuro 2023; 10:ENEURO.0109-22.2022. [PMID: 36650069 PMCID: PMC9884108 DOI: 10.1523/eneuro.0109-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory interneurons are important for neuronal circuit function. They regulate sensory inputs and enhance output discriminability (Olsen and Wilson, 2008; Root et al., 2008; Olsen et al., 2010). Often, the identities of interneurons can be determined by location and morphology, which can have implications for their functions (Wachowiak and Shipley, 2006). While most interneurons fire traditional action potentials, many are nonspiking. These can be seen in insect olfaction (Laurent and Davidowitz, 1994; Husch et al., 2009; Tabuchi et al., 2015) and the vertebrate retina (Gleason et al., 1993). Here, we present the novel observation of nonspiking inhibitory interneurons in the antennal lobe (AL) of the adult fruit fly, Drosophila melanogaster These neurons have a morphology where they innervate a patchwork of glomeruli. We used electrophysiology to determine whether their nonspiking characteristic is because of a lack of sodium current. We then used immunohistochemsitry and in situ hybridization to show this is likely achieved through translational regulation of the voltage-gated sodium channel gene, para Using in vivo calcium imaging, we explored how these cells respond to odors, finding regional isolation in their responses' spatial patterns. Further, their response patterns were dependent on both odor identity and concentration. Thus, we surmise these neurons are electrotonically compartmentalized such that activation of the neurites in one region does not propagate across the whole antennal lobe. We propose these neurons may be the source of intraglomerular inhibition in the AL and may contribute to regulation of spontaneous activity within glomeruli.
Collapse
|
11
|
Pasmanter N, Petersen-Jones SM. Characterization of scotopic and mesopic rod signaling pathways in dogs using the On-Off electroretinogram. BMC Vet Res 2022; 18:422. [PMID: 36463174 PMCID: PMC9719241 DOI: 10.1186/s12917-022-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The On-Off, or long flash, full field electroretinogram (ERG) separates retinal responses to flash onset and offset. Depending on degree of dark-adaptation and stimulus strength the On and Off ERG can be shaped by rod and cone photoreceptors and postreceptoral cells, including ON and OFF bipolar cells. Interspecies differences have been shown, with predominantly positive Off-response in humans and other primates and a negative Off-response in rodents and dogs. However, the rod signaling pathways that contribute to these differential responses have not been characterized. In this study, we designed a long flash protocol in the dog that varied in background luminance and stimulus strength allowing for some rod components to be present to better characterize how rod pathways vary from scotopic to mesopic conditions. RESULTS With low background light the rod a-wave remains while the b-wave is significantly reduced resulting in a predominantly negative waveform in mesopic conditions. Through modeling and subtraction of the rod-driven response, we show that rod bipolar cells saturate with dimmer backgrounds than rod photoreceptors, resulting in rod hyperpolarization contributing to a large underlying negativity with mesopic backgrounds. CONCLUSIONS Reduction in rod bipolar cell responses in mesopic conditions prior to suppression of rod photoreceptor responses may reflect the changes in signaling pathway of rod-driven responses needed to extend the range of lighting conditions over which the retina functions.
Collapse
Affiliation(s)
- Nate Pasmanter
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| | - Simon M. Petersen-Jones
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| |
Collapse
|
12
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
13
|
Fain GL. Vision: Life on the dark side. Curr Biol 2022; 32:R741-R743. [PMID: 35820384 DOI: 10.1016/j.cub.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mice detect decreases in illumination in dim light near the visual threshold with OFF retinal ganglion cells.
Collapse
Affiliation(s)
- Gordon L Fain
- Departments of Integrative Biology/Physiology and Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
15
|
Westö J, Martyniuk N, Koskela S, Turunen T, Pentikäinen S, Ala-Laurila P. Retinal OFF ganglion cells allow detection of quantal shadows at starlight. Curr Biol 2022; 32:2848-2857.e6. [PMID: 35609606 DOI: 10.1016/j.cub.2022.04.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Perception of light in darkness requires no more than a handful of photons, and this remarkable behavioral performance can be directly linked to a particular retinal circuit-the retinal ON pathway. However, the neural limits of shadow detection in very dim light have remained unresolved. Here, we unravel the neural mechanisms that determine the sensitivity of mice (CBA/CaJ) to light decrements at the lowest light levels by measuring signals from the most sensitive ON and OFF retinal ganglion cell types and by correlating their signals with visually guided behavior. We show that mice can detect shadows when only a few photon absorptions are missing among thousands of rods. Behavioral detection of such "quantal" shadows relies on the retinal OFF pathway and is limited by noise and loss of single-photon signals in retinal processing. Thus, in the dim-light regime, light increments and decrements are encoded separately via the ON and OFF retinal pathways, respectively.
