1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
3
|
Stebbins K, Somaiya RD, Sabbagh U, Khaksar P, Liang Y, Su J, Fox MA. Retinal Input Is Required for the Maintenance of Neuronal Laminae in the Ventrolateral Geniculate Nucleus. eNeuro 2024; 11:ENEURO.0022-24.2024. [PMID: 39160068 PMCID: PMC11373735 DOI: 10.1523/eneuro.0022-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
Affiliation(s)
- Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Rachana Deven Somaiya
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ubadah Sabbagh
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| | - Parsa Khaksar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Yanping Liang
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia 24061
| | - Michael A Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia 24061
- Department of Biology, College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
4
|
Campbell PW, Govindaiah G, Guido W. Development of reciprocal connections between the dorsal lateral geniculate nucleus and the thalamic reticular nucleus. Neural Dev 2024; 19:6. [PMID: 38890758 PMCID: PMC11184795 DOI: 10.1186/s13064-024-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The thalamic reticular nucleus (TRN) serves as an important node between the thalamus and neocortex, regulating thalamocortical rhythms and sensory processing in a state dependent manner. Disruptions in TRN circuitry also figures prominently in several neurodevelopmental disorders including epilepsy, autism, and attentional defects. An understanding of how and when connections between TRN and 1st order thalamic nuclei, such as the dorsal lateral geniculate nucleus (dLGN), develop is lacking. We used the mouse visual thalamus as a model system to study the organization, pattern of innervation and functional responses between TRN and the dLGN. Genetically modified mouse lines were used to visualize and target the feedforward and feedback components of these intra-thalamic circuits and to understand how peripheral input from the retina impacts their development.Retrograde tracing of thalamocortical (TC) afferents through TRN revealed that the modality-specific organization seen in the adult, is present at perinatal ages and seems impervious to the loss of peripheral input. To examine the formation and functional maturation of intrathalamic circuits between the visual sector of TRN and dLGN, we examined when projections from each nuclei arrive, and used an acute thalamic slice preparation along with optogenetic stimulation to assess the maturation of functional synaptic responses. Although thalamocortical projections passed through TRN at birth, feedforward axon collaterals determined by vGluT2 labeling, emerged during the second postnatal week, increasing in density through the third week. Optogenetic stimulation of TC axon collaterals in TRN showed infrequent, weak excitatory responses near the end of week 1. During weeks 2-4, responses became more prevalent, grew larger in amplitude and exhibited synaptic depression during repetitive stimulation. Feedback projections from visual TRN to dLGN began to innervate dLGN as early as postnatal day 2 with weak inhibitory responses emerging during week 1. During week 2-4, inhibitory responses continued to grow larger, showing synaptic depression during repetitive stimulation. During this time TRN inhibition started to suppress TC spiking, having its greatest impact by week 4-6. Using a mutant mouse that lacks retinofugal projections revealed that the absence of retinal input led to an acceleration of TRN innervation of dLGN but had little impact on the development of feedforward projections from dLGN to TRN. Together, these experiments reveal how and when intrathalamic connections emerge during early postnatal ages and provide foundational knowledge to understand the development of thalamocortical network dynamics as well as neurodevelopmental diseases that involve TRN circuitry.
Collapse
Affiliation(s)
- Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA
- Division of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, USA
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St., Louisville, KY, 40292, USA.
| |
Collapse
|
5
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Stebbins K, Somaiya RD, Sabbagh U, Liang Y, Su J, Fox MA. Retinal input is required for the maintenance of neuronal laminae in the ventral lateral geniculate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575402. [PMID: 38293194 PMCID: PMC10827117 DOI: 10.1101/2024.01.12.575402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
|
7
|
Moreno-Juan V, Aníbal-Martínez M, Herrero-Navarro Á, Valdeolmillos M, Martini FJ, López-Bendito G. Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus. Neuroscience 2023; 508:87-97. [PMID: 35878717 DOI: 10.1016/j.neuroscience.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/17/2023]
Abstract
Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Álvaro Herrero-Navarro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
8
|
Govindaiah G, Fox MA, Guido W. Pattern of Driver-Like Input onto Neurons of the Mouse Ventral Lateral Geniculate Nucleus. eNeuro 2023; 10:ENEURO.0386-22.2022. [PMID: 36609305 PMCID: PMC9850909 DOI: 10.1523/eneuro.0386-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) is a retinorecipient region of thalamus that contributes to a number of complex visual behaviors. Retinal axons that target vLGN terminate exclusively in the external subdivision (vLGNe), which is also transcriptionally and cytoarchitectonically distinct from the internal subdivision (vLGNi). While recent studies shed light on the cell types and efferent projections of vLGNe and vLGNi, we have a crude understanding of the source and nature of the excitatory inputs driving postsynaptic activity in these regions. Here, we address this by conducting in vitro whole-cell recordings in acutely prepared thalamic slices and using electrical and optical stimulation techniques to examine the postsynaptic excitatory activity evoked by the activation of retinal or cortical layer V input onto neurons in vLGNe and vLGNi. Activation of retinal afferents by electrical stimulation of optic tract or optical stimulation of retinal terminals resulted in robust driver-like excitatory activity in vLGNe. Optical activation of corticothalamic terminals from layer V resulted in similar driver-like activity in both vLGNe and vLGNi. Using a dual-color optogenetic approach, we found that many vLGNe neurons received convergent input from these two sources. Both individual pathways displayed similar driver-like properties, with corticothalamic stimulation leading to a stronger form of synaptic depression than retinogeniculate stimulation. We found no evidence of convergence in vLGNi, with neurons only responding to corticothalamic stimulation. These data provide insight into the influence of excitatory inputs to vLGN and reveal that only neurons in vLGNe receive convergent input from both sources.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
9
|
An Early Enriched Experience Drives an Activated Microglial Profile at Site of Corrective Neuroplasticity in Ten-m3 Knock-Out Mice. eNeuro 2023; 10:ENEURO.0162-22.2022. [PMID: 36635245 PMCID: PMC9831145 DOI: 10.1523/eneuro.0162-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/15/2022] Open
Abstract
Environmental enrichment (EE) is beneficial for brain development and function, but our understanding of its capacity to drive circuit repair, the underlying mechanisms, and how this might vary with age remains limited. Ten-m3 knock-out (KO) mice exhibit a dramatic and stereotyped mistargeting of ipsilateral retinal inputs to the thalamus, resulting in visual deficits. We have recently shown a previously unexpected capacity for EE during early postnatal life (from birth for six weeks) to drive the partial elimination of miswired axonal projections, along with a recovery of visually mediated behavior, but the timeline of this repair was unclear. Here, we reveal that with just 3.5 weeks of EE from birth, Ten-m3 KOs exhibit a partial behavioral rescue, accompanied by pruning of the most profoundly miswired retinogeniculate terminals. Analysis suggests that the pruning is underway at this time point, providing an ideal opportunity to probe potential mechanisms. With the shorter EE-period, we found a localized increase in microglial density and activation profile within the identified geniculate region where corrective pruning was observed. No comparable response to EE was found in age-matched wild-type (WT) mice. These findings identify microglia as a potential mechanistic link through which EE drives the elimination of miswired neural circuits during early postnatal development. Activity driven, atypical recruitment of microglia to prune aberrant connectivity and restore function may have important therapeutic implications for neurodevelopmental disorders such as autistic spectrum disorder.
