1
|
Huang Y, Chen T, Chen X, Wan L, Hou X, Zhuang J, Jiang J, Li Y, Qiu J, Yu K, Zhuang J. Corneal Stroma Analysis and Related Ocular Manifestations in Recovered COVID-19 Patients. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 38713483 PMCID: PMC11086707 DOI: 10.1167/iovs.65.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose The purpose of this study was to assess the impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) on corneal stroma characteristics, ocular manifestations, and post-recovery refractive surgery outcomes after varying recovery durations. Methods Fresh corneal lenticules from patients with post-coronavirus disease 2019 (COVID-19; recovered within 135 days) and healthy controls (HCs) after small incision lenticule extraction (SMILE) surgery were obtained for experimental validation of SARS-CoV-2 susceptibility, morphological changes, and immune response of the corneal stroma. Corneal optical density (CD) was measured using the Pentacam HR. Corneal epithelium thickness (ET) and endothelium parameters were evaluated by wide-field optical coherence tomography (OCT) and non-contact specular microscopy (SP-1P), respectively. All the patients were assessed after SMILE surgery until 3 month of follow-up. Results The cornea was susceptible to SARS-CoV-2 with the presence of SARS-CoV-2 receptors (CD147 and ACE2) and spike protein remnants (4 out of 58) in post-recovery corneal lenticules. Moreover, SARS-CoV-2 infection triggered immune responses in the corneal stroma, with elevated IL-6 levels observed between 45 and 75 days post-recovery, which were then lower at around day 105. Concurrently, corneal mid-stromal nerve length and branching were initially higher in the 60D to 75D group and returned to control levels by day 135. A similar trend was observed in CD within zones 0 to 2 and 2 to 6 and in the hexagonal cells (HEX) ratio in endothelial cells, whereas ET remained consistent. Notably, these changes did not affect the efficacy, safety, or predictability of post-recovery SMILE surgery. Conclusions SARS-CoV-2 induces temporal alterations in corneal stromal morphology and function post-recovery. These findings provided a theoretical basis for corneal health and refractive surgery management in the post-COVID-19 milieu.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Taiwei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiejie Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingyi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
3
|
Zuo C, Zhuang Z, Yang P, Zhang H, Li X, Huang T, Ahluwalia TS. Dissecting the causal association between inflammation and post-traumatic stress disorder: A bidirectional Mendelian randomization study. J Affect Disord 2023; 333:436-445. [PMID: 37086801 DOI: 10.1016/j.jad.2023.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Accumulating evidence showed a bidirectional association between post-traumatic stress disorder and inflammation. However, whether the association is causal remains unclear. We aimed to evaluate the causal relationships between inflammatory cytokines and post-traumatic stress disorder using two-sample bi-directional Mendelian randomization analysis. METHODS Single nucleotide polymorphism from genome-wide association studies of inflammatory cytokines, C-reactive protein, and post-traumatic stress disorder (23,212 patients and 151,447 controls) was selected as instrumental variables. The causal associations were estimated by inverse variance weighting with sensitivity analyses using weighted median, MR-Egger, and MR-PRESSO methods. RESULTS We observed suggestive associations of genetically predicted interleukin-17 (IL-17) and RANTES with post-traumatic stress disorder. One standard deviation (SD) increase in genetically predicted level of IL-17 lowered the risk of post-traumatic stress disorder with an odds ratio (OR) of 0.902 (95 % CI = 0.828, 0.984, P = 0.02). One SD higher genetically predicted RANTES (CCL5) concentration increased post-traumatic stress disorder risk (OR = 1.067, 95 % CI = 1.005, 1.133, P = 0.032). However, we found no evidence of causal associations of post-traumatic stress disorder with the selected inflammatory cytokines and biomarkers. We observed no evidence supporting the presence of pleiotropy. The results of sensitivity analyses demonstrated the same directions and similar effect sizes as the primary findings. LIMITATIONS Potential pleiotropy, possible weak instruments, and low statistical power limited our findings. CONCLUSION Inflammation was suggestively causally associated with the risk of post-traumatic stress disorder, and inflammatory cytokines had no downstream effect on post-traumatic stress disorder. Further studies are needed to explain the mechanisms of systemic inflammation and neuroinflammation in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Chuanlong Zuo
- School of Nursing, Peking University, Beijing 100191, China.
| | - Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191 Beijing, China.
| | - Ping Yang
- School of Nursing, Peking University, Beijing 100191, China.
