1
|
Rajeev P, Singh N, Kechkar A, Butler C, Ramanan N, Sibarita JB, Jose M, Nair D. Nanoscale regulation of Ca2+ dependent phase transitions and real-time dynamics of SAP97/hDLG. Nat Commun 2022; 13:4236. [PMID: 35869063 PMCID: PMC9307800 DOI: 10.1038/s41467-022-31912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms. SAP97/hDLG is a ubiquitous, alternatively spliced, and conserved modular scaffolding protein involved in the organization cell junctions and excitatory synapses. Here, authors confirm that SAP97/hDLG condenses in to nanosized molecular domains in both heterologous cells and hippocampal pyramidal neurons. Authors demonstrate that in vivo and in vitro condensation, molecular signatures of nanoscale condensates and exchange kinetics of SAP97/hDLG is modulated by the local availability of alternatively spliced isoforms. Additionally, SAP97/hDLG isoforms exhibits a differential sensitivity to Ca2+ bound Calmodulin, resulting in altered properties of nanocondensates and their real-time regulation
Collapse
|
2
|
Li X, Hémond G, Godin AG, Doyon N. Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission. Front Comput Neurosci 2022; 16:969119. [PMID: 36249484 PMCID: PMC9554614 DOI: 10.3389/fncom.2022.969119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding synaptic transmission is of crucial importance in neuroscience. The spatial organization of receptors, vesicle release properties and neurotransmitter molecule diffusion can strongly influence features of synaptic currents. Newly discovered structures coined trans-synaptic nanocolumns were shown to align presynaptic vesicles release sites and postsynaptic receptors. However, how these structures, spanning a few tens of nanometers, shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modeling is a useful approach to investigate the possible functional impacts and role of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter molecule diffusion. In this work, we found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitter molecules. Our work proposes a new methodology to investigate in silico how the existence of trans-synaptic nanocolumns, the nanometric organization of the synapse and the lateral diffusion of receptors shape the features of the synaptic current such as its amplitude and kinetics.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
| | - Gabriel Hémond
- Department of Physics, Université Laval, Québec City, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- *Correspondence: Antoine G. Godin
| | - Nicolas Doyon
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- Nicolas Doyon
| |
Collapse
|
3
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
4
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
5
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Liu XD, Zhu XN, Halford MM, Xu TL, Henkemeyer M, Xu NJ. Retrograde regulation of mossy fiber axon targeting and terminal maturation via postsynaptic Lnx1. J Cell Biol 2018; 217:4007-4024. [PMID: 30185604 PMCID: PMC6219728 DOI: 10.1083/jcb.201803105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Synapse formation relies on the coordination of dynamic pre- and postsynaptic structures during brain development. Liu et al. reveal that presynaptic terminal maturation of mossy fiber axons is retrogradely regulated by postsynaptic scaffold protein Lnx1 via stabilizing EphB receptor kinases. Neuronal connections are initiated by axon targeting to form synapses. However, how the maturation of axon terminals is modulated through interacting with postsynaptic elements remains elusive. In this study, we find that ligand of Numb protein X 1 (Lnx1), a postsynaptic PDZ protein expressed in hippocampal CA3 pyramidal neurons, is essential for mossy fiber (MF) axon targeting during the postnatal period. Lnx1 deletion causes defective synaptic arrangement that leads to aberrant presynaptic terminals. We further identify EphB receptors as novel Lnx1-binding proteins to form a multiprotein complex that is stabilized on the CA3 neuron membrane through preventing proteasome activity. EphB1 and EphB2 are independently required to transduce distinct signals controlling MF pruning and targeting for precise DG-CA3 synapse formation. Furthermore, constitutively active EphB2 kinase rescues structure of the wired MF terminals in Lnx1 mutant mice. Our data thus define a retrograde trans-synaptic regulation required for integration of post- and presynaptic structure that participates in building hippocampal neural circuits during the adolescence period.
Collapse
Affiliation(s)
- Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Na Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael M Halford
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Henkemeyer
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
7
|
Scheefhals N, MacGillavry HD. Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 2018; 91:82-94. [PMID: 29777761 PMCID: PMC6276983 DOI: 10.1016/j.mcn.2018.05.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are the most abundant excitatory neurotransmitter receptors in the brain, responsible for mediating the vast majority of excitatory transmission in neuronal networks. The AMPA- and NMDA-type ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the fast synaptic responses, while metabotropic glutamate receptors (mGluRs) are coupled to downstream signaling cascades that act on much slower timescales. These functionally distinct receptor sub-types are co-expressed at individual synapses, allowing for the precise temporal modulation of postsynaptic excitability and plasticity. Intriguingly, these receptors are differentially distributed with respect to the presynaptic release site. While iGluRs are enriched in the core of the synapse directly opposing the release site, mGluRs reside preferentially at the border of the synapse. As such, to understand the differential contribution of these receptors to synaptic transmission, it is important to not only consider their signaling properties, but also the mechanisms that control the spatial segregation of these receptor types within synapses. In this review, we will focus on the mechanisms that control the organization of glutamate receptors at the postsynaptic membrane with respect to the release site, and discuss how this organization could regulate synapse physiology.
Collapse
Affiliation(s)
- Nicky Scheefhals
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
8
|
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Biederer T, Kaeser PS, Blanpied TA. Transcellular Nanoalignment of Synaptic Function. Neuron 2017; 96:680-696. [PMID: 29096080 PMCID: PMC5777221 DOI: 10.1016/j.neuron.2017.10.006] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 551] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
11
|
Goodman L, Baddeley D, Ambroziak W, Waites CL, Garner CC, Soeller C, Montgomery JM. N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors. Hippocampus 2017; 27:668-682. [PMID: 28244171 DOI: 10.1002/hipo.22723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 11/07/2022]
Abstract
The location and density of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is controlled by scaffolding proteins within the postsynaptic density (PSD). SAP97 is a PSD protein with two N-terminal isoforms, α and β, that have opposing effects on synaptic strength thought to result from differential targeting of AMPA receptors into distinct synaptic versus extrasynaptic locations, respectively. In this study, we have applied dSTORM super resolution imaging in order to localize the synaptic and extrasynaptic pools of AMPA receptors in neurons expressing α or βSAP97. Unexpectedly, we observed that both α and βSAP97 enhanced the localization of AMPA receptors at synapses. However, this occurred via different mechanisms: αSAP97 increased PSD size and consequently the number of receptor binding sites, whilst βSAP97 increased synaptic receptor cluster size and surface AMPA receptor density at the PSD edge and surrounding perisynaptic sites without changing PSD size. αSAP97 also strongly enlarged presynaptic active zone protein clusters, consistent with both presynaptic and postsynaptic enhancement underlying the previously observed αSAP97-induced increase in AMPA receptor-mediated currents. In contrast, βSAP97-expressing neurons increased the proportion of immature filopodia that express higher levels of AMPA receptors, decreased the number of functional presynaptic terminals, and also reduced the size of the dendritic tree and delayed the maturation of mushroom spines. Our data reveal that SAP97 isoforms can specifically regulate surface AMPA receptor nanodomain clusters, with βSAP97 increasing extrasynaptic receptor domains at peri-synaptic and filopodial sites. Moreover, βSAP97 negatively regulates synaptic maturation both structurally and functionally. These data support diverging presynaptic and postsynaptic roles of SAP97 N-terminal isoforms in synapse maturation and plasticity. As numerous splice isoforms exist in other major PSD proteins (e.g., Shank, PSD95, and SAP102), this alternative splicing may result in individual PSD proteins having divergent functional and structural roles in both physiological and pathophysiological synaptic states.