Collapse
Affiliation(s)
- Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Nataliia Martyniuk
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Sanna Koskela
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Tuomas Turunen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Santtu Pentikäinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland; Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
16
|
Pasmanter N, Occelli LM, Komáromy AM, Petersen-Jones SM. Use of extended protocols with nonstandard stimuli to characterize rod and cone contributions to the canine electroretinogram. Doc Ophthalmol 2022; 144:81-97. [PMID: 35247111 PMCID: PMC10426558 DOI: 10.1007/s10633-022-09866-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 02/08/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In this study, we assessed several extended electroretinographic protocols using nonstandard stimuli. Our aim was to separate and quantify the contributions of different populations of retinal cells to the overall response, both to assess normal function and characterize dogs with inherited retinal disease. METHODS We investigated three different protocols for measuring the full-field flash electroretinogram-(1) chromatic dark-adapted red and blue flashes, (2) increasing luminance blue-background, (3) flicker with fixed frequency and increasing luminance, and flicker with increasing frequency at a fixed luminance-to assess rod and cone contributions to electroretinograms recorded in phenotypically normal control dogs and dogs lacking rod function. RESULTS Temporal separation of the rod- and cone-driven responses is possible in the fully dark-adapted eye using dim red flashes. A- and b-wave amplitudes decrease at different rates with increasing background luminance in control dogs. Flicker responses elicited with extended flicker protocols are well fit with mathematical models in control dogs. Dogs lacking rod function demonstrated larger amplitude dark-adapted compared to light-adapted flicker responses. CONCLUSIONS Using extended protocols of the full-field electroretinogram provides additional characterization of the health and function of different populations of cells in the normal retina and enables quantifiable comparison between phenotypically normal dogs and those with retinal disease.
Collapse
Affiliation(s)
- Nate Pasmanter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D-208, East Lansing, MI, 48824, USA
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D-208, East Lansing, MI, 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D-208, East Lansing, MI, 48824, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D-208, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
AMIGO1 Promotes Axon Growth and Territory Matching in the Retina. J Neurosci 2022; 42:2678-2689. [PMID: 35169021 PMCID: PMC8973419 DOI: 10.1523/jneurosci.1164-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Dendrite and axon arbor sizes are critical to neuronal function and vary widely between different neuron types. The relative dendrite and axon sizes of synaptic partners control signal convergence and divergence in neural circuits. The developmental mechanisms that determine cell-type-specific dendrite and axon size and match synaptic partners' arbor territories remain obscure. Here, we discover that retinal horizontal cells express the leucine-rich repeat domain cell adhesion molecule AMIGO1. Horizontal cells provide pathway-specific feedback to photoreceptors-horizontal cell axons to rods and horizontal cell dendrites to cones. AMIGO1 selectively expands the size of horizontal cell axons. When Amigo1 is deleted in all or individual horizontal cells of either sex, their axon arbors shrink. By contrast, horizontal cell dendrites and synapse formation of horizontal cell axons and dendrites are unaffected by AMIGO1 removal. The dendrites of rod bipolar cells, which do not express AMIGO1, shrink in parallel with horizontal cell axons in Amigo1 knockout (Amigo1 KO) mice. This territory matching maintains the function of the rod bipolar pathway, preserving bipolar cell responses and retinal output signals in Amigo1 KO mice. We previously identified AMIGO2 as a scaling factor that constrains retinal neurite arbors. Our current results identify AMIGO1 as a scaling factor that expands retinal neurite arbors and reveal territory matching as a novel homeostatic mechanism. Territory matching interacts with other homeostatic mechanisms to stabilize the development of the rod bipolar pathway, which mediates vision near the threshold.SIGNIFICANCE STATEMENT Neurons send and receive signals through branched axonal and dendritic arbors. The size of these arbors is critical to the function of a neuron. Axons and dendrites grow during development and are stable at maturity. The mechanisms that determine axon and dendrite size are not well understood. Here, we identify a cell surface protein, AMIGO1, that selectively promotes axon growth of horizontal cells, a retinal interneuron. Removal of AMIGO1 reduces the size of horizontal cell axons without affecting the size of their dendrites or the ability of both arbors to form connections. The changes in horizontal cell axons are matched by changes in synaptic partner dendrites to stabilize retinal function. This identifies territory matching as a novel homeostatic plasticity mechanism.
Collapse
|
18
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. Curr Biol 2022; 32:315-328.e4. [PMID: 34822767 PMCID: PMC8792273 DOI: 10.1016/j.cub.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
The morphology of retinal neurons strongly influences their physiological function. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. AII amacrine cells are interneurons understood to mediate "crossover" inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some AIIs deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering the inhibitory RFs of these GCs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. These results also indicate that subcellular synaptic organization can vary within a single population of neurons according to their proximity to potential postsynaptic targets.
Collapse
|
20
|
Grabner CP, Moser T. The mammalian rod synaptic ribbon is essential for Ca v channel facilitation and ultrafast synaptic vesicle fusion. eLife 2021; 10:63844. [PMID: 34617508 PMCID: PMC8594941 DOI: 10.7554/elife.63844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild-type and ribbonless (Ribeye-ko) mice. Wild-type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ<0.4 ms. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven scotopic light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.
