1
|
Bai Y, Cai Y, Chang D, Li D, Huo X, Zhu T. Immunotherapy for depression: Recent insights and future targets. Pharmacol Ther 2024; 257:108624. [PMID: 38442780 DOI: 10.1016/j.pharmthera.2024.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Depression stands as a prominent contributor to global disability, entailing an elevated risk of suicide. Substantial evidence supports the notion that immune dysregulation may play a role in the development of depression and impede responses to antidepressant treatments. Immune dysregulation may cause depression in susceptible individuals through raising inflammatory responses. Differences in immune cell types and the release of pro-inflammatory mediators are observed in the blood and cerebrospinal fluid of patients with major depressive disorder, which is associated with neuroimmune dysfunction. Therefore, the interaction of peripheral and central immune targets in depression needs to be understood. Urgent attention is required for the development of innovative therapeutics directed at modulating immune responses for the treatment of depression. This review delineates the immune mechanisms involved in the pathogenesis of depression, assesses the therapeutic potential of immune system targeting for depression treatment, and deliberates on the merits and constraints of employing immunotherapy in the management of depression.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Schneider Y, Gauer C, Andert M, Hoffmann A, Riemenschneider MJ, Krebs W, Chalmers N, Lötzsch C, Naumann UJ, Xiang W, Rothhammer V, Beckervordersandforth R, Schlachetzki JCM, Winkler J. Distinct forebrain regions define a dichotomous astrocytic profile in multiple system atrophy. Acta Neuropathol Commun 2024; 12:1. [PMID: 38167307 PMCID: PMC10759635 DOI: 10.1186/s40478-023-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.
Collapse
Affiliation(s)
- Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - M Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - W Krebs
- Core Unit Bioinformatics, Data Integration and Analysis (CUBiDA), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - N Chalmers
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - C Lötzsch
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - U J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - W Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - V Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - R Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Li Y, Acosta FM, Jiang JX. Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Fibrosis, Epithelial-Mesenchymal Transitions, and Wound Healing. Biomolecules 2023; 13:1796. [PMID: 38136665 PMCID: PMC10742173 DOI: 10.3390/biom13121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| |
Collapse
|
4
|
Lissoni A, Tao S, Allewaert R, Witschas K, Leybaert L. Cx43 Hemichannel and Panx1 Channel Modulation by Gap19 and 10Panx1 Peptides. Int J Mol Sci 2023; 24:11612. [PMID: 37511370 PMCID: PMC10380488 DOI: 10.3390/ijms241411612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cx43 hemichannels (HCs) and Panx1 channels are two genetically distant protein families. Despite the lack of sequence homology, Cx43 and Panx1 channels have been the subject of debate due to their overlapping expression and the fact that both channels present similarities in terms of their membrane topology and electrical properties. Using the mimetic peptides Gap19 and 10Panx1, this study aimed to investigate the cross-effects of these peptides on Cx43 HCs and Panx1 channels. The single-channel current activity from stably expressing HeLa-Cx43 and C6-Panx1 cells was recorded using patch-clamp experiments in whole-cell voltage-clamp mode, demonstrating 214 pS and 68 pS average unitary conductances for the respective channels. Gap19 was applied intracellularly while 10Panx1 was applied extracellularly at different concentrations (100, 200 and 500 μM) and the average nominal open probability (NPo) was determined for each testing condition. A concentration of 100 µM Gap19 more than halved the NPo of Cx43 HCs, while 200 µM 10Panx1 was necessary to obtain a half-maximal NPo reduction in the Panx1 channels. Gap19 started to significantly inhibit the Panx1 channels at 500 µM, reducing the NPo by 26% while reducing the NPo of the Cx43 HCs by 84%. In contrast 10Panx1 significantly reduced the NPo of the Cx43 HCs by 37% at 100 µM and by 83% at 200 µM, a concentration that caused the half-maximal inhibition of the Panx1 channels. These results demonstrate that 10Panx1 inhibits Cx43 HCs over the 100-500 µM concentration range while 500 µM intracellular Gap19 is necessary to observe some inhibition of Panx1 channels.
Collapse
|
5
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Jiang H, Zhang Y, Wang ZZ, Chen NH. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules 2023; 28:molecules28041820. [PMID: 36838809 PMCID: PMC9961786 DOI: 10.3390/molecules28041820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Major depressive disorder (MDD) is a leading chronic mental illness worldwide, characterized by anhedonia, pessimism and even suicidal thoughts. Connexin 43 (Cx43), mainly distributed in astrocytes of the brain, is by far the most widely and ubiquitously expressed connexin in almost all vital organs. Cx43 forms gap junction channels in the brain, which mediate energy exchange and effectively maintain physiological homeostasis. Increasing evidence suggests the crucial role of Cx43 in the pathogenesis of MDD. Neuroinflammation is one of the most common pathological features of the central nervous system dysfunctions. Inflammatory factors are abnormally elevated in patients with depression and are closely related to nearly all links of depression. After activating the inflammatory pathway in the brain, the release and uptake of glutamate and adenosine triphosphate, through Cx43 in the synaptic cleft, would be affected. In this review, we have summarized the association between Cx43 and neuroinflammation, the cornerstones linking inflammation and depression, and Cx43 abnormalities in depression. We also discuss the significant association of Cx43 in inflammation and depression, which will help to explore new antidepressant drug targets.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| |
Collapse
|
7
|
Pérez-Núñez R, Chamorro A, González MF, Contreras P, Artigas R, Corvalán AH, van Zundert B, Reyes C, Moya PR, Avalos AM, Schneider P, Quest AFG, Leyton L. Protein kinase B (AKT) upregulation and Thy-1-α vβ 3 integrin-induced phosphorylation of Connexin43 by activated AKT in astrogliosis. J Neuroinflammation 2023; 20:5. [PMID: 36609298 PMCID: PMC9817390 DOI: 10.1186/s12974-022-02677-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvβ3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. METHODS Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). RESULTS The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. CONCLUSIONS Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Alejandro Chamorro