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, 100191 Beijing, China
| | - Xiangping Li
- School of Nursing, Peking University, Beijing 100191, China.
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 100191 Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, 100191 Beijing, China; Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, 100191 Beijing, China.
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte DK2820, Denmark; Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen DK2200, Denmark.
| |
Collapse
|
4
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
5
|
Murakata Y, Yamagami F, Murakoshi N, Xu D, Song Z, Li S, Okabe Y, Aonuma K, Yuan Z, Mori H, Aonuma K, Tajiri K, Ieda M. Electrical, structural, and autonomic atrial remodeling underlies atrial fibrillation in inflammatory atrial cardiomyopathy. Front Cardiovasc Med 2023; 9:1075358. [PMID: 36741841 PMCID: PMC9892626 DOI: 10.3389/fcvm.2022.1075358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Background There is growing evidence indicating a close relationship between inflammation and atrial fibrillation (AF). Although underlying inflammatory atrial cardiomyopathy may contribute to the development of AF, the arrhythmogenic remodeling caused by atrial inflammation has not been elucidated in detail. Herein, we examined electrical, structural, and autonomic changes in the atria in a mouse model of autoimmune myocarditis. Methods BALB/c mice were immunized with cardiac myosin peptide (MyHC-α614-629) conjugated with complete Freund's adjuvant on days 0 and 7. Susceptibility to AF was assessed using right-atrial burst pacing. Results The mice immunized with MyHC-α614-629 showed an inflammatory atrial cardiomyopathy phenotype, with enlarged atria; a high degree of inflammatory cell infiltration primarily consisting of CD4+ T cells, CD8+ T cells, Ly6GlowCD11b+ macrophages, and CD11c+ dendritic cells; and severe interstitial fibrosis with collagen deposition. These mice demonstrated significantly enhanced susceptibility to AF, as indicated by their increased AF induction rate and duration. In addition, the expression of potassium channels (Kcnh2, Kcnd3, and Kcnj2) and calcium handling-associated genes (Cacna1c, Camk2, Ryr2, and Atp2a2) was downregulated. Connexin 40 expression was significantly downregulated, leading to frequent lateralization to the inflamed atrium. Sympathetic and parasympathetic innervation and neurotrophin expression (nerve growth factor and brain-derived neurotrophic factor) were upregulated in the inflamed atria. Conclusion Inflammatory atrial cardiomyopathy promotes susceptibility to AF via arrhythmogenic electrical, structural, and autonomic remodeling of the atria.
Collapse
Affiliation(s)
- Yoshiko Murakata
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fumi Yamagami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zhonghu Song
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuta Okabe
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - ZiXun Yuan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Mori
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan,Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan,*Correspondence: Kazuko Tajiri,
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
7
|
Gomes AKS, Dantas RM, Yokota BY, Silva ALTE, Griesi-Oliveira K, Passos-Bueno MR, Sertié AL. Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects. Front Neurosci 2022; 16:828646. [PMID: 35360153 PMCID: PMC8964130 DOI: 10.3389/fnins.2022.828646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior.