Collapse
|
10
|
Loss of Retinogeniculate Synaptic Function in the DBA/2J Mouse Model of Glaucoma. eNeuro 2022; 9:ENEURO.0421-22.2022. [PMID: 36526366 PMCID: PMC9794376 DOI: 10.1523/eneuro.0421-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Retinal ganglion cell (RGC) axons comprise the optic nerve and carry information to the dorsolateral geniculate nucleus (dLGN), which is then relayed to the cortex for conscious vision. Glaucoma is a blinding neurodegenerative disease that commonly results from intraocular pressure (IOP)-associated injury leading to RGC axonal pathology, disruption of RGC outputs to the brain, and eventual apoptotic loss of RGC somata. The consequences of elevated IOP and glaucomatous pathology on RGC signaling to the dLGN are largely unknown yet are likely to contribute to vision loss. Here, we used anatomic and physiological approaches to study the structure and function of retinogeniculate (RG) synapses in male and female DBA/2J (D2) mice with inherited glaucoma before and after IOP elevation. D2 mice showed progressive loss of anterograde optic tract transport to the dLGN and vGlut2 labeling of RGC axon terminals while patch-clamp measurements of RG synaptic function showed that synaptic transmission was reduced in 9-month and 12-month D2 mice because of the loss of individual RGC axon inputs. TC neuron dendrites had reduced Sholl complexity at 12 months, suggestive of delayed reorganization following reduced synaptic input. There was no detectable change in RGC density in 11- to 12-month D2 retinas, quantified as the number of ganglion cell layer-residing somata immuno-positive for NeuN and immuno-negative for the amacrine marker choline acetyltransferase (ChAT). Thus, observed synaptic defects appear to precede RGC somatic loss. These findings identify glaucoma-associated and IOP-associated deficits in an important subcortical RGC projection target, shedding light on processes linking IOP to vision loss.
Collapse
|
11
|
Somaiya RD, Stebbins K, Gingrich EC, Xie H, Campbell JN, Garcia ADR, Fox MA. Sonic hedgehog-dependent recruitment of GABAergic interneurons into the developing visual thalamus. eLife 2022; 11:e79833. [PMID: 36342840 PMCID: PMC9640189 DOI: 10.7554/elife.79833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Axons of retinal ganglion cells (RGCs) play critical roles in the development of inhibitory circuits in visual thalamus. We previously reported that RGC axons signal astrocytes to induce the expression of fibroblast growth factor 15 (FGF15), a motogen required for GABAergic interneuron migration into visual thalamus. However, how retinal axons induce thalamic astrocytes to generate Fgf15 and influence interneuron migration remains unknown. Here, we demonstrate that impairing RGC activity had little impact on interneuron recruitment into mouse visual thalamus. Instead, our data show that retinal-derived sonic hedgehog (SHH) is essential for interneuron recruitment. Specifically, we show that thalamus-projecting RGCs express SHH and thalamic astrocytes generate downstream components of SHH signaling. Deletion of RGC-derived SHH leads to a significant decrease in Fgf15 expression, as well as in the percentage of interneurons recruited into visual thalamus. Overall, our findings identify a morphogen-dependent neuron-astrocyte signaling mechanism essential for the migration of thalamic interneurons.
Collapse
Affiliation(s)
- Rachana Deven Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
| | - Katelyn Stebbins
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia TechBlacksburgUnited States
- Virginia Tech Carilion School of MedicineRoanokeUnited States
| | - Ellen C Gingrich
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Hehuang Xie
- Fralin Life Sciences Institute at Virginia TechBlacksburgUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Genetics, Bioinformatics and Computational Biology Program, Virginia TechBlacksburgUnited States
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary MedicineBlacksburgUnited States
| | - John N Campbell
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - A Denise R Garcia
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
- Department of Neurobiology and Anatomy, Drexel University College of MedicinePhiladelphiaUnited States
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, College of Science, Virginia TechBlacksburgUnited States
- Department of Biological Sciences, College of Science, Virginia TechBlacksburgUnited States
- Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanokeUnited States
| |
Collapse
|
12
|
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-Modal Plasticity in Brains Deprived of Visual Input Before Vision. Annu Rev Neurosci 2022; 45:471-489. [PMID: 35803589 DOI: 10.1146/annurev-neuro-111020-104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| |
Collapse
|
13
|
Giasafaki C, Grant E, Hoerder‐Suabedissen A, Hayashi S, Lee S, Molnár Z. Cross-hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. J Comp Neurol 2022; 530:978-997. [PMID: 35078267 PMCID: PMC9305932 DOI: 10.1002/cne.25304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.