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - María Fernanda González
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Pamela Contreras
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Rocío Artigas
- grid.7870.80000 0001 2157 0406Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile
| | - Alejandro H. Corvalán
- grid.7870.80000 0001 2157 0406Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile ,grid.7870.80000 0001 2157 0406Department of Hematology and Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile
| | - Brigitte van Zundert
- grid.412848.30000 0001 2156 804XInstitute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, 837-0186 Santiago, Chile ,grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655 USA
| | - Christopher Reyes
- grid.412185.b0000 0000 8912 4050Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R. Moya
- grid.412185.b0000 0000 8912 4050Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana María Avalos
- grid.441837.d0000 0001 0765 9762Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Pascal Schneider
- grid.9851.50000 0001 2165 4204Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Andrew F. G. Quest
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Lisette Leyton
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| |
Collapse
|
8
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
9
|
Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Semin Cancer Biol 2022; 86:846-856. [PMID: 35143991 DOI: 10.1016/j.semcancer.2022.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/08/2023]
Abstract
Cancer cells reside amongst a complex milieu of stromal cells and structural features known as the tumor microenvironment. Often cancer cells divert and co-opt functions of stromal cells of the microenvironment to support tumor progression and treatment resistance. During therapy targeting cancer cells, the stromal cells of the microenvironment receive therapy to the same extent as cancer cells. Stromal cells therefore activate a variety of responses to the damage induced by these therapies, and some of those responses may support tumor progression and resistance. We review here the response of stromal cells to cancer therapy with a focus on radiotherapy in glioblastoma. We highlight the response of endothelial cells and the vasculature, macrophages and microglia, and astrocytes, as well as describing resulting changes in the extracellular matrix. We emphasize the complex interplay of these cellular factors in their dynamic responses. Finally, we discuss their resulting support of cancer cells in tumor progression and therapy resistance. Understanding the stromal cell response to therapy provides insight into complementary therapeutic targets to enhance tumor response to existing treatment options.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
McDouall A, Zhou KQ, Bennet L, Green CR, Gunn AJ, Davidson JO. Connexins, Pannexins and Gap Junctions in Perinatal Brain Injury. Biomedicines 2022; 10:1445. [PMID: 35740466 PMCID: PMC9220888 DOI: 10.3390/biomedicines10061445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal brain injury secondary to hypoxia-ischemia and/or infection/inflammation remains a major cause of disability. Therapeutic hypothermia significantly improves outcomes, but in randomized controlled trials nearly half of infants still died or survived with disability, showing that additional interventions are needed. There is growing evidence that brain injury spreads over time from injured to previously uninjured regions of the brain. At least in part, this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in many brain cells. Opening of these membrane channels releases adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important role in normal signaling, but pathologically can trigger the assembly of the multi-protein inflammasome complex. The inflammasome complex promotes activation of inflammatory caspases, and release of inflammatory cytokines. Overall, the connexin hemichannel appears to play a primary role in propagation of injury and chronic disease, and connexin hemichannel blockade has been shown to be neuroprotective in multiple animal models. Thus, there is potential for some blockers of connexin or pannexin channels to be developed into targeted interventions that could be used in conjunction with or separate to therapeutic hypothermia.
Collapse
Affiliation(s)
- Alice McDouall
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Kelly Q. Zhou
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Laura Bennet
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Colin R. Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Alistair J. Gunn
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| |
Collapse
|
11
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability to and Maintenance of Stress-Mediated Neuropathology and Depression. Front Cell Neurosci 2022; 16:869779. [PMID: 35530179 PMCID: PMC9074831 DOI: 10.3389/fncel.2022.869779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022] Open
Abstract
Significant stress exposure and psychiatric depression are associated with morphological, biochemical, and physiological disturbances of astrocytes in specific brain regions relevant to the pathophysiology of those disorders, suggesting that astrocytes are involved in the mechanisms underlying the vulnerability to or maintenance of stress-related neuropathology and depression. To understand those mechanisms a variety of studies have probed the effect of various modalities of stress exposure on the metabolism, gene expression and plasticity of astrocytes. These studies have uncovered the participation of various cellular pathways, such as those for intracellular calcium regulation, neuroimmune responses, extracellular ionic regulation, gap junctions-based cellular communication, and regulation of neurotransmitter and gliotransmitter release and uptake. More recently epigenetic modifications resulting from exposure to chronic forms of stress or to early life adversity have been suggested to affect not only neuronal mechanisms but also gene expression and physiology of astrocytes and other glial cells. However, much remains to be learned to understand the specific role of those and other modifications in the astroglial contribution to the vulnerability to and maintenance of stress-related disorders and depression, and for leveraging that knowledge to achieve more effective psychiatric therapies.