Collapse
Affiliation(s)
- Lucy Goodman
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - David Baddeley
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Wojciech Ambroziak
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Craig C Garner
- German Center for Neurodegenerative Diseases, Charité University, Berlin, Germany
| | - Christian Soeller
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physical and Cell Biology, Physical and Cell Biology, University of Exeter, Exeter, United Kingdom
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Gulia R, Sharma R, Bhattacharyya S. A Critical Role for Ubiquitination in the Endocytosis of Glutamate Receptors. J Biol Chem 2016; 292:1426-1437. [PMID: 28011638 DOI: 10.1074/jbc.m116.752105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play important roles in various neuronal processes and elicit changes in synaptic efficacy through AMPA receptor (AMPAR) endocytosis. Trafficking of mGluRs plays an important role in controlling the precise localization of these receptors at specific region of the cell; it also regulates the activity of these receptors. Despite this obvious significance, we know very little about the cellular mechanisms that control the trafficking of group I mGluRs. We show here that ligand-mediated internalization of group I mGluRs is ubiquitination-dependent. A lysine residue (Lys1112) at the C-terminal tail of mGluR1 (a member of the group I mGluR family) plays crucial role in this process. Our data suggest that Lys63-linked polyubiquitination is involved in the ligand-mediated endocytosis of mGluR1. We also show here that the mGluR1 internalization is dependent on a specific E3 ubiquitin ligase, Siah-1A. Furthermore, acute knockdown of Siah-1A enhances the mGluR-mediated AMPAR endocytosis. These studies reveal a novel function of ubiquitination in the regulation of group I mGluRs, as well as its role in mGluR-dependent AMPAR endocytosis.
Collapse
Affiliation(s)
- Ravinder Gulia
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| | - Rohan Sharma
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| | - Samarjit Bhattacharyya
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| |
Collapse
|
13
|
Goyer D, Fensky L, Hilverling AM, Kurth S, Kuenzel T. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken. Eur J Neurosci 2015; 41:1416-29. [PMID: 25903469 DOI: 10.1111/ejn.12902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
In the avian nucleus magnocellularis (NM) endbulb of Held giant synapses develop from temporary bouton terminals. The molecular regulation of this process is not well understood. Furthermore, it is unknown how the postsynaptic specialization of the endbulb synapses develops. We therefore analysed expression of the postsynaptic scaffold protein PSD-95 during the transition from bouton-to-endbulb synapses. PSD-95 has been implicated in the regulation of the strength of glutamatergic synapses and could accordingly be of functional relevance for giant synapse formation. PSD-95 protein was expressed at synaptic sites in embryonic chicken auditory brainstem and upregulated between embryonic days (E)12 and E16. We applied immunofluorescence staining and confocal microscopy to quantify pre-and postsynaptic protein signals during bouton-to-endbulb transition. Giant terminal formation progressed along the tonotopic axis in NM, but was absent in low-frequency NM. We found a tonotopic gradient of postsynaptic PSD-95 signals in NM. Furthermore, PSD-95 immunosignals showed the greatest increase between E12 and E15, temporally preceding the bouton-to-endbulb transition. We then applied whole-cell electrophysiology to measure synaptic currents elicited by synaptic terminals during bouton-to-endbulb transition. With progressing endbulb formation postsynaptic currents rose more rapidly and synapses were less susceptible to short-term depression, but currents were not different in amplitude or decay-time constant. We conclude that development of presynaptic specializations follows postsynaptic development and speculate that the early PSD-95 increase could play a functional role in endbulb formation.
Collapse
Affiliation(s)
- David Goyer
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Luisa Fensky
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Anna Maria Hilverling
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Stefanie Kurth
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Thomas Kuenzel
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| |
Collapse
|
14
|
Zhang L, Hsu FC, Mojsilovic-Petrovic J, Jablonski AM, Zhai J, Coulter DA, Kalb RG. Structure-function analysis of SAP97, a modular scaffolding protein that drives dendrite growth. Mol Cell Neurosci 2015; 65:31-44. [PMID: 25701814 DOI: 10.1016/j.mcn.2015.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022] Open
Abstract
Activation of AMPA receptors assembled with the GluA1 subunit can promote dendrite growth in a manner that depends on its direct binding partner, SAP97. SAP97 is a modular scaffolding protein that has at least seven recognizable protein-protein interaction domains. Several complementary approaches were employed to show that the dendrite branching promoting action of full length SAP97 depends on ligand(s) that bind to the PDZ3 domain. Ligand(s) to PDZ1, PDZ2 and I3 domains also contribute to dendrite growth. The ability of PDZ3 ligand(s) to promote dendrite growth depends on localization at the plasma membrane along with GluA1 and SAP97. These results suggest that the assembly of a multi-protein complex at or near synapses is vital for the translation of AMPA-R activity into dendrite growth.
Collapse
Affiliation(s)
- L Zhang
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - F-C Hsu
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - J Mojsilovic-Petrovic
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - A M Jablonski
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States.
| | - J Zhai
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - D A Coulter
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States.
| | - R G Kalb
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Bian WJ, Miao WY, He SJ, Wan ZF, Luo ZG, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol 2014; 75:805-22. [DOI: 10.1002/dneu.22250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/20/2014] [Accepted: 11/22/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Wen-Jie Bian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
- University of Chinese Academy of Sciences; Shanghai 200031 China
| | - Wan-Ying Miao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Zong-Fang Wan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Zhen-Ge Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200031 China
| |
Collapse
|
16
|
Meyer D, Bonhoeffer T, Scheuss V. Balance and Stability of Synaptic Structures during Synaptic Plasticity. Neuron 2014; 82:430-43. [DOI: 10.1016/j.neuron.2014.02.031] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/27/2022]
|
17
|
Synaptic MAGUK multimer formation is mediated by PDZ domains and promoted by ligand binding. ACTA ACUST UNITED AC 2014; 20:1044-54. [PMID: 23973190 DOI: 10.1016/j.chembiol.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 11/22/2022]
Abstract
To examine the scaffolding properties of PSD-95, we have taken advantage of established ligand/PDZ domain interactions and developed a cell-based assay for investigating protein complex formation. This assay enables quantitative analysis of PDZ domain-mediated protein clustering using bimolecular fluorescence complementation (BiFC). Two nonfluorescent halves of EYFP were fused to C-terminal PDZ ligand sequences to generate probes that sense for PDZ domain binding grooves of adjacent (interacting) molecules. When these probes are brought into proximity by the PDZ domains of a multiprotein scaffold, a functional fluorescent EYFP molecule can be detected. We have used this system to examine the properties of selected PSD-95 variants and thereby delineated regions of importance for PSD-95 complex formation. Further analysis led to the finding that PSD-95 multimerization is PDZ domain-mediated and promoted by ligand binding.