Collapse
Affiliation(s)
| | | | - Bruno Yukio Yokota
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
| | | | | | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa Laurato Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
- *Correspondence: Andréa Laurato Sertié,
| |
Collapse
|
8
|
Transplantation of mesenchymal stem cells causes long-term alleviation of schizophrenia-like behaviour coupled with increased neurogenesis. Mol Psychiatry 2021; 26:4448-4463. [PMID: 31827249 DOI: 10.1038/s41380-019-0623-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a neurodevelopmental disease with a mixed genetic and environmental aetiology. Impaired adult hippocampal neurogenesis was suggested both as a pathophysiological mechanism and as a target for therapy. In the present study, we utilized intracerebroventricular transplantation of bone marrow-derived mesenchymal stem cells (MSC) as a means to enhance hippocampal neurogenesis in the ketamine-induced neurodevelopmental murine model for schizophrenia. Syngeneic MSC have successfully engrafted and survived for up to 3 months following transplantation. Improvement in social novelty preference and prepulse inhibition was noted after transplantation. In parallel to behavioural improvement, increased hippocampal neurogenesis as reflected in the numbers of doublecortin expressing neurons in the dentate gyrus and gene expression was noted both 2 weeks following transplantation as well as 3 months later compared with nontreated animals. An independent aging effect was observed for both behaviour and neurogenesis, which was attenuated by MSC treatment. As opposed to MSC treatment, short-term treatment with clozapine was efficient only during treatment and diminished 3 months later. Interestingly, while shortly after transplantation (2 weeks) behavioural improvement was correlated mainly to FGF2 gene expression, 3 months later it was mainly correlated to the expression of the notch ligand DLL1. This suggests that long-term effect during ageing may depend on neural stem cell self-renewal. We conclude that a single intracerebroventricular injection of bone marrow-derived MSC can suffice for long-term reversal of changes in adult hippocampal neurogenesis and improve schizophrenia-like behavioural phenotype inflicted by developmental exposure to ketamine in mice.
Collapse
|
9
|
Abstract
The role of immune mediators, including proinflammatory cytokines in chemotherapy-induced peripheral neuropathy (CIPN), remains unclear. Here, we studied the contribution of interleukin-20 (IL-20) to the development of paclitaxel-induced peripheral neuropathy. Increased serum levels of IL-20 in cancer patients with chemotherapy were accompanied by increased CIPN risk. In mouse models, proinflammatory IL-20 levels in serum and dorsal root ganglia fluctuated with paclitaxel treatment. Blocking IL-20 with the neutralizing antibody or genetic deletion of its receptors prevented CIPN, alleviated peripheral nerve damage, and dampened inflammatory responses, including macrophage infiltration and cytokine release. Mechanistically, paclitaxel upregulated IL-20 through dysregulated Ca homeostasis, which augmented chemotherapy-induced neurotoxicity. Importantly, IL-20 suppression did not alter paclitaxel efficacy on cancer treatment both in vitro and in vivo. Together, targeting IL-20 ameliorates paclitaxel-induced peripheral neuropathy by suppressing neuroinflammation and restoring Ca homeostasis. Therefore, the anti-IL-20 monoclonal antibody is a promising therapeutic for the prevention and treatment of paclitaxel-induced neuropathy.
Collapse
|
10
|
Robles-Vera I, de la Visitación N, Toral M, Sánchez M, Gómez-Guzmán M, Jiménez R, Romero M, Duarte J. Mycophenolate mediated remodeling of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rats. Biomed Pharmacother 2021; 135:111189. [PMID: 33388596 DOI: 10.1016/j.biopha.2020.111189] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microbiota has a role in the host blood pressure (BP) regulation. The immunosuppressive drug mofetil mycophenolate (MMF) ameliorates hypertension. The present study analyzes whether MMF improves dysbiosis in a genetic model of hypertension. Twenty weeks old male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into three groups: untreated WKY, untreated SHR, and SHR treated with MMF for 5 weeks. MMF treatment restored gut bacteria from the phyla Firmicutes and Bacteroidetes, and acetate- and lactate-producing bacteria to levels similar to those found in WKY, increasing butyrate-producing bacteria. MMF increased the percentage of anaerobic bacteria in the gut. The improvement of gut dysbiosis was associated with an enhanced colonic integrity and a decreased sympathetic drive in the gut. MMF inhibited neuroinflammation in the paraventricular nuclei in the hypothalamus. MMF increased the lower regulatory T cells proportion in mesenteric lymph nodes and Th17 and Th1 infiltration in aorta, improved aortic endothelial function and reduced systolic BP. This study demonstrates for the first time that MMF reduces gut dysbiosis in SHR. This effect could be related to its capability to improve gut integrity due to reduced sympathetic drive in the gut associated to the reduced brain neuroinflammation.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Marta Toral
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.