Collapse
|
12
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
13
|
Linsambarth S, Carvajal FJ, Moraga‐Amaro R, Mendez L, Tamburini G, Jimenez I, Verdugo DA, Gómez GI, Jury N, Martínez P, Zundert B, Varela‐Nallar L, Retamal MA, Martin C, Altenberg GA, Fiori MC, Cerpa W, Orellana JA, Stehberg J. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR‐dependent transmission and short‐term fear memory in the basolateral amygdala. FASEB J 2022; 36:e22134. [DOI: 10.1096/fj.202100798rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sergio Linsambarth
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Rodrigo Moraga‐Amaro
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Luis Mendez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Giovanni Tamburini
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Ivanka Jimenez
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Daniel Antonio Verdugo
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Gonzalo I. Gómez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Nur Jury
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Pablo Martínez
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Lorena Varela‐Nallar
- Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa. Facultad de Medicina Clínica Alemana Universidad del Desarrollo Santiago Chile
| | - Claire Martin
- Unité de Biologie Fonctionnelle et Adaptative Centre National la Recherche Scientifique Unité Mixte de Recherche 8251 Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics Center for Membrane Protein Research Texas Tech University Health Sciences Center Lubbock Texas USA
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Juan A. Orellana
- Departamento de Neurología Escuela de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología Instituto de Ciencias Biomédicas Facultad de Medicina y Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile
| |
Collapse
|
14
|
Zhao Y, Qi Y, Li Q, Quan H, Liu D, Zhou H. Connexin43 inhibition attenuated dopaminergic neuronal loss in the lipopolysaccharide-induced mice model of Parkinson's disease. Neurosci Lett 2022; 771:136471. [PMID: 35065246 DOI: 10.1016/j.neulet.2022.136471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Studies using in vitro Parkinson's disease (PD) models have found that lipopolysaccharide (LPS) induced reduction of connexin 43 (Cx43) gap junction communication and elevation of hemichannel function, which could cause neurotoxicity directly and indirectly via excessive ATP and glutamate release. However, in vivo study about Cx43 expression and function, as well as the efficacy of Cx43 inhibition for neuronal survival in PD is lacking. This study aimed to unravel the role of Cx43 in PD and understand the underlying mechanisms using an in vivo PD model. Male C57BL/6 mice received intranigral injection of LPS (5 μg) and 43Gap27 (4 μg), a Cx43 inhibitor, simultaneously. Results showed that following LPS treatment, total Cx43 expression decreased by about 60%, but the relative level of phosphorylated Cx43 increased to about double that controls (all p < 0.05). The administration of 43Gap27 significantly attenuated the loss of dopaminergic neurons and restored dopamine and its metabolites levels. Moreover, 43Gap27 treatment inhibited intense microgliosis and astrogliosis in nigrostriatal system induced by LPS and also ameliorated elevated levels of inflammatory mediators. Interestingly, Cx43 inhibition also increased nerve growth factors. In conclusion, Cx43 inhibition was able to prevent LPS-mediated dopaminergic neuronal death, possibly via neuroinflammation reaction reduction and neurotrophic factors elevation. Therefore, Cx43 may be a promising therapeutic target for degenerative neurological disorders such as PD.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; The Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Disease, Bonn, Germany
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
15
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
16
|
Zhao JJ, Wang ZH, Zhang YJ, Wang WJ, Cheng AF, Rong PJ, Shan CL. The mechanisms through which auricular vagus nerve stimulation protects against cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 17:594-600. [PMID: 34380899 PMCID: PMC8504367 DOI: 10.4103/1673-5374.320992] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Previous studies have shown that vagus nerve stimulation can improve patients' locomotor function. The stimulation of the auricular vagus nerve, which is the only superficial branch of the vagus nerve, may have similar effects to vagus nerve stimulation. However, the precise mechanisms remain poorly understood. In this study, rat models of cerebral ischemia/reperfusion injury were established by modified Longa ligation. Twenty-four hours later, 7-day auricular vagus nerve stimulation was performed. The results showed that auricular vagus nerve stimulation promoted the secretion of acetylcholine, inhibited the secretion of interleukin-1β, interleukin-6, and tumor necrosis factor-α, and reduced connexin 43 phosphorylation in the ischemic penumbra and motor cortex, promoting locomotor function recovery in rats with cerebral ischemia/reperfusion injury. These findings suggested that auricular vagus nerve stimulation promotes the recovery of locomotor function in rats with cerebral ischemia/reperfusion injury by altering the secretion of acetylcholine and inflammatory factors and the phosphorylation of connexin 43. This study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine on November 8, 2019 (approval No. PZSHUTCM191108014).
Collapse
Affiliation(s)
- Jing-Jun Zhao
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; School of Rehabilitation Science; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zheng-Hui Wang
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ying-Jie Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Wen-Jing Wang
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Lei Shan
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; School of Rehabilitation Science; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
17
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
18
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of Lamotrigine and Topiramate on Glial Properties in an Astrocyte-Microglia Co-Culture Model of Inflammation. Int J Neuropsychopharmacol 2021; 25:185-196. [PMID: 34791253 PMCID: PMC8929754 DOI: 10.1093/ijnp/pyab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany,Correspondence: Fatme Seval Ismail, MD, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23–25, 44892 Bochum (; )
| |
Collapse
|
19
|
de Fraga LS, Tassinari ID, Jantsch J, Guedes RP, Bambini-Junior V. 'A picture is worth a thousand words': The use of microscopy for imaging neuroinflammation. Clin Exp Immunol 2021; 206:325-345. [PMID: 34596237 DOI: 10.1111/cei.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy has come a long way to the most recent techniques that make it possible to perform images in live cells and animals in health and disease. Many pathological conditions of the central nervous system have already been linked to inflammatory responses. In this scenario, several available markers and techniques can help imaging and unveil the neuroinflammatory process. Moreover, microscopy imaging techniques have become even more necessary to validate the large quantity of data generated in the era of 'omics'. This review aims to highlight how to assess neuroinflammation by using microscopy as a tool to provide specific details about the cell's architecture during neuroinflammatory conditions. First, we describe specific markers that have been used in light microscopy studies and that are widely applied to unravel and describe neuroinflammatory mechanisms in distinct conditions. Then, we discuss some important methodologies that facilitate the imaging of these markers, such as immunohistochemistry and immunofluorescence techniques. Emphasis will be given to studies using two-photon microscopy, an approach that revolutionized the real-time assessment of neuroinflammatory processes. Finally, some studies integrating omics with microscopy will be presented. The fusion of these techniques is developing, but the high amount of data generated from these applications will certainly improve comprehension of the molecular mechanisms involved in neuroinflammation.
Collapse
Affiliation(s)
- Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, UK
| |
Collapse
|
20
|
Prieto-Villalobos J, Alvear TF, Liberona A, Lucero CM, Martínez-Araya CJ, Balmazabal J, Inostroza CA, Ramírez G, Gómez GI, Orellana JA. Astroglial Hemichannels and Pannexons: The Hidden Link between Maternal Inflammation and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22179503. [PMID: 34502412 PMCID: PMC8430734 DOI: 10.3390/ijms22179503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal inflammation during pregnancy causes later-in-life alterations of the offspring’s brain structure and function. These abnormalities increase the risk of developing several psychiatric and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might contribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of prenatal inflammation and the experience of a second immune challenge during adulthood. On the other hand, maternal inflammation could cause excitotoxicity by producing the release of high amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal damage. Understanding how hemichannels and pannexons participate in maternal inflammation-induced brain abnormalities could be critical for developing pharmacological therapies against neurological disorders observed in the offspring.