Collapse
|
18
|
Blackman AV, Abrahamsson T, Costa RP, Lalanne T, Sjöström PJ. Target-cell-specific short-term plasticity in local circuits. Front Synaptic Neurosci 2013; 5:11. [PMID: 24367330 PMCID: PMC3854841 DOI: 10.3389/fnsyn.2013.00011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/07/2013] [Indexed: 11/14/2022] Open
Abstract
Short-term plasticity (STP) denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination of mechanisms, including vesicle depletion and calcium accumulation in synaptic terminals. Different forms of STP exist, depending on many factors, including synapse type. Recent evidence shows that synapse dependence holds true even for connections that originate from a single presynaptic cell, which implies that postsynaptic target cell type can determine synaptic short-term dynamics. This arrangement is surprising, since STP itself is chiefly due to presynaptic mechanisms. Target-specific synaptic dynamics in addition imply that STP is not a bug resulting from synapses fatiguing when driven too hard, but rather a feature that is selectively implemented in the brain for specific functional purposes. As an example, target-specific STP results in sequential somatic and dendritic inhibition in neocortical and hippocampal excitatory cells during high-frequency firing. Recent studies also show that the Elfn1 gene specifically controls STP at some synapse types. In addition, presynaptic NMDA receptors have been implicated in synapse-specific control of synaptic dynamics during high-frequency activity. We argue that synapse-specific STP deserves considerable further study, both experimentally and theoretically, since its function is not well known. We propose that synapse-specific STP has to be understood in the context of the local circuit, which requires combining different scientific disciplines ranging from molecular biology through electrophysiology to computer modeling.
Collapse
Affiliation(s)
- Arne V Blackman
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Therese Abrahamsson
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital Montreal, QC, Canada
| | - Rui Ponte Costa
- Neuroinformatics Doctoral Training Centre, School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK
| | - Txomin Lalanne
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital Montreal, QC, Canada ; Integrated Program in Neuroscience, McGill University Montreal, QC, Canada
| | - P Jesper Sjöström
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK ; Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital Montreal, QC, Canada
| |
Collapse
|
19
|
Abstract
Synapses undergo substantial activity-dependent and independent remodeling over time scales of minutes, hours, and days. Presumably, changes in presynaptic properties should be matched by corresponding changes in postsynaptic properties and vice versa. Wherever measured, presynaptic and postsynaptic molecular properties tend to correlate, yet these correlations are often quite imperfect, raising questions as the origins of such mismatches: Are these the outcome of "single snapshot" analyses of asynchronous remodeling processes? Alternatively, do these indicate that synapses genuinely vary in the "stoichiometries" of their presynaptic and postsynaptic molecular contents? If so, are these "stoichiometries" preserved over time? To address these questions, we followed the matching dynamics of the presynaptic active-zone molecule Munc13-1 and the postsynaptic molecule PSD-95 in networks of cultured cortical mouse neurons. We find that presynaptic and postsynaptic remodeling were generally well correlated, but the degree of this correlation was highly variable, with little and even negative correlation observed at some synapses. No evidence was found that remodeling in one compartment consistently preceded remodeling in the other. Interestingly, even though the Munc13-1 and PSD-95 contents of individual synapses changed considerably over 15-22 h, Munc13-1/PSD-95 ratios, which varied over a fourfold range, were well conserved over these durations. These findings indicate that the "stoichiometries" of presynaptic and postsynaptic molecules can genuinely differ among synapses and that synapses can maintain their specific stoichiometries even in face of extensive presynaptic and postsynaptic remodeling.
Collapse
|
20
|
Synapse-associated protein 97 regulates the membrane properties of fast-spiking parvalbumin interneurons in the visual cortex. J Neurosci 2013; 33:12739-50. [PMID: 23904610 DOI: 10.1523/jneurosci.0040-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast-spiking parvalbumin (PV)-positive interneurons in layers 2/3 of the visual cortex regulate gain control and tuning of visual processing. Synapse-associated protein 97 (SAP97) belongs to a family of proteins that have been implicated in regulating glutamatergic synaptic transmission at pyramidal-to-pyramidal connections in the nervous system. For PV interneurons in mouse visual cortex, the expression of SAP97 is developmentally regulated, being expressed in almost all juvenile but only a fraction, ~40%, of adult PV interneurons. Using whole-cell patch-clamping, single-cell RT-PCR to assay endogenous expression of SAP97 and exogenous expression of SAP97, we investigated the functional significance of SAP97 in PV interneurons in layers 2/3 of the visual cortex. PV interneurons expressing SAP97, either endogenously or via exogenous expression, showed distinct membrane properties from those not expressing SAP97. This included an overall decrease in membrane excitability, as indexed by a decrease in membrane resistance and an increase in the stimulus threshold for the first action potential firing. Additionally, SAP97-expressing PV interneurons fired action potentials more frequently and, at moderate stimulus intensities, showed irregular or stuttering firing patterns. Furthermore, SAP97-expressing PV interneurons showed increased glutamatergic input and more extensive dendritic branching when compared with non-expressing PV interneurons. These differences in membrane and synaptic properties would significantly alter how PV interneurons expressing SAP97 compared with those not expressing SAP97 would function in local networks. Thus, our results indicate that the scaffolding protein SAP97 is a critical molecular factor regulating the input-output relationships of cortical PV interneurons.