Collapse
Affiliation(s)
- Chrysoula Giasafaki
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Instituto de Neurociencias de AlicanteCSIC‐UMH, Av. Ramon y Cajals/n 03550 San Juan de AlicanteAlicanteSpain
| | - Eleanor Grant
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | | | - Shuichi Hayashi
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Department of AnatomyKawasaki Medical SchoolKurashikiOkayama701‐0192Japan
| | - Sheena Lee
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | - Zoltán Molnár
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| |
Collapse
|
14
|
Chronic Monocular Deprivation Reveals MMP9-Dependent and -Independent Aspects of Murine Visual System Plasticity. Int J Mol Sci 2022; 23:ijms23052438. [PMID: 35269580 PMCID: PMC8909986 DOI: 10.3390/ijms23052438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9-/- mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9-/- mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD.
Collapse
|
15
|
Bhandari A, Ward TW, Smith J, Van Hook MJ. Structural and functional plasticity in the dorsolateral geniculate nucleus of mice following bilateral enucleation. Neuroscience 2022; 488:44-59. [PMID: 35131394 PMCID: PMC8960354 DOI: 10.1016/j.neuroscience.2022.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Within the nervous system, plasticity mechanisms attempt to stabilize network activity following disruption by injury, disease, or degeneration. Optic nerve injury and age-related diseases can induce homeostatic-like responses in adulthood. We tested this possibility in the thalamocortical (TC) neurons in the dorsolateral geniculate nucleus (dLGN) using patch-clamp electrophysiology, optogenetics, immunostaining, and single-cell dendritic analysis following loss of visual input via bilateral enucleation. We observed progressive loss of vGlut2-positive retinal terminals in the dLGN indicating degeneration post-enucleation that was coincident with changes in microglial morphology indicative of microglial activation. Consistent with the decline of vGlut2 puncta, we also observed loss of retinogeniculate (RG) synaptic function assessed using optogenetic activation of RG axons while performing whole-cell voltage clamp recordings from TC neurons in brain slices. Surprisingly, we did not detect any significant changes in the frequency of miniature post-synaptic currents (mEPSCs) or corticothalamic feedback synapses. Analysis of TC neuron dendritic structure from single-cell dye fills revealed a gradual loss of dendrites proximal to the soma, where TC neurons receive the bulk of RG inputs. Finally, analysis of action potential firing demonstrated that TC neurons have increased excitability following enucleation, firing more action potentials in response to depolarizing current injections. Our findings show that degeneration of the retinal axons/optic nerve and loss of RG synaptic inputs induces structural and functional changes in TC neurons, consistent with neuronal attempts at compensatory plasticity in the dLGN.
Collapse
|
16
|
Stacy AK, Van Hooser SD. Development of Functional Properties in the Early Visual System: New Appreciations of the Roles of Lateral Geniculate Nucleus. Curr Top Behav Neurosci 2022; 53:3-35. [PMID: 35112333 DOI: 10.1007/7854_2021_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the years following Hubel and Wiesel's first reports on ocular dominance plasticity and amblyopia, much attention has been focused on understanding the role of cortical circuits in developmental and experience-dependent plasticity. Initial studies found few differences between retinal ganglion cells and neurons in the lateral geniculate nucleus and uncovered little evidence for an impact of altered visual experience on the functional properties of lateral geniculate nucleus neurons. In the last two decades, however, studies have revealed that the connectivity between the retina and lateral geniculate nucleus is much richer than was previously appreciated, even revealing visual plasticity - including ocular dominance plasticity - in lateral geniculate nucleus neurons. Here we review the development of the early visual system and the impact of experience with a distinct focus on recent discoveries about lateral geniculate nucleus, its connectivity, and evidence for its plasticity and rigidity during development.
Collapse
Affiliation(s)
- Andrea K Stacy
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
17
|
NGF Eye Administration Recovers the TrkB and Glutamate/GABA Marker Deficit in the Adult Visual Cortex Following Optic Nerve Crush. Int J Mol Sci 2021; 22:ijms221810014. [PMID: 34576177 PMCID: PMC8471133 DOI: 10.3390/ijms221810014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.
Collapse
|
18
|
Input-Independent Homeostasis of Developing Thalamocortical Activity. eNeuro 2021; 8:ENEURO.0184-21.2021. [PMID: 33947688 PMCID: PMC8143019 DOI: 10.1523/eneuro.0184-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
The isocortex of all mammals studied to date shows a progressive increase in the amount and continuity of background activity during early development. In humans the transition from a discontinuous (mostly silent, intermittently bursting) cortex to one that is continuously active is complete soon after birth and is a critical prognostic indicator. In the visual cortex of rodents this switch from discontinuous to continuous background activity occurs during the 2 d before eye-opening, driven by activity changes in relay thalamus. The factors that regulate the timing of continuity development, which enables mature visual processing, are unknown. Here, we test the role of the retina, the primary input, in the development of continuous spontaneous activity in the visual cortex of mice using depth electrode recordings from enucleated mice in vivo. Bilateral enucleation at postnatal day (P)6, one week before the onset of continuous activity, acutely silences cortex, yet firing rates and early oscillations return to normal within 2 d and show a normal developmental trajectory through P12. Enucleated animals showed differences in silent period duration and continuity on P13 that resolved on P16, and an increase in low frequency power that did not. Our results show that the timing of cortical activity development is not determined by the major driving input to the system. Rather, even during a period of rapid increase in firing rates and continuity, neural activity in the visual cortex is under homeostatic control that is largely robust to the loss of the primary input.