Collapse
Affiliation(s)
- Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Andrés Liberona
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Claudio J. Martínez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Javiera Balmazabal
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Carla A. Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gigliola Ramírez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
- Correspondence: ; Tel.: +56-23548105
| |
Collapse
|
21
|
Li B, Song W, Cheng Y, Zhang K, Tian H, Du Z, Wang J, Wang J, Zhang W, Zhu L. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147007. [PMID: 33872900 DOI: 10.1016/j.scitotenv.2021.147007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 05/23/2023]
Abstract
The effects of microplastics (MPs) on terrestrial organisms remain poorly understood, even though soil is an important MPs sink. In this study, the earthworms Eisenia fetida were exposed to 0.25% (w/w) of industrial-grade high-density polyethylene (HDPE, 28-145, 133-415 and 400-1464 μm) and polypropylene (PP, 8-125, 71-383 and 761-1660 μm) MPs in an agricultural soil for 28 d. The results showed that HDPE and PP MPs with different size ranges can be ingested by E. fetida. Exposure to different size ranges of HDPE and PP MPs altered the activities of superoxide dismutase, catalase and glutathione S-transferase and induced an increase in the 8-hydroxy-2'-deoxyguanosine level in E. fetida, suggesting that MPs-induced oxidative stress occurred in E. fetida. A size and type-dependent toxicity of MPs to E. fetida was demonstrated by the integrated biological response index. In addition, to obtain detailed molecular information on the responses of E. fetida to MPs exposure, transcriptomic analysis was conducted for E. fetida from HDPE (28-145 μm) and PP (8-125 μm) treatment groups. Transcriptomic analysis identified 34,937 and 28,494 differentially expressed genes in the HDPE and PP MPs treatments compared with the control, respectively. And, exposure to HDPE and PP MPs significantly disturbed several pathways closely related to neurodegeneration, oxidative stress and inflammatory responses in E. fetida. This study provides important information for the ecological risk assessment of different size ranges and types of industrial-grade MPs.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Wenhui Song
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Yali Cheng
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Kaihua Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Huimei Tian
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Wen Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
22
|
Retamal MA, Fernandez-Olivares A, Stehberg J. Over-activated hemichannels: A possible therapeutic target for human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166232. [PMID: 34363932 DOI: 10.1016/j.bbadis.2021.166232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Santiago, Chile; Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Santiago, Chile.
| | | | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
23
|
Decreased connexin43 expression in the hippocampus is related to the antidepressant effect of amitriptyline in neuropathic pain mice. Biochem Biophys Res Commun 2021; 566:141-147. [PMID: 34126344 DOI: 10.1016/j.bbrc.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Downregulation of astrocytic connexin43 (Cx43) has been observed in several brain regions in rodents and patients with depression. However, its specific role in this effect remains unknown. Moreover, chronic pain can induce depressive disorders. Therefore, the current study examined the relationship between Cx43 expression and depressive-like behavior in a neuropathic pain model. Neuropathic pain was induced by spared nerve injury (SNI) in mice. Depressive-like behavior was evaluated using the forced swim test. Expression of Cx43 in the hippocampus was evaluated using Western blotting and real-time PCR. SNI downregulated Cx43 protein in the contralateral hippocampus of mice, whereas expression of hippocampal Cx43 mRNA was not altered following SNI. Although SNI mice showed longer immobility time compared with sham mice during the forced swim test, duration of depressive-like behavior was not correlated with the expression of Cx43 in the hippocampus of SNI mice. Repeated intraperitoneal administration of amitriptyline ameliorated SNI-induced depressive-like behavior. Furthermore, the antidepressant effect of amitriptyline was correlated with decreased hippocampal Cx43 expression in SNI mice. The current findings suggest that the alteration of Cx43 expression in the hippocampus may not be involved in the induction of depressive disorder but may influence the efficacy of antidepressants. Therefore, the level of Cx43 expression in the hippocampus could be a key parameter to evaluate individual differences in antidepressant effects in patients with depressive disorder.
Collapse
|
24
|
Huang X, Su Y, Wang N, Li H, Li Z, Yin G, Chen H, Niu J, Yi C. Astroglial Connexins in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:657514. [PMID: 34122008 PMCID: PMC8192976 DOI: 10.3389/fnmol.2021.657514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Astrocytes play a crucial role in the maintenance of the normal functions of the Central Nervous System (CNS). During the pathogenesis of neurodegenerative diseases, astrocytes undergo morphological and functional remodeling, a process called reactive astrogliosis, in response to the insults to the CNS. One of the key aspects of the reactive astrocytes is the change in the expression and function of connexins. Connexins are channel proteins that highly expressed in astrocytes, forming gap junction channels and hemichannels, allowing diffusional trafficking of small molecules. Alterations of astrocytic connexin expression and function found in neurodegenerative diseases have been shown to affect the disease progression by changing neuronal function and survival. In this review, we will summarize the role of astroglial connexins in neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Also, we will discuss why targeting connexins can be a plausible therapeutic strategy to manage these neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaomin Huang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nan Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Li
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhigang Li
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Guowei Yin
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Jianqin Niu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
25
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
26
|
González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An Update on Connexin Gap Junction and Hemichannels in Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22063194. [PMID: 33801118 PMCID: PMC8004116 DOI: 10.3390/ijms22063194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.