Collapse
Affiliation(s)
- Chad Paul Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Care RA, Anastassov IA, Kastner DB, Kuo YM, Della Santina L, Dunn FA. Mature Retina Compensates Functionally for Partial Loss of Rod Photoreceptors. Cell Rep 2021; 31:107730. [PMID: 32521255 PMCID: PMC8049532 DOI: 10.1016/j.celrep.2020.107730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/15/2020] [Accepted: 05/13/2020] [Indexed: 01/21/2023] Open
Abstract
Loss of primary neuronal inputs inevitably strikes every neural circuit. The deafferented circuit could propagate, amplify, or mitigate input loss, thus affecting the circuit’s output. How the deafferented circuit contributes to the effect on the output is poorly understood because of lack of control over loss of and access to circuit elements. Here, we control the timing and degree of rod photoreceptor ablation in mature mouse retina and uncover compensation. Following loss of half of the rods, rod bipolar cells mitigate the loss by preserving voltage output. Such mitigation allows partial recovery of ganglion cell responses. We conclude that rod death is compensated for in the circuit because ganglion cell responses to stimulation of half of the rods in an unperturbed circuit are weaker than responses after death of half of the rods. The dominant mechanism of such compensation includes homeostatic regulation of inhibition to balance the loss of excitation. Care et al. ablate half of the rods in mature mouse retina and find that primary neuron loss is functionally compensated for by balanced inhibition and excitation at the secondary neuron. Changes in cone-mediated, but not rod-mediated, output neuron spikes are recapitulated by half stimulation, demonstrating independent regulation of pathways.
Collapse
Affiliation(s)
- Rachel A Care
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - David B Kastner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
23
|
Fina ME, Wang J, Nikonov SS, Sterling S, Vardi N, Kashina A, Dong DW. Arginyltransferase (Ate1) regulates the RGS7 protein level and the sensitivity of light-evoked ON-bipolar responses. Sci Rep 2021; 11:9376. [PMID: 33931669 PMCID: PMC8087773 DOI: 10.1038/s41598-021-88628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Regulator of G-protein signaling 7 (RGS7) is predominately present in the nervous system and is essential for neuronal signaling involving G-proteins. Prior studies in cultured cells showed that RGS7 is regulated via proteasomal degradation, however no protein is known to facilitate proteasomal degradation of RGS7 and it has not been shown whether this regulation affects G-protein signaling in neurons. Here we used a knockout mouse model with conditional deletion of arginyltransferase (Ate1) in the nervous system and found that in retinal ON bipolar cells, where RGS7 modulates a G-protein to signal light increments, deletion of Ate1 raised the level of RGS7. Electroretinographs revealed that lack of Ate1 leads to increased light-evoked response sensitivities of ON-bipolar cells, as well as their downstream neurons. In cultured mouse embryonic fibroblasts (MEF), RGS7 was rapidly degraded via proteasome pathway and this degradation was abolished in Ate1 knockout MEF. Our results indicate that Ate1 regulates RGS7 protein level by facilitating proteasomal degradation of RGS7 and thus affects G-protein signaling in neurons.
Collapse
Affiliation(s)
- Marie E Fina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junling Wang
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei S Nikonov
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Noga Vardi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Smith BJ, Côté PD, Tremblay F. Voltage-gated sodium channel-dependent retroaxonal modulation of photoreceptor function during post-natal development in mice. Dev Neurobiol 2021; 81:353-365. [PMID: 33248000 DOI: 10.1002/dneu.22793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
Juvenile (postnatal day 16) mice lacking Nav 1.6 channels (null-mutant Scn8admu ) have reduced photoreceptor function, which is unexpected given that Nav channels have not been detected in mouse photoreceptors and do not contribute appreciably to photoreceptor function in adults. We demonstrate that acute block of Nav channels with intravitreal TTX in juvenile (P16) wild-type mice has no effect on photoreceptor function. However, reduced light activity by prolonged dark adaptation from P8 caused significant reduction in photoreceptor function at P16. Injecting TTX into the retrobulbar space at P16 to specifically block Nav channels in the optic nerve also caused a reduction in photoreceptor function comparable to that seen at P16 in null-mutant Scn8a mice. In both P16 null-mutant Scn8admu and retrobulbar TTX-injected wild-type mice, photoreceptor function was restored following intravitreal injection of the TrkB receptor agonist 7,8-dihydroxyflavone, linking Nav -dependent retrograde transport to TrkB-dependent neurotrophic factor production pathways as a modulatory influence of photoreceptor function at P16. We also found that in Scn8admu mice, photoreceptor function recovers by P22-25 despite more precarious general health of the animal. Retrobulbar injection of TTX in the wild type still reduced the photoreceptor response at this age but to a lesser extent, suggesting that Nav -dependent modulation of photoreceptor function is largely transient, peaking soon after eye opening. Together, these results suggest that the general photosensitivity of the retina is modulated following eye opening by retrograde transport through activity-dependent retinal ganglion cell axonal signaling targeting TrkB receptors.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Izaak Walton Killam Health Centre, Halifax, NS, Canada
| |
Collapse
|
25
|
Threshold vision under full-field stimulation: Revisiting the minimum number of quanta necessary to evoke a visual sensation. Vision Res 2020; 180:1-10. [PMID: 33359896 DOI: 10.1016/j.visres.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
At the absolute threshold of vision, Hecht, Shlaer and Pirenne estimate that 5-14 photons are absorbed within a retinal area containing ~500 rods. Other estimates of scotopic threshold vision based on stimuli with different durations and focal areas range up to ~100,000 photons. Given that rod density varies with retinal eccentricity and the magnitude of the intrinsic noise increases with increasing stimulus area and duration, here we determine whether the scotopic threshold estimates with focal stimuli can be extended to full-field stimulation and whether summation explains inter-study differences. We show that full-field threshold vision (~1018 mm2, 10 ms duration) is more sensitive than at absolute threshold, requiring the absorption of ~1000 photons across ~91.96 million rods. A summation model is presented integrating our and published data and using a nominal exposure duration, criterion frequency of seeing, rod density, and retinal area that largely explains the inter-study differences and allows estimation of rods per photon ratio for any stimulus size and duration. The highest signal to noise ratio is defined by a peak rod convergence estimated at 53:4:1:2 (rods:rod bipolar cells:AII amacrine cells:retinal ganglion cells), in line with macaque anatomical estimates that show AII amacrine cells form the bottleneck in the rod pathway to set the scotopic visual limit. Our model estimations that the rods per photon ratio under full-field stimulation is ~3000X higher than at absolute threshold are in accordance with visual summation effects and provide an alternative approach for understanding the limits of scotopic vision.