Collapse
|
19
|
Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, Kita Y, Wang Y, Kim DW, Blackshaw S, Schultz SR, Brickley S, Shimogori T, Delogu A. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 2021; 10:e59272. [PMID: 33522480 PMCID: PMC7906600 DOI: 10.7554/elife.59272] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Collapse
Affiliation(s)
- Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Gerald Moore
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | - Padraic Calpin
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Xhuljana Durmishi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | | | - Yan Wang
- RIKEN, Center for Brain Science (CBS)SaitamaJapan
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Simon R Schultz
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | | | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez‐de la Torre M, Rubenstein JLR. LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 2021; 529:367-420. [PMID: 32420617 PMCID: PMC7671952 DOI: 10.1002/cne.24952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | - Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | | | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| |
Collapse
|
21
|
Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front Cell Neurosci 2021; 14:626056. [PMID: 33584206 PMCID: PMC7873902 DOI: 10.3389/fncel.2020.626056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma—the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth R Bierlein
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
22
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Johnson KO, Triplett JW. Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment. Curr Top Dev Biol 2020; 142:283-317. [PMID: 33706920 DOI: 10.1016/bs.ctdb.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Efficient sensory processing is a complex and important function for species survival. As such, sensory circuits are highly organized to facilitate rapid detection of salient stimuli and initiate motor responses. For decades, the retina's projections to image-forming centers have served as useful models to elucidate the mechanisms by which such exquisite circuitry is wired. In this chapter, we review the roles of molecular cues, neuronal activity, and axon-axon competition in the development of topographically ordered retinal ganglion cell (RGC) projections to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Further, we discuss our current state of understanding regarding the laminar-specific targeting of subclasses of RGCs in the SC and its homolog, the optic tectum (OT). Finally, we cover recent studies examining the alignment of projections from primary visual cortex with RGCs that monitor the same region of space in the SC.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
24
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Campbell PW, Govindaiah G, Masterson SP, Bickford ME, Guido W. Synaptic properties of the feedback connections from the thalamic reticular nucleus to the dorsal lateral geniculate nucleus. J Neurophysiol 2020; 124:404-417. [PMID: 32609582 PMCID: PMC7500366 DOI: 10.1152/jn.00757.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is a shell-like structure comprised of GABAergic neurons that surrounds the dorsal thalamus. While playing a key role in modulating thalamocortical interactions, TRN inhibition of thalamic activity is often thought of as having an all-or-none impact. Although TRN neurons have a dynamic firing range, it remains unclear how variable rates of TRN activity gate thalamocortical transmission. To address this, we examined the ultrastructural features and functional synaptic properties of the feedback connections in the mouse thalamus between TRN and the dorsal lateral geniculate nucleus (dLGN), the principal relay of retinal signals to visual cortex. Using electron microscopy to identify TRN input to dLGN, we found that TRN terminals formed synapses with non-GABAergic postsynaptic profiles. Compared with other nonretinal terminals in dLGN, those from TRN were relatively large and tended to contact proximal regions of relay cell dendrites. To evoke TRN activity in dLGN, we adopted an optogenetic approach by expressing ChR2, or a variant (ChIEF) in TRN terminals. Both in vitro and in vivo recordings revealed that repetitive stimulation of TRN terminals led to a frequency-dependent inhibition of dLGN activity, with higher rates of stimulation resulting in increasing levels of membrane hyperpolarization and corresponding decreases in spike firing. This relationship suggests that alterations in TRN activity lead to graded changes in relay cell spike firing.NEW & NOTEWORTHY The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.
Collapse
Affiliation(s)
- Peter W. Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Sean P. Masterson
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Martha E. Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
26
|
Hooks BM, Chen C. Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System. Neuron 2020; 106:21-36. [PMID: 32272065 DOI: 10.1016/j.neuron.2020.01.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1458 BSTWR, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, Fox MA. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A 2020; 117:2671-2682. [PMID: 31964831 PMCID: PMC7007527 DOI: 10.1073/pnas.1913053117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
Collapse
Affiliation(s)
- Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Naomi E Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ubadah Sabbagh
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Rachana D Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Aboozar Monavarfeshani
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016;
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
28
|
The metabotropic glutamate receptor subtype 1 regulates development and maintenance of lemniscal synaptic connectivity in the somatosensory thalamus. PLoS One 2019; 14:e0226820. [PMID: 31881077 PMCID: PMC6934304 DOI: 10.1371/journal.pone.0226820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
The metabotropic glutamate receptor subtype 1 (mGluR1) is a major subtype of group I mGluRs, which contributes to the development and plasticity of synapses in the brain. In the sensory thalamus, the thalamocortical neuron receives sensory afferents and massive feedback input from corticothalamic (CT) fibers. Notably, mGluR1 is more concentrated in CT synapses in the sensory thalamus. In the visual thalamus, mGluR1 maintains mature afferent synaptic connectivity. However, it is unknown whether mGluR1 contributes to strengthening of immature synapses or weakening of excess synapses during development and whether mGluR1 at CT synapses heterosynaptically regulates the development or refinement of afferent synapses. Here we investigated the effects of knocking out the gene encoding mGluR1 or pharmacologically blocking cortical activity on the development and maintenance of lemniscal synapses, i.e., the somatosensory afferent synapses, in the ventral posteromedial somatosensory thalamus. mGluR1-knockout (KO) mice exhibited delayed developmental strengthening as well as incomplete elimination and remodeling after maturation of lemniscal synapses. Similar to the phenotypes exhibited by mGluR1-KO mice, pharmacological blockade of somatosensory cortical activity from P12 or P21 for 1 week in wild-type mice perturbed elimination or maintenance of lemniscal synapses, respectively. The same manipulation in mGluR1-KO mice failed to induce additional abnormalities in lemniscal synaptic connectivity. These results suggest that activation of mGluR1, driven by CT input, regulates multiple stages of the development of lemniscal synapses, including strengthening, refinement, and maintenance in the somatosensory thalamus.