| |
Collapse
|
11
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Zhang L, Zhuang X, Chen Y, Niu Z, Xia H. Plasma Erythropoietin, IL-17A, and IFNγ as Potential Biomarkers of Motor Function Recovery in a Canine Model of Spinal Cord Injury. J Mol Neurosci 2020; 70:1821-1828. [PMID: 32418163 PMCID: PMC7561571 DOI: 10.1007/s12031-020-01575-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 02/15/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological disease for which an accurate, cost-effective prediction of motor function recovery is in pressing need. A plethora of neurochemical changes involved in the pathophysiological process of SCI may serve as a new source of biomarkers for patient outcomes. Five dogs were included in this study. We characterized the plasma cytokine profiles in acute phase (0, 1, and 3 days after SCI) and subacute phase (7, 14, and 21 days after SCI) with microarray analysis. The motor function recovery following SCI was monitored by Olby scores. The expression level of differentially expressed proteins (DEPs) was measured with enzyme-linked immunosorbent assay (ELISA). Then, correlations with the Olby scores and receiver operating characteristic curve (ROC) analysis were performed. We identified 12 DEPs including 10 pro-inflammatory and 2 anti-inflammatory cytokines during the 21-day study period. Among those, the expression levels of erythropoietin (EPO), IL-17A, and IFNγ significantly correlated with the Olby scores with R2 values of 0.870, 0.740, and 0.616, respectively. The results of the ROC analysis suggested that plasma EPO, IL-17A, and IFNγ exhibited a significant predictive power with an area under the curve (AUC) of 0.656, 0.848, and 0.800 for EPO, IL-17A, and IFNγ, respectively. Our results provide a longitudinal description of the changes in plasma cytokine expression in the acute and subacute stages of canine SCI. These data reveal novel panels of inflammation-related cytokines which have the potential to be evaluated as biomarkers for predicting motor function prognosis after SCI.
Collapse
Affiliation(s)
- Lijian Zhang
- School of Clincial Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Yao Chen
- School of Clincial Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China. .,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
13
|
Interleukine-17 Administration Modulates Adult Hippocampal Neurogenesis and Improves Spatial Learning in Mice. J Mol Neurosci 2019; 69:254-263. [PMID: 31254254 DOI: 10.1007/s12031-019-01354-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023]
Abstract
Adult hippocampal neurogenesis plays an important role in health and disease. Regulating neurogenesis may be a key mechanism in the pathophysiology and treatment of several neurobehavioral disorders such as schizophrenia, depression, autism spectrum disorders and Alzheimer's disease. Cytokines are known to affect adult neurogenesis, but conflicting studies have been reported with regard to their actual role. Interleukine-17 (IL-17), a potent pro-inflammatory cytokine, has been shown to inhibit proliferation of neuroprogenitors and thus reduce hippocampal neurogenesis, while other studies suggested it can promote neurite outgrowth. In the present study we sought to explore the possible effect of a single dose administration of IL-17 on neurogenesis related behavior, i.e. spatial learning. Surprisingly, ICR mice injected with IL-17 (8 μg) had a significant slight improvement in spatial learning in the Morris water maze paradigm, without any changes in general locomotion compared with control mice. Indeed, the expression of neurogenesis related genes was down regulated following IL-17 treatment. However, we detected an upregulation in the expression of FGF-13, a gene promoting microtubule polymerization and neurite outgrowth, thus supporting neuronal maturation. We thus suggest that IL-17 has a complex role in regulating adult neurogenesis: inhibiting neuroprogenitors proliferation on one hand, while promoting maturation of already formed neuroblasts on the other hand. Our findings suggest that these roles can potentially affect neurogenesis related behavior. Its actual role in health and disease is yet to be determined.