Collapse
|
21
|
Finardi A, Colciaghi F, Castana L, Locatelli D, Marras CE, Nobili P, Fratelli M, Bramerio MA, Lorusso G, Battaglia GS. Long-duration epilepsy affects cell morphology and glutamatergic synapses in type IIB focal cortical dysplasia. Acta Neuropathol 2013; 126:219-35. [PMID: 23793416 DOI: 10.1007/s00401-013-1143-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 11/24/2022]
Abstract
To investigate hypothesized effects of severe epilepsy on malformed cortex, we analyzed surgical samples from eight patients with type IIB focal cortical dysplasia (FCD) in comparison with samples from nine non-dysplastic controls. We investigated, using stereological quantification methods, where appropriate, dysplastic neurons, neuronal density, balloon cells, glia, glutamatergic synaptic input, and the expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated membrane-associated guanylate kinase (MAGUK). In all FCD patients, the dysplastic areas giving rise to epileptic discharges were characterized by larger dysmorphic neurons, reduced neuronal density, and increased glutamatergic inputs, compared to adjacent areas with normal cytology. The duration of epilepsy was found to correlate directly (a) with dysmorphic neuron size, (b) reduced neuronal cell density, and (c) extent of reactive gliosis in epileptogenic/dysplastic areas. Consistent with increased glutamatergic input, western blot revealed that NMDA regulatory subunits and related MAGUK proteins were up-regulated in epileptogenic/dysplastic areas of all FCD patients examined. Taken together, these results support the hypothesis that epilepsy itself alters morphology-and probably also function-in the malformed epileptic brain. They also suggest that glutamate/NMDA/MAGUK dysregulation might be the intracellular trigger that modifies brain morphology and induces cell death.
Collapse
Affiliation(s)
- Adele Finardi
- Experimental Neurophysiology and Epileptology Department, Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fourie C, Li D, Montgomery JM. The anchoring protein SAP97 influences the trafficking and localisation of multiple membrane channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:589-94. [PMID: 23535319 DOI: 10.1016/j.bbamem.2013.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 12/23/2022]
Abstract
SAP97 is a member of the MAGUK family of proteins that play a major role in the trafficking and targeting of membrane ion channels and cytosolic structural proteins in multiple cell types. Within neurons, SAP97 is localised throughout the secretory trafficking pathway and at the postsynaptic density (PSD). SAP97 differs from other MAGUK family members largely in its long N-terminus and in the sequences between the SH3 and GUK domains, where SAP97 undergoes significant alternative splicing to produce multiple SAP97 isoforms. These splice insertions endow SAP97 with differential cellular localisation patterns and functional roles within neurons. With regard to membrane ion channels, SAP97 forms multi-protein complexes with AMPA and NMDA-type glutamate receptors, and Kv1.4, Kv4.2, and Kir2.2 potassium channels, playing a major role in trafficking and anchoring ion channel surface expression. This highlights SAP97 not only as a regulator of neuronal excitability, synaptic function and plasticity in the brain, but also as a target for the pathophysiology of a number of neurological disorders. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Chantelle Fourie
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Dong Li
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
23
|
Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci 2013; 32:14966-78. [PMID: 23100419 DOI: 10.1523/jneurosci.2215-12.2012] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in several postsynaptic proteins have recently been implicated in the molecular pathogenesis of autism and autism spectrum disorders (ASDs), including Neuroligins, Neurexins, and members of the ProSAP/Shank family, thereby suggesting that these genetic forms of autism may share common synaptic mechanisms. Initial studies of ASD-associated mutations in ProSAP2/Shank3 support a role for this protein in glutamate receptor function and spine morphology, but these synaptic phenotypes are not universally penetrant, indicating that other core facets of ProSAP2/Shank3 function must underlie synaptic deficits in patients with ASDs. In the present study, we have examined whether the ability of ProSAP2/Shank3 to interact with the cytoplasmic tail of Neuroligins functions to coordinate pre/postsynaptic signaling through the Neurexin-Neuroligin signaling complex in hippocampal neurons of Rattus norvegicus. Indeed, we find that synaptic levels of ProSAP2/Shank3 regulate AMPA and NMDA receptor-mediated synaptic transmission and induce widespread changes in the levels of presynaptic and postsynaptic proteins via Neurexin-Neuroligin transsynaptic signaling. ASD-associated mutations in ProSAP2/Shank3 disrupt not only postsynaptic AMPA and NMDA receptor signaling but also interfere with the ability of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function. These data indicate that ASD-associated mutations in a subset of synaptic proteins may target core cellular pathways that coordinate the functional matching and maturation of excitatory synapses in the CNS.
Collapse
|
24
|
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. ACTA ACUST UNITED AC 2012; 199:985-1001. [PMID: 23209303 PMCID: PMC3518221 DOI: 10.1083/jcb.201205041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
25
|
Oliva C, Escobedo P, Astorga C, Molina C, Sierralta J. Role of the MAGUK protein family in synapse formation and function. Dev Neurobiol 2012; 72:57-72. [PMID: 21739617 DOI: 10.1002/dneu.20949] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses.
Collapse
Affiliation(s)
- Carlos Oliva
- Program of Physiology and Biophysics, Institute of Biomedical Sciences and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | | | | | | | | |
Collapse
|
26
|
Akgul G, Wollmuth LP. Expression pattern of membrane-associated guanylate kinases in interneurons of the visual cortex. J Comp Neurol 2011; 518:4842-54. [PMID: 21031555 DOI: 10.1002/cne.22491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABAergic interneurons are key elements regulating the activity of local circuits, and abnormal inhibitory circuits are implicated in certain psychiatric and neurodevelopmental diseases. The glutamatergic input that interneurons receive is a key determinant of their activity, yet its molecular structure and development, which are often distinct from those of glutamatergic input to pyramidal cells, are poorly defined. The membrane-associated guanylate kinase (MAGUK) homologs PSD-95/SAP90, PSD-93/chapsyn110, SAP97, and SAP102 are central organizers of the postsynaptic density at excitatory synapses on pyramidal neurons. We therefore studied the cell-type-specific and developmental expression of MAGUKs in the nonoverlapping parvalbumin (PV)- and somatostatin (SOM)-positive interneurons in the visual cortex. These interneuron subtypes account for the vast majority of interneurons in the cortex and have different functional properties and postsynaptic structures, being either axodendritic (PV(+)) or axospinous (SOM(+)). To study cell-type-specific MAGUK expression, we used DIG-labeled riboprobes against each MAGUK along with antibodies against either PV or SOM and examined tissue from juvenile (P15) and adult mice. Both PV(+) and SOM(+) interneurons express mRNA for PSD-95, PSD-93, and SAP102 in P15 and adult tissue. In contrast, these interneuron subtypes express SAP97 at P15, but for adult visual cortex we found that most PV(+) and SOM(+) interneurons show low or no expression of SAP97. Given the importance of SAP97 in regulating AMPA receptor GluA1 subunit and NMDA receptor subunits at glutamatergic synapses, these results suggest a developmental shift in glutamate receptor subunit composition and regulation of glutamatergic synapses on PV(+) and SOM(+) interneurons.
Collapse
Affiliation(s)
- Gulcan Akgul
- State University of New York at Stony Brook, 11794-5230, USA
| | | |
Collapse
|
27
|
Reis SA, Thompson MN, Lee JM, Fossale E, Kim HH, Liao JK, Moskowitz MA, Shaw SY, Dong L, Haggarty SJ, MacDonald ME, Seong IS. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum Mol Genet 2011; 20:2344-55. [PMID: 21447599 DOI: 10.1093/hmg/ddr127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.