Collapse
|
29
|
Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling. J Neurosci 2019; 39:3856-3866. [PMID: 30842249 DOI: 10.1523/jneurosci.2224-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse is a model system to study the development of thalamic circuitry. Most studies focus on relay neurons of dLGN, yet little is known about the development of the other principal cell type, intrinsic interneurons. Here we examined whether the structure and function of interneurons relies on retinal signaling. We took a loss-of-function approach and crossed GAD67-GFP mice, which express GFP in dLGN interneurons, with math5 nulls (math5-/-), mutants that lack retinal ganglion cells and retinofugal projections. In vitro recordings and 3-D reconstructions of biocytin-filled interneurons at different postnatal ages showed their development is a multistaged process involving migration, arbor remodeling, and synapse formation. Arbor remodeling begins during the second postnatal week, after migration to and dispersion within dLGN is complete. This phase includes a period of exuberant branching where arbors grow in number, complexity, and field size. Such growth is followed by branch pruning and stabilization, as interneurons adopt a bipolar architecture. The absence of retinal signaling disrupts this process. The math5-/- interneurons fail to branch and prune, and instead maintain a simple, sparse architecture. To test how such defects influence connectivity with dLGN relay neurons, we used DHPG [(RS)-3,5-dihydroxyphenylglycine], the mGluR1,5 agonist that targets F2 terminals. This led to substantial increases in IPSC activity among WT relay neurons but had little impact in math5-/- mice. Together, these data suggest that retinal signaling is needed to support the arbor elaboration and synaptic connectivity of dLGN interneurons.SIGNIFICANCE STATEMENT Presently, our understanding about the development of the dorsal lateral geniculate nucleus is limited to circuits involving excitatory thalamocortical relay neurons. Here we show that the other principal cell type, intrinsic interneurons, has a multistaged developmental plan that relies on retinal innervation. These findings indicate that signaling from the periphery guides the maturation of interneurons and the establishment of inhibitory thalamic circuits.
Collapse
|
30
|
Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019; 1706:13-23. [PMID: 30366019 PMCID: PMC6363901 DOI: 10.1016/j.brainres.2018.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Inhibitory circuits in thalamus and cortex shape the major activity patterns observed by electroencephalogram (EEG) in the adult brain. Their delayed maturation and circuit integration, relative to excitatory neurons, suggest inhibitory neuronal development could be responsible for the onset of mature thalamocortical activity. Indeed, the immature brain lacks many inhibition-dependent activity patterns, such as slow-waves, delta oscillations and sleep-spindles, and instead expresses other unique oscillatory activities in multiple species including humans. Thalamus contributes significantly to the generation of these early oscillations. Compared to the abundance of studies on the development of inhibition in cortex, however, the maturation of thalamic inhibition is poorly understood. Here we review developmental changes in the neuronal and circuit properties of the thalamic relay and its interconnected inhibitory thalamic reticular nucleus (TRN) both in vitro and in vivo, and discuss their potential contribution to early network activity and its maturation. While much is unknown, we argue that weak inhibitory function in the developing thalamus allows for amplification of thalamocortical activity that supports the generation of early oscillations. The available evidence suggests that the developmental acquisition of critical thalamic oscillations such as slow-waves and sleep-spindles is driven by maturation of the TRN. Further studies to elucidate thalamic GABAergic circuit formation in relation to thalamocortical network function would help us better understand normal as well as pathological brain development.
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
31
|
He J, Xu X, Monavarfeshani A, Banerjee S, Fox MA, Xie H. Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleus. Epigenetics Chromatin 2019; 12:13. [PMID: 30764861 PMCID: PMC6374911 DOI: 10.1186/s13072-019-0257-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
Collapse
Affiliation(s)
- Jianlin He
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiguang Xu
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aboozar Monavarfeshani
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Sharmi Banerjee
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA.,Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael A Fox
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA. .,Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA.
| |
Collapse
|
32
|
Sokhadze G, Seabrook TA, Guido W. The absence of retinal input disrupts the development of cholinergic brainstem projections in the mouse dorsal lateral geniculate nucleus. Neural Dev 2018; 13:27. [PMID: 30541618 PMCID: PMC6291928 DOI: 10.1186/s13064-018-0124-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has become a model system for understanding thalamic circuit assembly. While the development of retinal projections to dLGN has been a topic of extensive inquiry, how and when nonretinal projections innervate this nucleus remains largely unexplored. In this study, we examined the development of a major nonretinal projection to dLGN, the ascending input arising from cholinergic neurons of the brainstem. To visualize these projections, we used a transgenic mouse line that expresses red fluorescent protein exclusively in cholinergic neurons. To assess whether retinal input regulates the timing and pattern of cholinergic innervation of dLGN, we utilized the math5-null (math5−/−) mouse, which lacks retinofugal projections due to a failure of retinal ganglion cell differentiation. Results Cholinergic brainstem innervation of dLGN began at the end of the first postnatal week, increased steadily with age, and reached an adult-like pattern by the end of the first postnatal month. The absence of retinal input led to a disruption in the trajectory, rate, and pattern of cholinergic innervation of dLGN. Anatomical tracing experiments reveal these disruptions were linked to cholinergic projections from parabigeminal nucleus, which normally traverse and reach dLGN through the optic tract. Conclusions The late postnatal arrival of cholinergic projections to dLGN and their regulation by retinal signaling provides additional support for the existence of a conserved developmental plan whereby retinal input regulates the timing and sequencing of nonretinal projections to dLGN.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA
| | - Tania A Seabrook
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 511 S. Floyd St, Louisville, KY, 40292, USA.