Collapse
|
14
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
15
|
Hoover DB, Brown TC, Miller MK, Schweitzer JB, Williams DL. Loss of Sympathetic Nerves in Spleens from Patients with End Stage Sepsis. Front Immunol 2017; 8:1712. [PMID: 29270174 PMCID: PMC5723638 DOI: 10.3389/fimmu.2017.01712] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/20/2017] [Indexed: 01/22/2023] Open
Abstract
The spleen is an important site for central regulation of immune function by noradrenergic sympathetic nerves, but little is known about this major region of neuroimmune communication in humans. Experimental studies using animal models have established that sympathetic innervation of the spleen is essential for cholinergic anti-inflammatory responses evoked by vagal nerve stimulation, and clinical studies are evaluating this approach for treating inflammatory diseases. Most data on sympathetic nerves in spleen derive from rodent studies, and this work has established that remodeling of sympathetic innervation can occur during inflammation. However, little is known about the effects of sepsis on spleen innervation. Our primary goals were to (i) localize noradrenergic nerves in human spleen by immunohistochemistry for tyrosine hydroxylase (TH), a specific noradrenergic marker, (ii) determine if nerves occur in close apposition to leukocytes, and (iii) determine if splenic sympathetic innervation is altered in patients who died from end stage sepsis. Staining for vesicular acetylcholine transporter (VAChT) was done to screen for cholinergic nerves. Archived paraffin tissue blocks were used. Control samples were obtained from trauma patients or patients who died after hemorrhagic stroke. TH + nerves were associated with arteries and arterioles in all control spleens, occurring in bundles or as nerve fibers. Individual TH + nerve fibers entered the perivascular region where some appeared in close apposition to leukocytes. In marked contrast, spleens from half of the septic patients lacked TH + nerves fibers and the average abundance of TH + nerves for the septic group was only 16% of that for the control group (control: 0.272 ± 0.060% area, n = 6; sepsis: 0.043 ± 0.026% area, n = 8; P < 0.005). All spleens lacked cholinergic innervation. Our results provide definitive evidence for the distribution of noradrenergic nerves in normal human spleen and the first evidence for direct sympathetic innervation of leukocytes in human spleen. We also provide the first evidence for marked loss of noradrenergic nerves in patients who died from sepsis. Such nerve loss could impair neuroimmunomodulation and may not be limited to the spleen.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Thomas Christopher Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madeleine K Miller
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - John B Schweitzer
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L Williams
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
16
|
Li D, Zhang S, Yao Y, Xiang Y, Ma X, Wei X, Yan H, Liu X. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels. CNS Neurosci Ther 2017; 23:930-939. [PMID: 28990373 PMCID: PMC6492695 DOI: 10.1111/cns.12768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. METHODS To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. RESULTS We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. CONCLUSION Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Li
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
- Department of SurgeryHospital of 73096 Troop of PLANanjingJiangsuChina
| | - Shu‐Zhuo Zhang
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yu‐Hong Yao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yun Xiang
- Training basesHunan Key Laboratory of Chinese Materia Medical Power and Innovative Drugs Established by Provincial and MinistryHunan University of Chinese MedicineChangshaChina
| | - Xiao‐Yun Ma
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiao‐Li Wei
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Hai‐Tao Yan
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiao‐Yan Liu
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
17
|
Cervi AL, Moynes DM, Chisholm SP, Nasser Y, Vanner SJ, Lomax AE. A role for interleukin 17A in IBD-related neuroplasticity. Neurogastroenterol Motil 2017; 29. [PMID: 28560787 DOI: 10.1111/nmo.13112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Changes to the structure and function of the innervation of the gut contribute to symptom generation in inflammatory bowel diseases (IBD). However, delineation of the mechanisms of these effects has proven difficult. Previous work on sympathetic neurons identified interleukin (IL)-17A as a novel neurotrophic cytokine. Since IL-17A is involved in IBD pathogenesis, we tested the hypothesis that IL-17A contributes to neuroanatomical remodeling during IBD. METHODS Immunohistochemistry for tyrosine hydroxylase was used to identify sympathetic axons in mice with dextran sulphate sodium (DSS)-induced colitis and controls. Axon outgrowth from sympathetic neurons in response to incubation in cytokines or endoscopic patient biopsy supernatants was quantified. KEY RESULTS DSS-induced colitis led to an increase in tyrosine hydroxylase immunoreactivity in the inflamed colon but not the spleen. Colonic supernatants from mice with colitis and biopsy supernatants from Crohn's disease patients increased axon outgrowth from mouse sympathetic neurons compared to supernatants from uninflamed controls. An antibody that neutralized IL-17A blocked the ability of DSS-induced colitis and Crohn's disease supernatants to induce axon extension. CONCLUSIONS AND INFERENCES These findings identify IL-17A as a potential mediator of neuroanatomical remodeling of the gut innervation during IBD.