Collapse
Affiliation(s)
- Surya A Reis
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
SAP97 is thought to play key roles in synapse assembly and synaptic plasticity. This study was carried out to determine whether it is involved in the Müller cell response to blue light injury. In light-injured rats, obvious intracellular edema in the outer retina was observed by transmission electron microscopy. The immunostaining of SAP97 was upregulated and concentrated in the Müller cell processes after photic injury, which was similar to the changes of AQP4 and the inwardly rectifying potassium channel, Kir4.1. Western blots showed that SAP97 and AQP4 protein levels were both increased on the third day after light exposure when compared with the control group (P<0.05). The upregulation of SAP97 coincides with the redistribution of AQP4 and Kir4.1 in blue light-injured rat retina.
Collapse
|
29
|
Paban V, Chambon C, Farioli F, Alescio-Lautier B. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult. Neurobiol Learn Mem 2011; 95:441-52. [PMID: 21345373 DOI: 10.1016/j.nlm.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury.
Collapse
Affiliation(s)
- Véronique Paban
- Université d'Aix-Marseille I, Laboratoire de Neurosciences Intégratives et Adaptatives, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France.
| | | | | | | |
Collapse
|
30
|
Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet 2011; 7:e1001295. [PMID: 21347281 PMCID: PMC3037412 DOI: 10.1371/journal.pgen.1001295] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/06/2011] [Indexed: 12/21/2022] Open
Abstract
Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease. Muscles require strong extracellular attachments to preserve cellular integrity during force-generating contractions. Integrin transmembrane receptors mediate muscle attachments at highly localized sites, but how this pattern of attachments is continuously maintained with muscle use is not understood. Human X-linked myotubular myopathy (XLMTM), a frequently fatal muscle disease, is associated with mutations in the MTM1 lipid regulator. Myotubularin (MTM) lipid phosphatases are implicated in endocytosis, a process of cellular uptake that can traffic transmembrane receptors for redelivery to the plasma membrane or to protein destruction. Here, we address MTM roles in muscle, using the genetically tractable fruit fly for detailed investigation of muscle cellular organization and functions. We show that fly muscle cells depleted for mtm function exhibit hallmarks of human XLMTM. We found that mtm regulates integrin localization through endocytosis and, in this role, is needed to maintain muscle attachments. Co-depletion of Class II PI3-kinase with mtm restores normal integrin localization at muscle attachment sites and fly survival, identifying a potential therapy target in MTM-related disease. Importantly, we show that integrin localization is also disrupted in human XLMTM. Our work shows conservation of MTM function in integrin trafficking and reveals insights into regulation of muscle cell maintenance and human disease.
Collapse
|
31
|
Appleby VJ, Corrêa SAL, Duckworth JK, Nash JE, Noël J, Fitzjohn SM, Collingridge GL, Molnár E. LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem 2011; 116:530-43. [PMID: 21143596 DOI: 10.1111/j.1471-4159.2010.07133.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of hippocampal dissociated neuronal cultures has enabled the study of molecular changes in endogenous native proteins associated with long-term potentiation. Using immunofluorescence labelling of the active (Thr286-phosphorylated) alpha-Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) we found that CaMKII activity was increased by transient (3 × 1 s) depolarisation in 18- to 21-day-old cultures but not in 9- to 11-day-old cultures. The increase in Thr286 phosphorylation of CaMKII required the activation of NMDA receptors and was greatly attenuated by the CaMKII inhibitor KN-62. We compared the effects of transient depolarisation on the surface expression of GluA1 and GluA2 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor and found a preferential recruitment of the GluA1 subunit. CaMKII inhibition prevented this NMDA receptor-dependent delivery of GluA1 to the cell surface. CaMKII activation is therefore an important factor in the activity-dependent recruitment of native GluA1 subunit-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors to the cell surface of hippocampal neurons.
Collapse
Affiliation(s)
- Vanessa J Appleby
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J Neurosci 2011; 30:16437-52. [PMID: 21147983 DOI: 10.1523/jneurosci.4478-10.2010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NMDA receptor (NMDAR)-dependent long-term depression (LTD) in the hippocampus is mediated primarily by the calcium-dependent removal of AMPA receptors (AMPARs) from the postsynaptic density. The AMPAR-binding, PDZ (PSD-95/Dlg/ZO1) and BAR (Bin/amphiphysin/Rvs) domain-containing protein PICK1 has been implicated in the regulation of AMPAR trafficking underlying several forms of synaptic plasticity. Using a strategy involving small hairpin RNA-mediated knockdown of PICK1 and its replacement with recombinant PICK1, we performed a detailed structure-function analysis of the role of PICK1 in hippocampal synaptic plasticity and the underlying NMDAR-induced AMPAR trafficking. We found that PICK1 is not necessary for maintenance of the basal synaptic complement of AMPARs or expression of either metabotropic glutamate receptor-dependent LTD or NMDAR-dependent LTP. Rather, PICK1 function is specific to NMDAR-dependent LTD and the underlying AMPAR trafficking. Furthermore, although PICK1 does not regulate the initial phase of NMDAR-induced AMPAR endocytosis, it is required for intracellular retention of internalized AMPARs. Detailed biophysical analysis of an N-terminal acidic motif indicated that it is involved in intramolecular electrostatic interactions that are disrupted by calcium. Mutations that interfered with the calcium-induced structural changes in PICK1 precluded LTD and the underlying NMDAR-induced intracellular retention of AMPARs. These findings support a model whereby calcium-induced modification of PICK1 structure is critical for its function in the retention of internalized AMPARs that underlies the expression of hippocampal NMDAR-dependent LTD.
Collapse
|
33
|
Liebl FLW, McKeown C, Yao Y, Hing HK. Mutations in Wnt2 alter presynaptic motor neuron morphology and presynaptic protein localization at the Drosophila neuromuscular junction. PLoS One 2010; 5:e12778. [PMID: 20856675 PMCID: PMC2939895 DOI: 10.1371/journal.pone.0012778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 08/24/2010] [Indexed: 01/02/2023] Open
Abstract
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.