Collapse
Affiliation(s)
- Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Paloma A. Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Diana Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile
- Correspondence: ; Tel.: +56-2-26618559
| |
Collapse
|
27
|
de Morais SD, Kak G, Menousek JP, Kielian T. Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm. Front Immunol 2021; 12:625467. [PMID: 33708216 PMCID: PMC7940520 DOI: 10.3389/fimmu.2021.625467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections in the central nervous system (CNS) can be life threatening and often impair neurological function. Biofilm infection is a complication following craniotomy, a neurosurgical procedure that involves the removal and replacement of a skull fragment (bone flap) to access the brain for surgical intervention. The incidence of infection following craniotomy ranges from 1% to 3% with approximately half caused by Staphylococcus aureus (S. aureus). These infections present a significant therapeutic challenge due to the antibiotic tolerance of biofilm and unique immune properties of the CNS. Previous studies have revealed a critical role for innate immune responses during S. aureus craniotomy infection. Experiments using knockout mouse models have highlighted the importance of the pattern recognition receptor Toll-like receptor 2 (TLR2) and its adaptor protein MyD88 for preventing S. aureus outgrowth during craniotomy biofilm infection. However, neither molecule affected bacterial burden in a mouse model of S. aureus brain abscess highlighting the distinctions between immune regulation of biofilm vs. planktonic infection in the CNS. Furthermore, the immune responses elicited during S. aureus craniotomy infection are distinct from biofilm infection in the periphery, emphasizing the critical role for niche-specific factors in dictating S. aureus biofilm-leukocyte crosstalk. In this review, we discuss the current knowledge concerning innate immunity to S. aureus craniotomy biofilm infection, compare this to S. aureus biofilm infection in the periphery, and discuss the importance of anatomical location in dictating how biofilm influences inflammatory responses and its impact on bacterial clearance.
Collapse
Affiliation(s)
- Sharon Db de Morais
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
28
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
29
|
Rabah Y, Rubino B, Moukarzel E, Agulhon C. Characterization of transgenic mouse lines for selectively targeting satellite glial cells and macrophages in dorsal root ganglia. PLoS One 2020; 15:e0229475. [PMID: 32915783 PMCID: PMC7485865 DOI: 10.1371/journal.pone.0229475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
The importance of glial cells in the modulation of neuronal processes is now generally accepted. In particular, enormous progress in our understanding of astrocytes and microglia physiology in the central nervous system (CNS) has been made in recent years, due to the development of genetic and molecular toolkits. However, the roles of satellite glial cells (SGCs) and macrophages-the peripheral counterparts of astrocytes and microglia-remain poorly studied despite their involvement in debilitating conditions, such as pain. Here, we characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines previously used for studying astrocytes and microglia, with the goal to implement them for investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share some molecular properties, most tested transgenic lines were found to not be suitable for studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing transgene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a GFP-expressing line allowing the selective visualization of macrophages. In conclusion, among the tools available for exploring astrocyte functions, a few can be used for studying selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize other available mouse lines as well as to develop, rigorously characterize and validate new molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and disease.
Collapse
Affiliation(s)
- Yasmine Rabah
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Bruna Rubino
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Elsie Moukarzel
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
| | - Cendra Agulhon
- Integrative Neuroscience and Cognition Center (CNRS UMR8002), Glia-Glia & Glia-Neuron Interactions Laboratory, Faculty of Basic and Biomedical Sciences, Paris Descartes University, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Liddelow SA, Marsh SE, Stevens B. Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime? Trends Immunol 2020; 41:820-835. [PMID: 32819809 DOI: 10.1016/j.it.2020.07.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/08/2023]
Abstract
Microglia-astrocyte interactions represent a delicate balance affecting neural cell functions in health and disease. Tightly controlled to maintain homeostasis during physiological conditions, rapid and prolonged departures during disease, infection, and following trauma drive multiple outcomes: both beneficial and detrimental. Recent sequencing studies at the bulk and single-cell level in humans and rodents provide new insight into microglia-astrocyte communication in homeostasis and disease. However, the complex changing ways these two cell types functionally interact has been a barrier to understanding disease initiation, progression, and disease mechanisms. Single cell sequencing is providing new insights; however, many questions remain. Here, we discuss how to bridge transcriptional states to specific functions so we can develop therapies to mediate negative effects of altered microglia-astrocyte interactions.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU School of Medicine, New York, NY, USA.
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA., USA.
| |
Collapse
|
31
|
Papaneophytou C, Georgiou E, Kleopa KA. The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 2020; 13:247-263. [PMID: 31232168 PMCID: PMC6602578 DOI: 10.1080/19336950.2019.1631107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gap junctions (GJs) provide channels for direct cell-to-cell connectivity serving the homeostasis in several organs of vertebrates including the central (CNS) and peripheral (PNS) nervous systems. GJs are composed of connexins (Cx), which show a highly distinct cellular and subcellular expression pattern. Oligodendrocytes, the myelinating cells of the CNS, are characterized by extensive GJ connectivity with each other as well as with astrocytes. The main oligodendrocyte connexins forming these GJ channels are Cx47 and Cx32. The importance of these channels has been highlighted by the discovery of human diseases caused by mutations in oligodendrocyte connexins, manifesting with leukodystrophy or transient encephalopathy. Experimental models have provided further evidence that oligodendrocyte GJs are essential for CNS myelination and homeostasis, while a strong inflammatory component has been recognized in the absence of oligodendrocyte connexins. Further studies revealed that connexins are also disrupted in multiple sclerosis (MS) brain, and in experimental models of induced inflammatory demyelination. Moreover, induced demyelination was more severe and associated with higher degree of CNS inflammation in models with oligodendrocyte GJ deficiency, suggesting that disrupted connexin expression in oligodendrocytes is not only a consequence but can also drive a pro-inflammatory environment in acquired demyelinating disorders such as MS. In this review, we summarize the current insights from human disorders as well as from genetic and acquired models of demyelination related to oligodendrocyte connexins, with the remaining challenges and perspectives.