Collapse
|
26
|
Egger V, Diamond JS. A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information. Front Cell Neurosci 2020; 14:600537. [PMID: 33250720 PMCID: PMC7674606 DOI: 10.3389/fncel.2020.600537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback via GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles via multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.
Collapse
Affiliation(s)
- Veronica Egger
- Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
28
|
Bligard GW, DeBrecht J, Smith RG, Lukasiewicz PD. Light-evoked glutamate transporter EAAT5 activation coordinates with conventional feedback inhibition to control rod bipolar cell output. J Neurophysiol 2020; 123:1828-1837. [PMID: 32233906 DOI: 10.1152/jn.00527.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the retina, modulation of the amplitude of dim visual signals primarily occurs at axon terminals of rod bipolar cells (RBCs). GABA and glycine inhibitory neurotransmitter receptors and the excitatory amino acid transporter 5 (EAAT5) modulate the RBC output. EAATs clear glutamate from the synapse, but they also have a glutamate-gated chloride conductance. EAAT5 acts primarily as an inhibitory glutamate-gated chloride channel. The relative role of visually evoked EAAT5 inhibition compared with GABA and glycine inhibition has not been addressed. In this study, we determine the contribution of EAAT5-mediated inhibition onto RBCs in response to light stimuli in mouse retinal slices. We find differences and similarities in the two forms of inhibition. Our results show that GABA and glycine mediate nearly all lateral inhibition onto RBCs, as EAAT5 is solely a mediator of RBC feedback inhibition. We also find that EAAT5 and conventional GABA inhibition both contribute to feedback inhibition at all stimulus intensities. Finally, our in silico modeling compares and contrasts EAAT5-mediated to GABA- and glycine-mediated feedback inhibition. Both forms of inhibition have a substantial impact on synaptic transmission to the postsynaptic AII amacrine cell. Our results suggest that the late phase EAAT5 inhibition acts with the early phase conventional, reciprocal GABA inhibition to modulate the rod signaling pathway between rod bipolar cells and their downstream synaptic targets.NEW & NOTEWORTHY Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.
Collapse
Affiliation(s)
- Gregory W Bligard
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - James DeBrecht
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri.,Department of Neuroscience, Washington University, St. Louis, Missouri
| |
Collapse
|
29
|
Zele AJ, Dey A, Adhikari P, Feigl B. Rhodopsin and melanopsin contributions to human brightness estimation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:A145-A153. [PMID: 32400534 DOI: 10.1364/josaa.379182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
We examined the contributions of rhodopsin and melanopsin to human brightness estimation under dim lighting. Absolute brightness magnitudes were estimated for full-field, rhodopsin-, or melanopsin-equated narrowband lights (${\lambda _{\rm max}}:\;{462}$λmax:462, 499, 525 nm). Our data show that in scotopic illumination ($ - {5.1}$-5.1 to $ - {3.9}\;{\log}\;\unicode{x00B5} {\rm Watts}\cdot{\rm cm}^{ - 2}$-3.9logµWatts⋅cm-2), the perceptual brightness estimates of rhodopic irradiance-equated conditions are independent of their corresponding melanopic irradiance, whereas brightness estimates with melanopic irradiance-equated conditions increase with increasing rhodopic irradiance. In mesopic illumination ($ - {3.4}$-3.4 to $ - {1.9}\;{\log}\;\unicode{x00B5} {\rm Watts}\cdot{\rm cm}^{ - 2}$-1.9logµWatts⋅cm-2), the brightness estimates with both lighting conditions increase with increasing rhodopic or melanopic irradiances. Rhodopsin activation therefore entirely signals scotopic brightness perception and plateaus in mesopic illumination where intrinsic melanopsin contributions become first evident. We infer that all photoreceptor signals are transmitted to higher visual centers for representing scene brightness in scotopic and mesopic illumination through both conventional and melanopsin ganglion cell pathways.
Collapse
|
30
|
Inhibitory components of retinal bipolar cell receptive fields are differentially modulated by dopamine D1 receptors. Vis Neurosci 2020; 37:E01. [PMID: 32046810 DOI: 10.1017/s0952523819000129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During adaptation to an increase in environmental luminance, retinal signaling adjustments are mediated by the neuromodulator dopamine. Retinal dopamine is released with light and can affect center-surround receptive fields, the coupling state between neurons, and inhibitory pathways through inhibitory receptors and neurotransmitter release. While the inhibitory receptive field surround of bipolar cells becomes narrower and weaker during light adaptation, it is unknown how dopamine affects bipolar cell surrounds. If dopamine and light have similar effects, it would suggest that dopamine could be a mechanism for light-adapted changes. We tested the hypothesis that dopamine D1 receptor activation is sufficient to elicit the magnitude of light-adapted reductions in inhibitory bipolar cell surrounds. Surrounds were measured from OFF bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF-38393 narrowed and weakened OFF bipolar cell inhibitory receptive fields but not to the same extent as with light adaptation. However, the receptive field surround reductions differed between the glycinergic and GABAergic components of the receptive field. GABAergic inhibitory strength was reduced only at the edges of the surround, while glycinergic inhibitory strength was reduced across the whole receptive field. These results expand the role of retinal dopamine to include modulation of bipolar cell receptive field surrounds. Additionally, our results suggest that D1 receptor pathways may be a mechanism for the light-adapted weakening of glycinergic surround inputs and the furthest wide-field GABAergic inputs to bipolar cells. However, remaining differences between light-adapted and D1 receptor-activated inhibition demonstrate that non-D1 receptor mechanisms are necessary to elicit the full effect of light adaptation on inhibitory surrounds.