Collapse
Affiliation(s)
- Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America.
| | | | | | | |
Collapse
|
34
|
Jurado S, Benoist M, Lario A, Knafo S, Petrok CN, Esteban JA. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J 2010; 29:2827-40. [PMID: 20628354 DOI: 10.1038/emboj.2010.160] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/24/2010] [Indexed: 01/10/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is an important regulator of phosphatidylinositol-(3,4,5,)-trisphosphate signalling, which controls cell growth and differentiation. However, PTEN is also highly expressed in the adult brain, in which it can be found in dendritic spines in hippocampus and other brain regions. Here, we have investigated specific functions of PTEN in the regulation of synaptic function in excitatory hippocampal synapses. We found that NMDA receptor activation triggers a PDZ-dependent association between PTEN and the synaptic scaffolding molecule PSD-95. This association is accompanied by PTEN localization at the postsynaptic density and anchoring within the spine. On the other hand, enhancement of PTEN lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses. This activity is specifically required for NMDA receptor-dependent long-term depression (LTD), but not for LTP or metabotropic glutamate receptor-dependent LTD. Therefore, these results reveal PTEN as a regulated signalling molecule at the synapse, which is recruited to the postsynaptic membrane upon NMDA receptor activation, and is required for the modulation of synaptic activity during plasticity.
Collapse
Affiliation(s)
- Sandra Jurado
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
35
|
Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 2010; 107:11116-21. [PMID: 20534458 DOI: 10.1073/pnas.0914233107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion molecules are key players in transsynaptic communication, precisely coordinating presynaptic differentiation with postsynaptic specialization. At glutamatergic synapses, their retrograde signaling has been proposed to control presynaptic vesicle clustering at active zones. However, how the different types of cell adhesion molecules act together during this decisive step of synapse maturation is largely unexplored. Using a knockout approach, we show that two synaptic adhesion systems, N-cadherin and neuroligin-1, cooperate to control vesicle clustering at nascent synapses. Live cell imaging and fluorescence recovery after photobleaching experiments at individual synaptic boutons revealed a strong impairment of vesicle accumulation in the absence of N-cadherin, whereas the formation of active zones was largely unaffected. Strikingly, also the clustering of synaptic vesicles triggered by neuroligin-1 overexpression required the presence of N-cadherin in cultured neurons. Mechanistically, we found that N-cadherin acts by postsynaptically accumulating neuroligin-1 and activating its function via the scaffolding molecule S-SCAM, leading, in turn, to presynaptic vesicle clustering. A similar cooperation of N-cadherin and neuroligin-1 was observed in immature CA3 pyramidal neurons in an organotypic hippocampal network. Moreover, at mature synapses, N-cadherin was required for the increase in release probability and miniature EPSC frequency induced by expressed neuroligin-1. This cooperation of two cell adhesion systems provides a mechanism for coupling bidirectional synapse maturation mediated by neuroligin-1 to cell type recognition processes mediated by classical cadherins.
Collapse
|
36
|
Poglia L, Muller D, Nikonenko I. Ultrastructural modifications of spine and synapse morphology by SAP97. Hippocampus 2010; 21:990-8. [PMID: 20865734 DOI: 10.1002/hipo.20811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2010] [Indexed: 01/01/2023]
Abstract
Synaptic scaffolding proteins from membrane-associated guanylate kinases (MAGUK) family are implicated in synapse formation and functioning. To better understand the role of one of the proteins of this family, SAP97, we studied with electron microscopy the effects of its overexpression on spine and synapse morphology in CA1 pyramidal neurons of rat organotypic hippocampal slice cultures. Dramatic spine enlargement induced by SAP97 overexpression was accompanied by marked morphological changes, with spines enwrapping and engulfing presynaptic terminals. The size and complexity of the PSD was also significantly increased. Similar to PSD-95, SAP97 promoted formation of multi-innervated spines (MIS). In addition, both MAGUK proteins induced multiple excitatory contacts on dendritic shafts suggesting a mechanism for shaft synapse formation. Formation of MIS and shaft synapses was blocked by the nitric oxide synthase (NOS) inhibitor L-NAME. Immunochemistry revealed that overexpression of SAP97 was associated with overexpression of PSD-95 and recruitment of nNOS to the synapse. These data provide evidence for both common and distinct structural alterations produced by overexpression of SAP97 and PSD-95 and demonstrate strong interactions between these two proteins to regulate contact formation through nitric oxide signaling.
Collapse
Affiliation(s)
- Lorenzo Poglia
- Department and Center of Neuroscience, Geneva University Medical Center, CH-1211 Geneva, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
Actin-rich dendritic spines are the locus of excitatory synaptic transmission and plastic events such as long-term potentiation (LTP). Morphological plasticity of spines accompanies activity-dependent changes in synaptic strength. Several Rho GTPase family members are implicated in regulating neuronal and, in particular, spine structure via actin and the actin-binding protein cofilin. However, despite expression in hippocampus and cortex, its ability to modulate actin-regulatory proteins, and its induction during aging, RhoB has been relatively neglected. We previously demonstrated that LTP is associated with specific RhoB activation. Here, we further examined its role in synaptic function using mice with genetic deletion of the RhoB GTPase (RhoB(-/-) mice). Normal basal synaptic transmission accompanied reduced paired-pulse facilitation and post-tetanic potentiation in the hippocampus of RhoB(-/-) mice. Early phase LTP was significantly reduced in RhoB(-/-) animals, whereas the later phase was unaffected. In wild-type mice (RhoB(+/+)), Western blot analysis of potentiated hippocampus showed significant increases in phosphorylated cofilin relative to nonpotentiated slices, which were dramatically impaired in RhoB(-/-) slices. There was also a deficit in phosphorylated Lim kinase levels in the hippocampus from RhoB(-/-) mice. Morphological analysis suggested that lack of RhoB resulted in increased dendritic branching and decreased spine number. Furthermore, an increase in the proportion of stubby relative to thin spines was observed. Moreover, spines demonstrated increased length along with increased head and neck widths. These data implicate RhoB in cofilin regulation and dendritic and spine morphology, highlighting its importance in synaptic plasticity at a structural and functional level.
Collapse
|
38
|
Abstract
Membrane-associated guanylate kinases (MAGUKs), which are essential proteins in the postsynaptic density (PSD), cluster and anchor glutamate receptors and other proteins at synapses. The MAGUK family includes PSD-95, PSD-93, SAP102, and SAP97. Individual family members can compensate for one another in their ability to recruit and retain receptors at the postsynaptic membrane as shown through deletion and knock-down studies. SAP102 is highly expressed in both young and mature neurons; however, little is known about its localization and mobility at synapses. Here, we compared the distribution, mobility, and turnover times of SAP102 to the well studied MAGUK PSD-95. Using light and electron microscopy, we found that SAP102 shows a broader distribution as well as peak localization further away from the postsynaptic membrane than PSD-95. Using fluorescence recovery after photobleaching (FRAP), we found that 80% of SAP102 and 36% of PSD-95 are mobile in spines. Previous studies showed that PSD-95 was stabilized at the PSD by N-terminal palmitoylation. We found that stabilization of SAP102 at the PSD was dependent on its SH3/GK domains but not its PDZ interactions. Furthermore, we showed that stabilizing actin or blocking NMDA/AMPA receptors reduced the mobile pool of SAP102 but did not affect the mobile pool of PSD-95. Our results show significant differences in the localization, binding mechanism, and mobility of SAP102 and PSD-95. These differences and the compensatory properties of the MAGUKs point out an unrecognized versatility of the MAGUKs in their function in synaptic organization and plasticity.