| |
Collapse
|
33
|
Sabbagh U, Monavarfeshani A, Su K, Zabet-Moghadam M, Cole J, Carnival E, Su J, Mirzaei M, Gupta V, Salekdeh GH, Fox MA. Distribution and development of molecularly distinct perineuronal nets in visual thalamus. J Neurochem 2018; 147:626-646. [PMID: 30326149 DOI: 10.1111/jnc.14614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Visual information is detected by the retina and transmitted into the brain by retinal ganglion cells. In rodents, the visual thalamus is a major recipient of retinal ganglion cells axons and is divided into three functionally distinct nuclei: the dorsal lateral geniculate nucleus (dLGN), ventral LGN (vLGN), and intergeniculate leaflet. Despite being densely innervated by retinal input, each nucleus in rodent visual thalamus possesses diverse molecular profiles which underpin their unique circuitry and cytoarchitecture. Here, we combined large-scale unbiased proteomic and transcriptomic analyses to elucidate the molecular expression profiles of the developing mouse dLGN and vLGN. We identified several extracellular matrix proteins as differentially expressed in these regions, particularly constituent molecules of perineuronal nets (PNNs). Remarkably, we discovered at least two types of molecularly distinct Aggrecan-rich PNN populations in vLGN, exhibiting non-overlapping spatial, temporal, and cell-type specific expression patterns. The mechanisms responsible for the formation of these two populations of PNNs also differ as the formation of Cat315+ PNNs (but not WFA+ PNNs) required input from the retina. This study is first to suggest that cell type- and molecularly specific supramolecular assemblies of extracellular matrix may play important roles in the circuitry associated with the subcortical visual system and in the processing of visual information. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14203.
Collapse
Affiliation(s)
- Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
| | - Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kaiwen Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Masoud Zabet-Moghadam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Virginia, USA
| | - James Cole
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Translational Neurobiology Summer Undergraduate Research Fellowship, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Eric Carnival
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia.,Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.,Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
34
|
Sabbagh U, Monavarfeshani A, Su K, Zabet-Moghadam M, Cole J, Carnival E, Su J, Mirzaei M, Gupta V, Salekdeh GH, Fox MA. Distribution and development of molecularly distinct perineuronal nets in visual thalamus. J Neurochem 2018. [PMID: 30326149 DOI: 10.1111/jnc.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visual information is detected by the retina and transmitted into the brain by retinal ganglion cells. In rodents, the visual thalamus is a major recipient of retinal ganglion cells axons and is divided into three functionally distinct nuclei: the dorsal lateral geniculate nucleus (dLGN), ventral LGN (vLGN), and intergeniculate leaflet. Despite being densely innervated by retinal input, each nucleus in rodent visual thalamus possesses diverse molecular profiles which underpin their unique circuitry and cytoarchitecture. Here, we combined large-scale unbiased proteomic and transcriptomic analyses to elucidate the molecular expression profiles of the developing mouse dLGN and vLGN. We identified several extracellular matrix proteins as differentially expressed in these regions, particularly constituent molecules of perineuronal nets (PNNs). Remarkably, we discovered at least two types of molecularly distinct Aggrecan-rich PNN populations in vLGN, exhibiting non-overlapping spatial, temporal, and cell-type specific expression patterns. The mechanisms responsible for the formation of these two populations of PNNs also differ as the formation of Cat315+ PNNs (but not WFA+ PNNs) required input from the retina. This study is first to suggest that cell type- and molecularly specific supramolecular assemblies of extracellular matrix may play important roles in the circuitry associated with the subcortical visual system and in the processing of visual information. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14203.
Collapse
Affiliation(s)
- Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
| | - Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kaiwen Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Masoud Zabet-Moghadam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Virginia, USA
| | - James Cole
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Translational Neurobiology Summer Undergraduate Research Fellowship, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Eric Carnival
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia.,Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.,Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
35
|
Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, Walker AJ, Heller MD, Umemori H, Chen C, Stevens B. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron 2018; 100:120-134.e6. [PMID: 30308165 PMCID: PMC6314207 DOI: 10.1016/j.neuron.2018.09.017] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/15/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Microglia regulate synaptic circuit remodeling and phagocytose synaptic material in the healthy brain; however, the mechanisms directing microglia to engulf specific synapses and avoid others remain unknown. Here, we demonstrate that an innate immune signaling pathway protects synapses from inappropriate removal. The expression patterns of CD47 and its receptor, SIRPα, correlated with peak pruning in the developing retinogeniculate system, and mice lacking these proteins exhibited increased microglial engulfment of retinogeniculate inputs and reduced synapse numbers in the dorsal lateral geniculate nucleus. CD47-deficient mice also displayed increased functional pruning, as measured by electrophysiology. In addition, CD47 was found to be required for neuronal activity-mediated changes in engulfment, as microglia in CD47 knockout mice failed to display preferential engulfment of less active inputs. Taken together, these results demonstrate that CD47-SIRPα signaling prevents excess microglial phagocytosis and show that molecular brakes can be regulated by activity to protect specific inputs.