Collapse
Affiliation(s)
- Christos Papaneophytou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,b Department of Life and Health Sciences, School of Sciences and Engineering , University of Nicosia , Nicosia , Cyprus
| | - Elena Georgiou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Kleopas A Kleopa
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,c Neurology Clinics , the Cyprus Institute of Neurology and Genetics, and the Cyprus School of Molecular Medicine , Nicosia , Cyprus
| |
Collapse
|
32
|
Sáez JC, Vargas AA, Hernández DE, Ortiz FC, Giaume C, Orellana JA. Permeation of Molecules through Astroglial Connexin 43 Hemichannels Is Modulated by Cytokines with Parameters Depending on the Permeant Species. Int J Mol Sci 2020; 21:ijms21113970. [PMID: 32492823 PMCID: PMC7312936 DOI: 10.3390/ijms21113970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that connexin hemichannels do not act as freely permeable non-selective pores, but they select permeants in an isoform-specific manner with cooperative, competitive and saturable kinetics. The aim of this study was to investigate whether the treatment with a mixture of IL-1β plus TNF-α, a well-known pro-inflammatory condition that activates astroglial connexin 43 (Cx43) hemichannels, could alter their permeability to molecules. We found that IL-1β plus TNF-α left-shifted the dye uptake rate vs. dye concentration relationship for Etd and 2-NBDG, but the opposite took place for DAPI or YO-PRO-1, whereas no alterations were observed for Prd. The latter modifications were accompanied of changes in Kd (Etd, DAPI, YO-PRO-1 or 2-NBDG) and Hill coefficients (Etd and YO-PRO-1), but not in alterations of Vmax. We speculate that IL-1β plus TNF-α may distinctively affect the binding sites to permeants in astroglial Cx43 hemichannels rather than their number in the cell surface. Alternatively, IL-1β plus TNF-α could induce the production of endogenous permeants that may favor or compete for in the pore-lining residues of Cx43 hemichannels. Future studies shall elucidate whether the differential ionic/molecule permeation of Cx43 hemichannels in astrocytes could impact their communication with neurons in the normal and inflamed nervous system.
Collapse
Affiliation(s)
- Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Aníbal A. Vargas
- Instituto de Ciencias de la Salud, Universidad de O′Higgins, Rancagua 2820000, Chile;
| | - Diego E. Hernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
| | - Fernando C. Ortiz
- Mechanisms on Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France;
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Correspondence: ; Tel.: +56-2-968399128
| |
Collapse
|
33
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. Int J Mol Sci 2020; 21:ijms21072503. [PMID: 32260308 PMCID: PMC7178136 DOI: 10.3390/ijms21072503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Collapse
|
35
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, Orellana JA. The Opening of Connexin 43 Hemichannels Alters Hippocampal Astrocyte Function and Neuronal Survival in Prenatally LPS-Exposed Adult Offspring. Front Cell Neurosci 2019; 13:460. [PMID: 31680871 PMCID: PMC6797550 DOI: 10.3389/fncel.2019.00460] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical evidence has revealed that children born from mothers exposed to viral and bacterial pathogens during pregnancy are more likely to suffer various neurological disorders including schizophrenia, autism bipolar disorder, major depression, epilepsy, and cerebral palsy. Despite that most research has centered on the impact of prenatal inflammation in neurons and microglia, the potential modifications of astrocytes and neuron-astrocyte communication have received less scrutiny. Here, we evaluated whether prenatally LPS-exposed offspring display alterations in the opening of astrocyte hemichannels and pannexons in the hippocampus, together with changes in neuroinflammation, intracellular Ca2+ and nitric oxide (NO) signaling, gliotransmitter release, cell arborization, and neuronal survival. Ethidium uptake recordings revealed that prenatal LPS exposure enhances the opening of astrocyte Cx43 hemichannels and Panx1 channels in the hippocampus of adult offspring mice. This enhanced channel activity occurred by a mechanism involving a microglia-dependent production of IL-1β/TNF-α and the stimulation of p38 MAP kinase/iNOS/[Ca2+]i-mediated signaling and purinergic/glutamatergic pathways. Noteworthy, the activity of Cx43 hemichannels affected the release of glutamate, [Ca2+]i handling, and morphology of astrocytes, whereas also disturbed neuronal function, including the dendritic arbor and spine density, as well as survival. We speculate that excitotoxic levels of glutamate triggered by the activation of Cx43 hemichannels may contribute to hippocampal neurotoxicity and damage in prenatally LPS-exposed offspring. Therefore, the understanding of how astrocyte-neuron crosstalk is an auspicious avenue toward the development of broad treatments for several neurological disorders observed in children born to women who had a severe infection during gestation.
Collapse
Affiliation(s)
- Carolina E Chávez
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz C Avendaño
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
CGRP signalling inhibits NO production through pannexin-1 channel activation in endothelial cells. Sci Rep 2019; 9:7932. [PMID: 31138827 PMCID: PMC6538758 DOI: 10.1038/s41598-019-44333-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O2• -) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O2• --dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.
Collapse
|
38
|
Díaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA, Orellana JA. Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia 2019; 67:1598-1619. [PMID: 31033038 DOI: 10.1002/glia.23631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Diverse studies have suggested that cytoplasmic inclusions of misfolded α-synuclein in neuronal and glial cells are main pathological features of different α-synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α-synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron-glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α-synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+ ]i ), and purinergic and glutamatergic signaling. Relevantly, the α-synuclein-induced opening of hemichannels and pannexons resulted in alterations in [Ca2+ ]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α-synuclein-mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α-synucleinopathies.