Collapse
|
39
|
Hiraoka S, Kajii Y, Kuroda Y, Umino A, Nishikawa T. The development- and phencyclidine-regulated induction of synapse-associated protein-97 gene in the rat neocortex. Eur Neuropsychopharmacol 2010; 20:176-86. [PMID: 19836928 DOI: 10.1016/j.euroneuro.2009.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/15/2009] [Accepted: 08/28/2009] [Indexed: 11/28/2022]
Abstract
Using the RNA arbitrarily-primed PCR and the competitive RT-PCR, we have isolated the neocortical transcripts that are upregulated and unchanged in the adult and infant rats, respectively, after a systemic injection of an N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP), and found them identical to the synapse-associated protein-97 (SAP97) gene mRNAs. The upregulation of the SAP97 transcripts in the adult neocortex after the acute PCP injection was mimicked by another NMDA antagonist, dizocilpine, but not by the indirect dopamine agonists, methamphetamine and cocaine, a selective D1 receptor antagonist SCH23390, a D2 receptor-preferring antagonist haloperidol and a GABAergic anesthetic pentobarbital. Moreover, the pretreatment with a typical antipsychotic haloperidol failed to antagonize the increased neocortical SAP97 gene expression by PCP. These findings suggest that SAP97 might be involved in the molecular basis of the development-dependent onset of the non-dopaminergic symptoms seen in schizophrenia and the schizophrenia-like psychosis induced by NMDA receptor blocking.
Collapse
Affiliation(s)
- Shuichi Hiraoka
- Section of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Proteins of the PSD-95-like membrane-associated guanylate kinase (PSD-MAGUK) family are vital for trafficking AMPA receptors (AMPARs) to synapses, a process necessary for both basal synaptic transmission and forms of synaptic plasticity. Synapse-associated protein 97 (SAP97) exhibits protein interactions, such as direct interaction with the GluA1 AMPAR subunit, and subcellular localization (synaptic, perisynaptic, and dendritic) unique within this protein family. Due in part to the lethality of the germline knockout of SAP97, this protein's role in synaptic transmission and plasticity is poorly understood. We found that overexpression of SAP97 during early development traffics AMPARs and NMDA receptors (NMDARs) to synapses, and that SAP97 rescues the deficits in AMPAR currents normally seen in PSD-93/-95 double-knockout neurons. Mature neurons that have experienced the overexpression of SAP97 throughout development exhibit enhanced AMPAR and NMDAR currents, as well as faster NMDAR current decay kinetics. In loss-of-function experiments using conditional SAP97 gene deletion, we recorded no deficits in glutamatergic transmission or long-term potentiation. These results support the hypothesis that SAP97 is part of the machinery that traffics glutamate receptors and compensates for other PSD-MAGUKs in knockout mouse models. However, due to functional redundancy, other PSD-MAGUKs can presumably compensate when SAP97 is conditionally deleted during development.
Collapse
|
41
|
Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. J Neurosci 2010; 29:15770-9. [PMID: 20016093 DOI: 10.1523/jneurosci.4951-09.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rate and timing of information transfer at neuronal synapses are critical for determining synaptic efficacy and higher network function. Both synchronous and asynchronous neurotransmitter release shape the pattern of synaptic influences on a neuron. The PSD-95 family of postsynaptic scaffolding proteins, in addition to organizing postsynaptic components at glutamate synapses, acts transcellularly to regulate synchronous glutamate release. Here we show that PSD-95 family members at nicotinic synapses on chick ciliary ganglion neurons in culture execute multiple functions to enhance transmission. Together, endogenous PSD-95 and SAP102 in the postsynaptic cell appear to regulate transcellularly the synchronous release of transmitter from presynaptic terminals onto the neuron while stabilizing postsynaptic nicotinic receptor clusters under the release sites. Endogenous SAP97, in contrast, has no effect on receptor clusters but acts transcellularly from the postsynaptic cell through N-cadherin to enhance asynchronous release. These separate and parallel regulatory pathways allow postsynaptic scaffold proteins to dictate the pattern of cholinergic input a neuron receives; they also require balancing of PSD-95 protein levels to avoid disruptive competition that can occur through common binding domains.
Collapse
|
42
|
Robertson HR, Gibson ES, Benke TA, Dell'Acqua ML. Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex. J Neurosci 2009; 29:7929-43. [PMID: 19535604 PMCID: PMC2716089 DOI: 10.1523/jneurosci.6093-08.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/29/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.
Collapse
Affiliation(s)
| | | | - Timothy A. Benke
- Departments of Pharmacology
- Pediatrics, and
- Neurology and
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Mark L. Dell'Acqua
- Departments of Pharmacology
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
43
|
Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. J Neurosci 2009; 29:4332-45. [PMID: 19357261 DOI: 10.1523/jneurosci.4431-08.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic insertion of GluR1-containing AMPA-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, mechanisms responsible for GluR1 insertion and retention at the synapse are unclear. The synapse-associated protein SAP97 directly binds GluR1 and participates in its forward trafficking from the Golgi network to the plasma membrane. Whether SAP97 also plays a role in scaffolding GluR1 at the postsynaptic membrane is controversial, attributable to its expression as a collection of alternatively spliced isoforms with ill-defined spatial and temporal distributions. In the present study, we have used live imaging and electrophysiology to demonstrate that two postsynaptic, N-terminal isoforms of SAP97 directly modulate the levels, dynamics, and function of synaptic GluR1-containing AMPARs. Specifically, the unique N-terminal domains confer distinct subsynaptic localizations onto SAP97, targeting the palmitoylated alpha-isoform to the postsynaptic density (PSD) and the L27 domain-containing beta-isoform primarily to non-PSD, perisynaptic regions. Consequently, alpha- and betaSAP97 differentially influence the subsynaptic localization and dynamics of AMPARs by creating binding sites for GluR1-containing receptors within their respective subdomains. These results indicate that N-terminal splicing of SAP97 can control synaptic strength by regulating the distribution of AMPARs and, hence, their responsiveness to presynaptically released glutamate.
Collapse
|
44
|
Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 2009; 39:343-9. [PMID: 19208409 DOI: 10.1002/mus.21099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dlg (Discs Large) is a multidomain protein that interacts with glutamate receptors and potassium channels at Drosophila neuromuscular junctions (NMJs) and at mammalian central nervous system synapses. Dlg also localizes postsynaptically at cholinergic mammalian NMJs. We show here that alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor subunits, together with glutamate, are present at the mammalian NMJ. Both AMPA and NMDA (N-methyl-D-aspartate) glutamate receptor subunits display overlapping postsynaptic localization patterns with Dlg at all NMJs examined in normal mice. Kir2 potassium channels also localize with Dlg and glutamate receptors at this synapse. Localization of the components of a glutamatergic system suggests novel mechanisms at mammalian neuromuscular synapses.