Collapse
Affiliation(s)
- Emily K Lehrman
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Y Litvina
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christina A Welsh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen T Chang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaud Frouin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alec J Walker
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Molly D Heller
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Thalamus Controls Development and Expression of Arousal States in Visual Cortex. J Neurosci 2018; 38:8772-8786. [PMID: 30150360 DOI: 10.1523/jneurosci.1519-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Two major checkpoints of development in cerebral cortex are the acquisition of continuous spontaneous activity and the modulation of this activity by behavioral state. Despite the critical importance of these functions, the circuit mechanisms of their development remain unknown. Here we use the rodent visual system as a model to test the hypothesis that the locus of circuit change responsible for the developmental acquisition of continuity and state dependence measured in sensory cortex is relay thalamus, rather than the local cortical circuitry or the interconnectivity of the two structures. We conducted simultaneous recordings in the dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (VC) of awake, head-fixed male and female rats using linear multielectrode arrays throughout early development. We find that activity in dLGN becomes continuous and positively correlated with movement (a measure of state dependence) on P13, the same day as VC, and that these properties are not dependent on VC activity. By contrast, silencing dLGN after P13 causes activity in VC to become discontinuous and movement to suppress, rather than augment, cortical firing, effectively reversing development. Thalamic bursting, a core characteristic of non-aroused states, emerged later, on P16, suggesting these processes are developmentally independent. Together our results indicate that cellular or circuit changes in relay thalamus are critical drivers for the maturation of background activity, which occurs around term in humans.SIGNIFICANCE STATEMENT The developing brain acquires two crucial features, continuous spontaneous activity and its modulation by arousal state, around term in humans and before the onset of sensory experience in rodents. This developmental transition in cortical activity, as measured by electroencephalogram (EEG), is an important milestone for normal brain development and indicates a good prognosis for babies born preterm and/or suffering brain damage such as hypoxic-ischemic encephalopathy. By using the awake rodent visual system as a model, we identify changes occurring at the level of relay thalamus, the major input to cortex, as the critical driver of EEG maturation. These results could help understand the circuit basis of human EEG development to improve diagnosis and treatment of infants in vulnerable situations.
Collapse
|
37
|
Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev Biol 2018; 442:210-219. [PMID: 30149005 DOI: 10.1016/j.ydbio.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In the developing visual system, retinal ganglion cell (RGC) axons project from the retina to several distal retinorecipient regions in the brain. Several molecules have been implicated in guiding RGC axons in vivo, but the role of extracellular matrix molecules in this process remains poorly understood. Dystroglycan is a laminin-binding transmembrane protein important for formation and maintenance of the extracellular matrix and basement membranes and has previously been implicated in axon guidance in the developing spinal cord. Using two genetic models of functional dystroglycan loss, we show that dystroglycan is necessary for correct sorting of contralateral and ipsilateral RGC axons at the optic chiasm. Mis-sorted axons still target retinorecipient brain regions and persist in adult mice, even after axon pruning is complete. Our results highlight the importance of the extracellular matrix for axon sorting at an intermediate choice point in the developing visual circuit.
Collapse
|
38
|
Sokhadze G, Campbell PW, Guido W. Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse. Eur J Neurosci 2018; 49:978-989. [PMID: 29761601 DOI: 10.1111/ejn.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 01/10/2023]
Abstract
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3-4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
39
|
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysiol 2018; 120:211-225. [PMID: 29641300 PMCID: PMC6093956 DOI: 10.1152/jn.00651.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
40
|
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cereb Cortex 2018; 28:1168-1182. [PMID: 28334242 PMCID: PMC6059179 DOI: 10.1093/cercor/bhx028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The dorsal Lateral Geniculate Nucleus (dLGN) is the primary image-forming target of the retina and shares a reciprocal connection with primary visual cortex (V1). Previous studies showed that corticothalamic input is essential for the development of thalamocortical projections, but less is known about the potential role of this reciprocal connection in the development of retinal projections. Here, we show a deficit of retinal innervation in the dLGN around E18.5 in Tra2β conditional knockout (cKO) "cortexless" mice, an age when apoptosis occurs along the thalamocortical tract and in some dLGN neurons. In vivo electrophysiology experiments in the dLGN further confirmed the loss of functional retinal input. Experiments with N-methyl-d-aspartic acid-induced V1 lesion as well as Fezf2 cKO mice confirmed that the disruption of connections between the dLGN and V1 lead to abnormal retinal projections to the dLGN. Interestingly, retinal projections to the ventral Lateral Geniculate Nucleus (vLGN) and Superior Colliculus (SC) were normal in all 3 mice models. Finally, we show that the cortexless mice had worse performance than control mice in a go-no go task with visual cues. Our results provide evidence that the wiring of visual circuit from the retina to the dLGN and V1 thereafter is coordinated at a surprisingly early stage of circuit development.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | | | - Wenqi Han
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Carrillo GL, Su J, Monavarfeshani A, Fox MA. F-spondin Is Essential for Maintaining Circadian Rhythms. Front Neural Circuits 2018; 12:13. [PMID: 29472844 PMCID: PMC5809851 DOI: 10.3389/fncir.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/25/2018] [Indexed: 12/19/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
| | - Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael A. Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
42
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
43
|
Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proc Natl Acad Sci U S A 2018; 115:E1051-E1060. [PMID: 29343640 PMCID: PMC5798372 DOI: 10.1073/pnas.1717871115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons and nonneuronal cells in the developing brain dynamically regulate gene expression as neural connectivity is established. However, the specific gene programs activated in distinct cell populations during the assembly and refinement of many intact neuronal circuits have not been thoroughly characterized. In this study, we take advantage of recent advances in transcriptomic profiling techniques to characterize gene expression in the postnatal developing lateral geniculate nucleus (LGN) at single-cell resolution. Our data reveal that genes involved in brain development are dynamically regulated in all major cell types of the LGN, suggesting that the establishment of neural connectivity depends upon functional collaboration between multiple neuronal and nonneuronal cell types in this brain region. Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain.