Collapse
|
31
|
Latimer KW, Rieke F, Pillow JW. Inferring synaptic inputs from spikes with a conductance-based neural encoding model. eLife 2019; 8:47012. [PMID: 31850846 PMCID: PMC6989090 DOI: 10.7554/elife.47012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023] Open
Abstract
Descriptive statistical models of neural responses generally aim to characterize the mapping from stimuli to spike responses while ignoring biophysical details of the encoding process. Here, we introduce an alternative approach, the conductance-based encoding model (CBEM), which describes a mapping from stimuli to excitatory and inhibitory synaptic conductances governing the dynamics of sub-threshold membrane potential. Remarkably, we show that the CBEM can be fit to extracellular spike train data and then used to predict excitatory and inhibitory synaptic currents. We validate these predictions with intracellular recordings from macaque retinal ganglion cells. Moreover, we offer a novel quasi-biophysical interpretation of the Poisson generalized linear model (GLM) as a special case of the CBEM in which excitation and inhibition are perfectly balanced. This work forges a new link between statistical and biophysical models of neural encoding and sheds new light on the biophysical variables that underlie spiking in the early visual pathway.
Collapse
Affiliation(s)
- Kenneth W Latimer
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Department of Psychology, Princeton University, Princeton, United States
| |
Collapse
|
32
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
33
|
Nakajima M, Schmitt LI, Feng G, Halassa MM. Combinatorial Targeting of Distributed Forebrain Networks Reverses Noise Hypersensitivity in a Model of Autism Spectrum Disorder. Neuron 2019; 104:488-500.e11. [PMID: 31648899 DOI: 10.1016/j.neuron.2019.09.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is associated with noise hypersensitivity, the suboptimal extraction of meaningful signals in noisy environments. Because sensory filtering can involve distinct automatic and executive circuit mechanisms, however, developing circuit-specific therapeutic strategies for ASD noise hypersensitivity can be challenging. Here, we find that both of these processes are individually perturbed in one monogenic form of ASD, Ptchd1 deletion. Although Ptchd1 is preferentially expressed in the thalamic reticular nucleus during development, pharmacological rescue of thalamic perturbations in knockout (KO) mice only normalized automatic sensory filtering. By discovering a separate prefrontal perturbation in these animals and adopting a combinatorial pharmacological approach that also rescued its associated goal-directed noise filtering deficit, we achieved full normalization of noise hypersensitivity in this model. Overall, our work highlights the importance of identifying large-scale functional circuit architectures and utilizing them as access points for behavioral disease correction.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Stanley Center for Psychiatric Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Stanley Center for Psychiatric Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina. J Neurosci 2019; 39:6798-6810. [PMID: 31285302 DOI: 10.1523/jneurosci.2902-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
A major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.
Collapse
|
36
|
Prefrontal Cortex Regulates Sensory Filtering through a Basal Ganglia-to-Thalamus Pathway. Neuron 2019; 103:445-458.e10. [PMID: 31202541 DOI: 10.1016/j.neuron.2019.05.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
To make adaptive decisions, organisms must appropriately filter sensory inputs, augmenting relevant signals and suppressing noise. The prefrontal cortex (PFC) partly implements this process by regulating thalamic activity through modality-specific thalamic reticular nucleus (TRN) subnetworks. However, because the PFC does not directly project to sensory TRN subnetworks, the circuitry underlying this process had been unknown. Here, using anatomical tracing, functional manipulations, and optical identification of PFC projection neurons, we find that the PFC regulates sensory thalamic activity through a basal ganglia (BG) pathway. Engagement of this PFC-BG-thalamus pathway enables selection between vision and audition by primarily suppressing the distracting modality. This pathway also enhances sensory discrimination and is used for goal-directed background noise suppression. Overall, our results identify a new pathway for attentional filtering and reveal its multiple roles in sensory processing on the basis of internal goals.