Collapse
Affiliation(s)
- Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
39
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
41
|
Mederos S, Hernández-Vivanco A, Ramírez-Franco J, Martín-Fernández M, Navarrete M, Yang A, Boyden ES, Perea G. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 2019; 67:915-934. [PMID: 30632636 DOI: 10.1002/glia.23580] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Optogenetics has been widely expanded to enhance or suppress neuronal activity and it has been recently applied to glial cells. Here, we have used a new approach based on selective expression of melanopsin, a G-protein-coupled photopigment, in astrocytes to trigger Ca2+ signaling. Using the genetically encoded Ca2+ indicator GCaMP6f and two-photon imaging, we show that melanopsin is both competent to stimulate robust IP3-dependent Ca2+ signals in astrocyte fine processes, and to evoke an ATP/Adenosine-dependent transient boost of hippocampal excitatory synaptic transmission. Additionally, under low-frequency light stimulation conditions, melanopsin-transfected astrocytes can trigger long-term synaptic changes. In vivo, melanopsin-astrocyte activation enhances episodic-like memory, suggesting melanopsin as an optical tool that could recapitulate the wide range of regulatory actions of astrocytes on neuronal networks in behaving animals. These results describe a novel approach using melanopsin as a precise trigger for astrocytes that mimics their endogenous G-protein signaling pathways, and present melanopsin as a valuable optical tool for neuron-glia studies.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Jorge Ramírez-Franco
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Marta Navarrete
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Aimei Yang
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
42
|
Gómez GI, Falcon RV, Maturana CJ, Labra VC, Salgado N, Rojas CA, Oyarzun JE, Cerpa W, Quintanilla RA, Orellana JA. Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Front Cell Neurosci 2018; 12:472. [PMID: 30564103 PMCID: PMC6288256 DOI: 10.3389/fncel.2018.00472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
A mounting body of evidence indicates that adolescents are specially more susceptible to alcohol influence than adults. However, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity and recently, the opening of hemichannels and pannexons has been found to participate in both processes. Here, we evaluated whether adolescent rats exposed to ethanol exhibit changes in the activity of astrocyte hemichannels and pannexons in the hippocampus, as well as alterations in astrocyte arborization and cytokine levels. Adolescent rats were subjected to ethanol (3.0 g/kg) for two successive days at 48-h periods over 14 days. The opening of hemichannels and pannexons was examined in hippocampal slices by dye uptake, whereas hippocampal cytokine levels and astroglial arborization were determined by ELISA and Sholl analysis, respectively. We found that adolescent ethanol exposure increased the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in astrocytes. Blockade of p38 mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS) and cyclooxygenases (COXs), as well as chelation of intracellular Ca2+, drastically reduced the ethanol-induced channel opening in astrocytes. Importantly, ethanol-induced Cx43 hemichannel and Panx1 channel activity was correlated with increased levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 in the hippocampus, as well as with profound alterations in astrocyte arbor complexity. Thus, we propose that uncontrolled opening of astrocyte hemichannels and pannexons may contribute not only to the glial dysfunction and neurotoxicity caused by adolescent alcohol consumption, but also to the pathogenesis of alcohol use disorders in the adulthood.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Romina V Falcon
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo A Rojas
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzun
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
43
|
Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Front Mol Neurosci 2018; 11:435. [PMID: 30564096 PMCID: PMC6288452 DOI: 10.3389/fnmol.2018.00435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
The classical view of synapses as the functional contact between presynaptic and postsynaptic neurons has been challenged in recent years by the emerging regulatory role of glial cells. Astrocytes, traditionally considered merely supportive elements are now recognized as active modulators of synaptic transmission and plasticity at the now so-called "tripartite synapse." In addition, an increasing body of evidence indicates that beyond immune functions microglia also participate in various processes aimed to shape synaptic plasticity. Release of neuroactive compounds of glial origin, -process known as gliotransmission-, constitute a widespread mechanism through which glial cells can either potentiate or reduce the synaptic strength. The prevailing vision states that gliotransmission depends on an intracellular Ca2+/exocytotic-mediated release; notwithstanding, growing evidence is pointing at hemichannels (connexons) and pannexin channels (pannexons) as alternative non-vesicular routes for gliotransmitters efflux. In concurrence with this novel concept, both hemichannels and pannexons are known to mediate the transfer of ions and signaling molecules -such as ATP and glutamate- between the cytoplasm and the extracellular milieu. Importantly, recent reports show that glial hemichannels and pannexons are capable to perceive synaptic activity and to respond to it through changes in their functional state. In this article, we will review the current information supporting the "double edge sword" role of hemichannels and pannexons in the function of central and peripheral synapses. At one end, available data support the idea that these channels are chief components of a feedback control mechanism through which gliotransmitters adjust the synaptic gain in either resting or stimulated conditions. At the other end, we will discuss how the excitotoxic release of gliotransmitters and [Ca2+]i overload linked to the opening of hemichannels/pannexons might impact cell function and survival in the nervous system.
Collapse
Affiliation(s)
- Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
44
|
Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, Abrams CK, Kleopa KA. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 2018; 66:2589-2603. [PMID: 30325069 PMCID: PMC6519212 DOI: 10.1002/glia.23513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Gap junctions (GJs) coupling oligodendrocytes to astrocytes and to other oligodendrocytes are formed mainly by connexin47 (Cx47) and a smaller portion by connexin32 (Cx32). Mutations in both connexins cause inherited demyelinating disorders, but their expression is also disrupted in multiple sclerosis (MS). To clarify whether the loss of either Cx47 or Cx32 could modify the outcome of inflammation and myelin loss, we induced experimental autoimmune encephalomyelitis (EAE) in fully backcrossed Cx32 knockout (KO) and Cx47KO mice and compared their outcome with wild type (WT, C57BI/6 N) mice. Cx47KO EAE mice developed the most severe phenotype assessed by clinical scores and behavioral testing, followed by Cx32KO and WT mice. Cx47KO more than Cx32KO EAE mice developed more microglial activation, myelin, and axonal loss than did WT mice. Oligodendrocyte apoptosis and precursor proliferation was also higher in Cx47KO than in Cx32KO or WT EAE mice. Similarly, blood-spinal cord barrier (BSCB) disruption and inflammatory infiltrates of macrophages, T- and B-cells were more severe in Cx47KO than either Cx32KO or WT EAE groups. Finally, expression profiling revealed that several proinflammatory cytokines were higher at the peak of inflammation in the Cx47KO mice and persisted at later stages of EAE in contrast to reduction of their levels in WT EAE mice. Thus, loss of oligodendrocyte GJs aggravates BSCB disruption and inflammatory myelin loss, likely due to dysregulation of proinflammatory cytokines. This mechanism may play an important role in MS brain with reduced connexin expression, as well as in patients with inherited mutations in oligodendrocyte connexins and secondary inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiopathology
- Calcium-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Connexins/genetics
- Connexins/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Freund's Adjuvant/toxicity
- Gap Junctions/metabolism
- Gap Junctions/pathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Hand Strength/physiology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Motor Activity/drug effects
- Motor Activity/genetics
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Peptide Fragments/toxicity
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- Christos P. Papaneophytou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaNicosiaCyprus
| | - Elena Georgiou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Christos Karaiskos
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Irene Sargiannidou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Kyriaki Markoullis
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Mona M. Freidin
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Charles K. Abrams
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Kleopas A. Kleopa
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
45
|
Labra VC, Santibáñez CA, Gajardo-Gómez R, Díaz EF, Gómez GI, Orellana JA. The Neuroglial Dialog Between Cannabinoids and Hemichannels. Front Mol Neurosci 2018; 11:79. [PMID: 29662436 PMCID: PMC5890195 DOI: 10.3389/fnmol.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
The formation of gap junctions was initially thought to be the central role of connexins, however, recent evidence had brought to light the high relevance of unopposed hemichannels as an independent mechanism for the selective release of biomolecules during physiological and pathological conditions. In the healthy brain, the physiological opening of astrocyte hemichannels modulates basal excitatory synaptic transmission. At the other end, the release of potentially neurotoxic compounds through astroglial hemichannels and pannexons has been insinuated as one of the functional alterations that negatively affect the progression of multiple brain diseases. Recent insights in this matter have suggested encannabinoids (eCBs) as molecules that could regulate the opening of these channels during diverse conditions. In this review, we discuss and hypothesize the possible interplay between the eCB system and the hemichannel/pannexon-mediated signaling in the inflamed brain and during event of synaptic plasticity. Most findings indicate that eCBs seem to counteract the activation of major neuroinflammatory pathways that lead to glia-mediated production of TNF-α and IL-1β, both well-known triggers of astroglial hemichannel opening. In contrast to the latter, in the normal brain, eCBs apparently elicit the Ca2+-activation of astrocyte hemichannels, which could have significant consequences on eCB-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Cristian A Santibáñez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
46
|
Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication. Heliyon 2018; 4:e00525. [PMID: 29560438 PMCID: PMC5857518 DOI: 10.1016/j.heliyon.2018.e00525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.
Collapse
|
47
|
Uekawa A, Yamanaka H, Lieben L, Kimira Y, Uehara M, Yamamoto Y, Kato S, Ito K, Carmeliet G, Masuyama R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells. FASEB J 2018; 32:1903-1915. [PMID: 29282249 DOI: 10.1096/fj.201700631r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH)2D3] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH)2D3-independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction. Accordingly, calcium transport in cultured intestinal epithelial cells was increased when the apical side was exposed to low phosphate levels (0.5 mM) compared with normal or high phosphate levels (1.0 or 5.0 mM, respectively). Mechanistically, low phosphate increased ATP in the apical side medium and allowed calcium entry into epithelial cells via the P2X7 purinoreceptor, which results in increased calcium transport. We found that luminal ATP was regulated by the release and degradation of ATP at the epithelium, and phosphate restriction increased ATP release from epithelial cells via connexin-43 hemichannels. Furthermore, ATP degradation by ectonucleotide pyrophosphatase-1 was reduced, which was caused by the reduction of the MAPK cascade. These findings indicate that luminal ATP metabolism regulates transcellular calcium transport in the intestine by an 1,25(OH)2D3-independent mechanism in response to dietary phosphate levels.-Uekawa, A., Yamanaka, H., Lieben, L., Kimira, Y., Uehara, M., Yamamoto, Y., Kato, S., Ito, K., Carmeliet, G., Masuyama, R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.
Collapse
Affiliation(s)
- Atsushi Uekawa
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoki Yamanaka
- Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | - Liesbet Lieben
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Yoshifumi Kimira
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoko Yamamoto
- Surgical Oncology and Vascular Surgery, University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Ritsuko Masuyama
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
48
|
Galinsky R, Davidson JO, Dean JM, Green CR, Bennet L, Gunn AJ. Glia and hemichannels: key mediators of perinatal encephalopathy. Neural Regen Res 2018; 13:181-189. [PMID: 29557357 PMCID: PMC5879879 DOI: 10.4103/1673-5374.226378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypothermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel mediated injury likely involve impaired intracellular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand; The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
50
|
Skiöldebrand E, Lundqvist A, Björklund U, Sandstedt M, Lindahl A, Hansson E, Hultén LM. Inflammatory activation of human cardiac fibroblasts leads to altered calcium signaling, decreased connexin 43 expression and increased glutamate secretion. Heliyon 2017; 3:e00406. [PMID: 29022008 PMCID: PMC5633159 DOI: 10.1016/j.heliyon.2017.e00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 11/01/2022] Open
Abstract
Cardiac fibroblasts, which are abundant in heart tissue, are involved not only in extracellular matrix homeostasis and repair, but also in cardiac remodeling after a myocardial infarction that, in turn, can lead to loss of cardiac function and heart failure. Ca2+ signaling is functionally important in many cell types, but the roles of fibroblast signaling and inflammation in the pathogenesis of heart disease are unclear. Here, we tested the hypothesis that inflammatory activation affects cardiac fibroblasts, both in terms of Ca2+ signaling and their capacity for intercellular communication through the gap junction channel protein connexin 43 (Cx43). We examined Ca2+ responses induced by known modulators of cardiac function such as glutamate, ATP and 5-hydroxytryptamine (5-HT) in human cardiac fibroblasts, under normal and inflammatory conditions. We showed that activation of human cardiac fibroblasts by lipopolysaccharide (LPS) for 24 h altered Ca2+ signaling, increased TLR4 and decreased Cx43 expression. In the fibroblasts, LPS treatment increased glutamate-evoked and decreased 5-HT-evoked Ca2+ signals. LPS activation also induced increased secretion of glutamate and proinflammatory cytokines from these cells. In summary, we propose that inflammatory stimuli can affect intracellular Ca2+ release, Cx43 expression, glutamate release and cytokine secretion in human cardiac fibroblasts. Inflammatory conditions may, therefore, impair intercellular network communication between fibroblasts and cardiomyocytes potentially contributing to cardiac dysfunction.
Collapse
Affiliation(s)
- Eva Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mikael Sandstedt
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, the Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|