Collapse
|
44
|
Abstract
The corticogeniculate circuit is an evolutionarily conserved pathway linking the primary visual cortex with the visual thalamus in the feedback direction. While the corticogeniculate circuit is anatomically robust, the impact of corticogeniculate feedback on the visual response properties of visual thalamic neurons is subtle. Accordingly, discovering the function of corticogeniculate feedback in vision has been a particularly challenging task. In this review, the morphology, organization, physiology, and function of corticogeniculate feedback is compared across mammals commonly studied in visual neuroscience: primates, carnivores, rabbits, and rodents. Common structural and organizational motifs are present across species, including the organization of corticogeniculate feedback into parallel processing streams in highly visual mammals.
Collapse
Affiliation(s)
- J Michael Hasse
- Program in Experimental and Molecular Medicine at Dartmouth, Hanover, New Hampshire
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York
| | - Farran Briggs
- Program in Experimental and Molecular Medicine at Dartmouth, Hanover, New Hampshire
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York
- Neuroscience, University of Rochester School of Medicine, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| |
Collapse
|
45
|
Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2017; 36:5252-63. [PMID: 27170123 DOI: 10.1523/jneurosci.4599-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/25/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN.
Collapse
|
46
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
47
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
48
|
Murata Y, Colonnese MT. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus. eLife 2016; 5. [PMID: 27725086 PMCID: PMC5059135 DOI: 10.7554/elife.18816] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
Spontaneous retinal waves are critical for the development of receptive fields in visual thalamus (LGN) and cortex (VC). Despite a detailed understanding of the circuit specializations in retina that generate waves, whether central circuit specializations also exist to control their propagation through visual pathways of the brain is unknown. Here we identify a developmentally transient, corticothalamic amplification of retinal drive to thalamus as a mechanism for retinal wave transmission in the infant rat brain. During the period of retinal waves, corticothalamic connections excite LGN, rather than driving feedforward inhibition as observed in the adult. This creates an excitatory feedback loop that gates retinal wave transmission through the LGN. This cortical multiplication of retinal wave input ends just prior to eye-opening, as cortex begins to inhibit LGN. Our results show that the early retino-thalamo-cortical circuit uses developmentally specialized feedback amplification to ensure powerful, high-fidelity transmission of retinal activity despite immature connectivity. DOI:http://dx.doi.org/10.7554/eLife.18816.001 The brain of a developing fetus has a big job to do: it needs to create the important connections between neurons that the individual will need later in life. This is a challenge because the first connections that form between neurons are sparse, weak and unreliable. They would not be expected to be able to transmit signals in a robust or effective way, and yet they do. How the nervous system solves this problem is an important question, because many neurological disorders may be the result of bad wiring between neurons in the fetal brain. When an adult human or other mammal “sees” an object, visual information from the eye is transmitted to a part of the brain called the thalamus. From there it is sent on to another part of the brain called the cortex. The cortex also provides feedback to the thalamus to adjust the system and often acts as a brake in adults to limit the flow of information from the eyes. Murata and Colonnese investigated whether the fetal brain contains any “booster” circuits of neurons that can amplify weak signals from other neurons to help ensure that information is transferred accurately. The experiments monitored and altered visual activity in the brains of newborn rats – which have similar activity patterns to those observed in human babies born prematurely. Murata and Colonnese found that in these rats the feedback signals from the cortex to the thalamus actually multiply the visual signals from the eye, instead of restraining them. This causes a massive amplification in activity in the developing brain and explains how the fetal brain stays active despite its neurons being only weakly connected. The booster circuit stops working just before the eyes first open (equivalent to birth in humans) as the connections between neurons become stronger, and is replaced by the braking mechanism seen in adults. This is important, because continued amplification of signals in the adult brain might cause excessive brain activity and epilepsy. The findings of Murata and Colonnese may therefore help to explain why epileptic seizures have different causes and behave differently in children and adults. The next step following on from this work is to find out how the braking mechanism forms in young animals. Future studies will also focus on understanding the precise role the booster circuit plays in early brain development. DOI:http://dx.doi.org/10.7554/eLife.18816.002
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, George Washington University, Washington, United States.,Institute for Neuroscience, George Washington University, Washington, United States
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, George Washington University, Washington, United States.,Institute for Neuroscience, George Washington University, Washington, United States
| |
Collapse
|
49
|
The Metabotropic Glutamate Receptor Subtype 1 Mediates Experience-Dependent Maintenance of Mature Synaptic Connectivity in the Visual Thalamus. Neuron 2016; 91:1097-1109. [PMID: 27545713 DOI: 10.1016/j.neuron.2016.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Neural circuits formed during postnatal development have to be maintained stably thereafter, but their mechanisms remain largely unknown. Here we report that the metabotropic glutamate receptor subtype 1 (mGluR1) is essential for the maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus (dLGN). In mGluR1 knockout (mGluR1-KO) mice, strengthening and elimination at retinogeniculate synapses occurred normally until around postnatal day 20 (P20). However, during the subsequent visual-experience-dependent maintenance phase, weak retinogeniculate synapses were newly recruited. These changes were similar to those of wild-type (WT) mice that underwent visual deprivation or inactivation of mGluR1 in the dLGN from P21. Importantly, visual deprivation was ineffective in mGluR1-KO mice, and the changes induced by visual deprivation in WT mice were rescued by pharmacological activation of mGluR1 in the dLGN. These results demonstrate that mGluR1 is crucial for the visual-experience-dependent maintenance of mature synaptic connectivity in the dLGN.
Collapse
|
50
|
Thompson AD, Picard N, Min L, Fagiolini M, Chen C. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement. Neuron 2016; 91:1021-1033. [PMID: 27545712 DOI: 10.1016/j.neuron.2016.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/08/2016] [Accepted: 07/08/2016] [Indexed: 01/23/2023]
Abstract
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection.
Collapse
Affiliation(s)
- Andrew D Thompson
- BBS Program, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Nathalie Picard
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lia Min
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michela Fagiolini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|