Collapse
|
37
|
Mazade RE, Flood MD, Eggers ED. Dopamine D1 receptor activation reduces local inner retinal inhibition to light-adapted levels. J Neurophysiol 2019; 121:1232-1243. [PMID: 30726156 PMCID: PMC6485729 DOI: 10.1152/jn.00448.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/26/2023] Open
Abstract
During adaptation from dim to bright environments, changes in retinal signaling are mediated, in part, by dopamine. Dopamine is released with light and can modulate retinal receptive fields, neuronal coupling, inhibitory receptors, and rod pathway inhibition. However, it is unclear how dopamine affects inner retinal inhibition to cone bipolar cells, which relay visual information from photoreceptors to ganglion cells and are important signal processing sites. We tested the hypothesis that dopamine (D)1 receptor activation is sufficient to elicit light-adapted inhibitory changes. Local light-evoked inhibition and spontaneous activity were measured from OFF cone bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF38393 reduced local inhibitory light-evoked response magnitude and increased response transience, which mimicked changes measured with light adaptation. D1-mediated reductions in local inhibition were more pronounced for glycinergic than GABAergic inputs, comparable with light adaptation. The effects of D1 receptors on light-evoked input were similar to the effects on spontaneous input. D1 receptor activation primarily decreased glycinergic spontaneous current frequency, similar to light adaptation, suggesting mainly a presynaptic amacrine cell site of action. These results expand the role of dopamine to include signal modulation of cone bipolar cell local inhibition. In this role, D1 receptor activation, acting primarily through glycinergic amacrine cells, may be an important mechanism for the light-adapted reduction in OFF bipolar cell inhibition since the actions are similar and dopamine is released during light adaptation. NEW & NOTEWORTHY Retinal adaptation to different luminance conditions requires the adjustment of local circuits for accurate signaling of visual scenes. Understanding mechanisms behind luminance adaptation at different retinal levels is important for understanding how the retina functions in a dynamic environment. In the mouse, we show that dopamine pathways reduce inner retinal inhibition similar to increased background luminance, suggesting the two are linked and highlighting a possible mechanism for light adaptation at an early retinal processing center.
Collapse
Affiliation(s)
- Reece E Mazade
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| | - Michael D Flood
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona , Tucson, Arizona
| |
Collapse
|
38
|
Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J Neurosci 2019; 39:3041-3056. [PMID: 30737308 DOI: 10.1523/jneurosci.1404-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual system operates over an extended range of ambient light levels by switching between rod and cone photoreceptors. Rod-driven vision is sluggish, highly sensitive, and operates in dim or scotopic lights, whereas cone-driven vision is brisk, less sensitive, and operates in bright or photopic lights. At intermediate or mesopic lights, vision transitions seamlessly from rod-driven to cone-driven, despite the profound differences in rod and cone response dynamics. The neural mechanisms underlying such a smooth handoff are not understood. Using an operant behavior assay, electrophysiological recordings, and mathematical modeling we examined the neural underpinnings of the mesopic visual transition in mice of either sex. We found that rods, but not cones, drive visual sensitivity to temporal light variations over much of the mesopic range. Surprisingly, speeding up rod photoresponse recovery kinetics in transgenic mice improved visual sensitivity to slow temporal variations, in the range where perceptual sensitivity is governed by Weber's law of sensation. In contrast, physiological processes acting downstream from phototransduction limit sensitivity to high frequencies and temporal resolution. We traced the paradoxical control of visual temporal sensitivity to rod photoresponses themselves. A scenario emerges where perceptual sensitivity is limited by: (1) the kinetics of neural processes acting downstream from phototransduction in scotopic lights, (2) rod response kinetics in mesopic lights, and (3) cone response kinetics as light levels rise into the photopic range.SIGNIFICANCE STATEMENT Our ability to detect flickering lights is constrained by the dynamics of the slowest step in the visual pathway. Cone photoresponse kinetics limit visual temporal sensitivity in bright (photopic) lights, whereas mechanisms in the inner retina limit sensitivity in dim (scotopic) lights. The neural mechanisms underlying the transition between scotopic and photopic vision in mesopic lights, when both rods are cones are active, are unknown. This study provides a missing link in this mechanism by establishing that rod photoresponse kinetics limit temporal sensitivity during the mesopic transition. Surprisingly, this range is where Weber's Law of Sensation governs temporal contrast sensitivity in mouse. Our results will help guide future studies of complex and dynamic interactions between rod-cone signals in the mesopic retina.
Collapse
|
39
|
Grimes WN, Baudin J, Azevedo AW, Rieke F. Range, routing and kinetics of rod signaling in primate retina. eLife 2018; 7:38281. [PMID: 30299254 PMCID: PMC6218188 DOI: 10.7554/elife.38281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/22/2018] [Indexed: 11/29/2022] Open
Abstract
Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
40
|
Hellmer CB, Clemons MR, Nawy S, Ichinose T. A group I metabotropic glutamate receptor controls synaptic gain between rods and rod bipolar cells in the mouse retina. Physiol Rep 2018; 6:e13885. [PMID: 30338673 PMCID: PMC6194217 DOI: 10.14814/phy2.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
The canonical mGluR6-Trpm1 pathway that generates the sign-inverting signal between photoreceptors and ON bipolar cells has been well described. However, one type of ON bipolar cell, the rod bipolar cell (RBC), additionally is thought to express the group I mGluRs whose function is unknown. We examined the role of group I mGluRs in mouse RBCs and here provide evidence that it controls synaptic gain between rods and RBCs. In dark-adapted conditions, the mGluR1 antagonists LY367385 and (RS)-1-Aminoindan-1,5-dicarboxylic acid, but not the mGluR5 antagonist 2-Methyl-6-(phenylethynyl)pyridine hydrochloride reduced the light-evoked responses in RBCs indicating that mGluR1, but not mGluR5, serves to potentiate RBC responses. Perturbing the downstream phospholipase C (PLC)-protein kinase C (PKC) pathway by inhibiting PLC, tightly buffering intracellular Ca2+ , or preventing its release from intracellular stores reduced the synaptic potentiation by mGluR1. The effect of mGluR1 activation was dependent upon adaptation state, strongly increasing the synaptic gain in dark-, but not in light-adapted retinas, or in the presence of a moderate background light, consistent with the idea that mGluR1 activation requires light-dependent glutamate release from rods. Moreover, immunostaining revealed that protein kinase Cα (PKCα) is more strongly expressed in RBC dendrites in dark-adapted conditions, revealing an additional mechanism behind the loss of mGluR1 potentiation. In light-adapted conditions, exogenous activation of mGluR1 with the agonist 3,5-Dihydroxyphenylglycine increased the mGluR6 currents in some RBCs and decreased it in others, suggesting an additional action of mGluR1 that is unmasked in the light-adapted state. Elevating intracellular free Ca2+ , consistently resulted in a decrease in synaptic gain. Our results provide evidence that mGluR1 controls the synaptic gain in RBCs.