Collapse
Affiliation(s)
- Tessily A Mays
- Department of Molecular and Cellular Biochemistry, 410 Hamilton Hall, College of Medicine, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
45
|
Bhattacharyya S, Biou V, Xu W, Schlüter O, Malenka RC. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat Neurosci 2009; 12:172-81. [PMID: 19169250 PMCID: PMC2694745 DOI: 10.1038/nn.2249] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/02/2008] [Indexed: 02/04/2023]
Abstract
The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity including NMDA receptor (NMDAR)-dependent long-term depression (LTD) but the molecular mechanisms responsible for this trafficking remain unknown. Here we demonstrate that PSD-95, a major postsynaptic density protein, plays a key role in NMDAR-triggered endocytosis of synaptic AMPARs because of its binding to AKAP150, a scaffold for specific protein kinases and phosphatases. Knockdown of PSD-95 with shRNA blocks NMDAR-triggered, but not constitutive nor mGluR-triggered endocytosis of AMPARs. Deletion of PSD-95’s SH3 and GK domains as well as a point mutation (L460P), both of which inhibit binding of PSD-95 to AKAP150, also block NMDAR-triggered AMPAR endocytosis. Furthermore, expression of a mutant AKAP150 that does not bind calcineurin inhibits this NMDAR-triggered trafficking event. These results suggest that PSD-95’s interaction with AKAP150 is critical for NMDAR-triggered AMPAR endocytosis and LTD, possibly because these scaffolds position calcineurin in the appropriate subsynaptic domain.
Collapse
Affiliation(s)
- Samarjit Bhattacharyya
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, 1050 Arastradero Road, Stanford University School of Medicine, Palo Alto, California 94304-5552, USA
| | | | | | | | | |
Collapse
|
46
|
Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci U S A 2008; 105:20953-8. [PMID: 19104036 DOI: 10.1073/pnas.0811025106] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The development of glutamatergic synapses involves changes in the number and type of receptors present at the postsynaptic density. To elucidate molecular mechanisms underlying these changes, we combine in utero electroporation of constructs that alter the molecular composition of developing synapses with dual whole-cell electrophysiology to examine synaptic transmission during two distinct developmental stages. We find that SAP102 mediates synaptic trafficking of AMPA and NMDA receptors during synaptogenesis. Surprisingly, after synaptogenesis, PSD-95 assumes the functions of SAP102 and is necessary for two aspects of synapse maturation: the developmental increase in AMPA receptor transmission and replacement of NR2B-NMDARs with NR2A-NMDARs. In PSD-95/PSD-93 double-KO mice, the maturational replacement of NR2B- with NR2A-NMDARs fails to occur, and PSD-95 expression fully rescues this deficit. This study demonstrates that SAP102 and PSD-95 regulate the synaptic trafficking of distinct glutamate receptor subtypes at different developmental stages, thereby playing necessary roles in excitatory synapse development.
Collapse
|
47
|
DLGS97/SAP97 is developmentally upregulated and is required for complex adult behaviors and synapse morphology and function. J Neurosci 2008; 28:304-14. [PMID: 18171947 DOI: 10.1523/jneurosci.4395-07.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein-protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses.
Collapse
|
48
|
Selective targeting of different neural cell adhesion molecule isoforms during motoneuron myotube synapse formation in culture and the switch from an immature to mature form of synaptic vesicle cycling. J Neurosci 2008; 27:14481-93. [PMID: 18160656 DOI: 10.1523/jneurosci.3847-07.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Characterization of neuromuscular junction formation and function in mice lacking all neural cell adhesion molecule (NCAM) isoforms or only the 180 isoform demonstrated that the 180 isoform was required at adult synapses to maintain effective transmission with repetitive stimulation whereas the 140 and/or 120 isoform(s) were sufficient to mediate the downregulation of synaptic vesicle cycling along the axon after synapse formation. However, the expression and targeting of each isoform and its relationship to distinct forms of synaptic vesicle cycling before and after synapse formation was previously unknown. By transfecting chick motoneurons with fluorescently tagged mouse 180, 140 and 120 isoforms, we show that before myotube contact the 180 and 140 isoforms are expressed in distinct puncta along the axon which are sites of an immature form (Brefeldin A sensitive, L-type Ca2+ channel mediated) of vesicle cycling. After myotube contact the 140 and 180 isoforms are downregulated from the axon and selectively targeted to the presynaptic terminal. This coincided with the downregulation of vesicle cycling along the axon and the expression of the mature form (BFA insensitive, P/Q type Ca2+ channel mediated) of vesicle cycling at the terminal. The synaptic targeting of exogenously expressed 180 and 140 isoforms also occurred when chick motoneurons contacted +/+ mouse myotubes; however only the 180 but not the 140 isoform was targeted on contact with NCAM-/- myotubes. These observations indicate that postsynaptic NCAM is required for the synaptic targeting of presynaptic 140 NCAM but that the localization of presynaptic 180 NCAM occurs via a different mechanism.
Collapse
|
49
|
Gottmann K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J Neurosci Res 2008; 86:223-32. [PMID: 17787017 DOI: 10.1002/jnr.21484] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Delicate control of the synaptic vesicle cycle is required to meet the demands imposed on synaptic transmission by the brain's complex information processing. In addition to intensively analyzed intrinsic regulation, extrinsic modulation of the vesicle cycle by the postsynaptic target neuron has become evident. Recent studies have demonstrated that several families of synaptic cell-adhesion molecules play a significant role in transsynaptic retrograde signaling. Different adhesion systems appear to specifically target distinct steps of the synaptic vesicle cycle. Signaling via classical cadherins regulates the recruitment of synaptic vesicles to the active zone. The neurexin/neuroligin system has been shown to modulate presynaptic release probability. In addition, reverse signaling via the EphB/ephrinB system plays an important role in the activity-dependent induction of long-term potentiation of presynaptic transmitter release. Moreover, the first hints of involvement of cell-adhesion molecules in vesicle endocytosis have been published. A general hypothesis is that specific adhesion systems might use different but parallel transsynaptic signaling pathways able to selectively modulate each step of the synaptic vesicle cycle in a tightly coordinated manner.
Collapse
Affiliation(s)
- Kurt Gottmann
- Institut für Neuro- und Sinnesphysiologie, Heinrich-Heine Universität, Düsseldorf, Germany.
| |
Collapse
|
50
|
Synaptic adhesion molecules and PSD-95. Prog Neurobiol 2007; 84:263-83. [PMID: 18206289 DOI: 10.1016/j.pneurobio.2007.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.
Collapse
|