Collapse
Affiliation(s)
- Chase B. Hellmer
- Department of Ophthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichigan48201
| | - Melissa Rampino Clemons
- Dominic P Purpura Dept. of NeuroscienceAlbert Einstein College of Medicine BronxBronxNew York10461
| | - Scott Nawy
- Dominic P Purpura Dept. of NeuroscienceAlbert Einstein College of Medicine BronxBronxNew York10461
- Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaNebraska68198
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichigan48201
| |
Collapse
|
41
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
42
|
Graydon CW, Lieberman EE, Rho N, Briggman KL, Singer JH, Diamond JS. Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina. Curr Biol 2018; 28:2739-2751.e3. [PMID: 30122532 PMCID: PMC6133723 DOI: 10.1016/j.cub.2018.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 02/03/2023]
Abstract
To understand computation in a neural circuit requires a complete synaptic connectivity map and a thorough grasp of the information-processing tasks performed by the circuit. Here, we dissect a microcircuit in the mouse retina in which scotopic visual information (i.e., single photon events, luminance, contrast) is encoded by rod bipolar cells (RBCs) and distributed to parallel ON and OFF cone bipolar cell (CBC) circuits via the AII amacrine cell, an inhibitory interneuron. Serial block-face electron microscopy (SBEM) reconstructions indicate that AIIs preferentially connect to one OFF CBC subtype (CBC2); paired whole-cell patch-clamp recordings demonstrate that, depending on the level of network activation, AIIs transmit distinct components of synaptic input from single RBCs to downstream ON and OFF CBCs. These findings highlight specific synaptic and circuit-level features that allow intermediate neurons (e.g., AIIs) within a microcircuit to filter and propagate information to downstream neurons.
Collapse
Affiliation(s)
- Cole W Graydon
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Evan E Lieberman
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Nao Rho
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Visual Temporal Contrast Sensitivity in the Behaving Mouse Shares Fundamental Properties with Human Psychophysics. eNeuro 2018; 5:eN-NWR-0181-18. [PMID: 30225342 PMCID: PMC6140104 DOI: 10.1523/eneuro.0181-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023] Open
Abstract
The mammalian visual system has a remarkable capacity to detect differences in contrast across time, which is known as temporal contrast sensitivity (TCS). Details of the underlying neural mechanisms are rapidly emerging as a result of a series of elegant electrophysiological studies performed largely with the mouse as an experimental model. However, rigorous psychophysical methods are necessary to pair the electrophysiology with temporal visual behavior in mouse. The optomotor response is frequently used as a proxy for retinal temporal processing in rodents. However, subcortical reflexive pathways drive the optomotor response rather than cortical decision-making areas. To address this problem, we have developed an operant behavior assay that measures TCS in behaving mice. Mice were trained to perform a forced-choice visual task and were tested daily on their ability to distinguish flickering from nonflickering overhead lights. Correct responses (Hit and Correct Rejections) were rewarded. Contrast, temporal frequency, and mean illumination of the flicker were the independent variables. We validated and applied the theory of signal detection to estimate the discriminability factor (d´), a measure of performance that is independent of response bias and motivation. The empirical contrast threshold was defined as the contrast necessary to elicit d´ = 1 and TCS as the inverse of the contrast threshold. With this approach, we established in the mouse a model of human vision that shares fundamental properties of human temporal psychophysics such as Weber adaptation in response to low temporal frequency flicker and illumination-dependent increases in critical flicker frequency as predicted by the Ferry–Porter law.
Collapse
|
44
|
Borghuis BG, Ratliff CP, Smith RG. Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels. J Neurophysiol 2018; 119:1437-1449. [PMID: 29357459 PMCID: PMC5966735 DOI: 10.1152/jn.00682.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
A persistent change in illumination causes light-adaptive changes in retinal neurons. Light adaptation improves visual encoding by preventing saturation and by adjusting spatiotemporal integration to increase the signal-to-noise ratio (SNR) and utilize signaling bandwidth efficiently. In dim light, the visual input contains a greater relative amount of quantal noise, and vertebrate receptive fields are extended in space and time to increase SNR. Whereas in bright light, SNR of the visual input is high, the rate of synaptic vesicle release from the photoreceptors is low so that quantal noise in synaptic output may limit SNR postsynaptically. Whether and how reduced synaptic SNR impacts spatiotemporal integration in postsynaptic neurons remains unclear. To address this, we measured spatiotemporal integration in retinal horizontal cells and ganglion cells in the guinea pig retina across a broad illumination range, from low to high photopic levels. In both cell types, the extent of spatial and temporal integration changed according to an inverted U-shaped function consistent with adaptation to low SNR at both low and high light levels. We show how a simple mechanistic model with interacting, opponent filters can generate the observed changes in ganglion cell spatiotemporal receptive fields across light-adaptive states and postulate that retinal neurons postsynaptic to the cones in bright light adopt low-pass spatiotemporal response characteristics to improve visual encoding under conditions of low synaptic SNR.
Collapse
Affiliation(s)
- Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Charles P Ratliff
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Rivlin-Etzion M, Grimes WN, Rieke F. Flexible Neural Hardware Supports Dynamic Computations in Retina. Trends Neurosci 2018; 41:224-237. [PMID: 29454561 DOI: 10.1016/j.tins.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.
Collapse
Affiliation(s)
- Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Tetenborg S, Yadav SC, Hormuzdi SG, Monyer H, Janssen-Bienhold U, Dedek K. Differential Distribution of Retinal Ca 2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36). Front Mol Neurosci 2017; 10:425. [PMID: 29311815 PMCID: PMC5742114 DOI: 10.3389/fnmol.2017.00425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-α was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shubhash C Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
47
|
Dopamine-Dependent Sensitization of Rod Bipolar Cells by GABA Is Conveyed through Wide-Field Amacrine Cells. J Neurosci 2017; 38:723-732. [PMID: 29217689 DOI: 10.1523/jneurosci.1994-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022] Open
Abstract
The vertebrate retina has the remarkable ability to support visual function under conditions of limited illumination, including the processing of signals evoked by single photons. Dim-light vision is regulated by several adaptive mechanisms. The mechanism explored in this study is responsible for increasing the light sensitivity and operational range of rod bipolar cells, the retinal neurons operating immediately downstream of rod photoreceptors. This sensitization is achieved through the sustained dopamine-dependent GABA release from other retinal neurons. Our goals were to identify the cell type responsible for the GABA release and the site of its modulation by dopamine. Previous studies have suggested the involvement of amacrine and/or horizontal cells. We now demonstrate, using mice of both sexes, that horizontal cells do not participate in this mechanism. Instead, sustained GABA input is provided by a subpopulation of wide-field amacrine cells, which stimulate the GABAC receptors at rod bipolar cell axons. We also found that dopamine does not act directly on either of these cells. Rather, it suppresses inhibition imposed on these wide-field cells by another subpopulation of upstream GABAergic amacrine cells, thereby sustaining the GABAC receptor activation required for rod bipolar cell sensitization.SIGNIFICANCE STATEMENT The vertebrate retina has an exquisite ability to adjust information processing to ever-changing conditions of ambient illumination, from bright sunlight to single-photon counting under dim starlight. Operation under each of these functional regimes requires an engagement of specific adaptation mechanisms. Here, we describe a mechanism optimizing the performance of the dim-light channel of vision, which consists of sensitizing rod bipolar cells by a sustained GABAergic input originating from a population of wide-field amacrine cells. Wide-field amacrine cells span large segments of the retina, making them uniquely equipped to normalize and optimize response sensitivity across distant receptive fields and preclude any bias toward local light-intensity fluctuations.
Collapse
|
48
|
Field GD, Sampath AP. Behavioural and physiological limits to vision in mammals. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0072. [PMID: 28193817 DOI: 10.1098/rstb.2016.0072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Human vision is exquisitely sensitive-a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Takeshita D, Smeds L, Ala-Laurila P. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0073. [PMID: 28193818 PMCID: PMC5312023 DOI: 10.1098/rstb.2016.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Lina Smeds
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 University of Helsinki, Finland .,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, 00076 Aalto, Finland
| |
Collapse
|
50
|
Kheradpezhouh E, Adibi M, Arabzadeh E. Response dynamics of rat barrel cortex neurons to repeated sensory stimulation. Sci Rep 2017; 7:11445. [PMID: 28904406 PMCID: PMC5597595 DOI: 10.1038/s41598-017-11477-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Neuronal adaptation is a common feature observed at various stages of sensory processing. Here, we quantified the time course of adaptation in rat somatosensory cortex. Under urethane anesthesia, we juxta-cellularly recorded single neurons (n = 147) while applying a series of whisker deflections at various frequencies (2-32 Hz). For ~90% of neurons, the response per unit of time decreased with frequency. The degree of adaptation increased along the train of deflections and was strongest at the highest frequency. However, a subset of neurons showed facilitation producing higher responses to subsequent deflections. The response latency to consecutive deflections increased both for neurons that exhibited adaptation and for those that exhibited response facilitation. Histological reconstruction of neurons (n = 45) did not reveal a systematic relationship between adaptation profiles and cell types. In addition to the periodic stimuli, we applied a temporally irregular train of deflections with a mean frequency of 8 Hz. For 70% of neurons, the response to the irregular stimulus was greater than that of the 8 Hz regular. This increased response to irregular stimulation was positively correlated with the degree of adaptation. Altogether, our findings demonstrate high levels of diversity among cortical neurons, with a proportion of neurons showing facilitation at specific temporal intervals.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia.
| | - Mehdi Adibi
- University of New South Wales, UNSW, Sydney, NSW, Australia
- International School for Advanced Studies - SISSA, Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| |
Collapse
|