Collapse
Affiliation(s)
- A L Cervi
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - D M Moynes
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - S P Chisholm
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Y Nasser
- Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - S J Vanner
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - A E Lomax
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
The choroid plexus as a sex hormone target: Functional implications. Front Neuroendocrinol 2017; 44:103-121. [PMID: 27998697 DOI: 10.1016/j.yfrne.2016.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain development, adult neurogenesis and circadian rhythm regulation. Sex hormones (SH) are widely recognized as modulators in several neurodegenerative diseases, and there is evidence that estrogens and androgens regulate several fundamental biological functions in the CPs. Therefore, SH are likely to affect the composition of the CSF impacting on brain homeostasis. This review will look at implications of the CPs' sex-related specificities.
Collapse
|
19
|
Brown JA, Codreanu SG, Shi M, Sherrod SD, Markov DA, Neely MD, Britt CM, Hoilett OS, Reiserer RS, Samson PC, McCawley LJ, Webb DJ, Bowman AB, McLean JA, Wikswo JP. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J Neuroinflammation 2016; 13:306. [PMID: 27955696 PMCID: PMC5153753 DOI: 10.1186/s12974-016-0760-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022] Open
Abstract
Background Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches—whether in vivo or in vitro—have often been only snapshots of this complex web of interactions. Methods We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1β, TNF-α, and MCP1,2. Results In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. Conclusions Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0760-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stacy D Sherrod
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dmitry A Markov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Clayton M Britt
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Orlando S Hoilett
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Ronald S Reiserer
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Philip C Samson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Lisa J McCawley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Donna J Webb
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
20
|
Zeni-Graiff M, Rizzo LB, Mansur RB, Maurya PK, Sethi S, Cunha GR, Asevedo E, Pan P, Zugman A, Yamagata AS, Higuchi C, Bressan RA, Gadelha A, Brietzke E. Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res 2016; 176:191-195. [PMID: 27424266 DOI: 10.1016/j.schres.2016.06.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Immuno-inflammatory imbalances have been documented in schizophrenia, but very little is known about the immunological changes prior to the onset of disease. OBJECTIVE This work aimed to compare serum levels of pro- and anti-inflammatory cytokines in young subjects at ultra-high risk (UHR) of developing psychosis with age- and sex-matched healthy controls. METHODS A total of 12 UHR and 16 age- and sex-matched healthy controls (HC) subjects were enrolled in this study. Clinical profile was assessed using the Comprehensive Assessment of At-Risk Mental States (CAARMS), Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and Global Assessment of Functioning (GAF) scale. Serum interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, IFN-γ, and IL-17 were measured by flow cytometry using the Th1/Th2/Th17 cytometric bead array. RESULTS Compared with the healthy control group, patients in UHR showed increased IL-6 levels (Z=-2.370, p=0.018) and decreased IL-17 levels in serum (Z=-1.959, p=0.050). Levels of IL-17 positively correlated to the values in GAF symptoms (rho=0.632, p=0.028). CONCLUSION Our results suggest that immunological imbalances could be present in the early stages of psychosis, including in at-risk stages. Future studies should replicate and expand these results.
Collapse
Affiliation(s)
- Maiara Zeni-Graiff
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Lucas B Rizzo
- Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil; Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Rodrigo B Mansur
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Pawan K Maurya
- Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sumit Sethi
- Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Graccielle R Cunha
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Elson Asevedo
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Pedro Pan
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - André Zugman
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Ana S Yamagata
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Cinthia Higuchi
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Rodrigo A Bressan
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Ary Gadelha
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil
| | - Elisa Brietzke
- Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), São Paulo, Brazil; Interdisciplinary Laboratory of Clinical Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil; Research Group on Behavioral and Molecular Neuroscience of Bipolar Disorder, São Paulo, Brazil.
| |
Collapse
|
21
|
He JJ, Sun FJ, Wang Y, Luo XQ, Lei P, Zhou J, Zhu D, Li ZY, Yang H. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Neuroimmunol 2016; 298:153-9. [PMID: 27609289 DOI: 10.1016/j.jneuroim.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsies in adults and proinflammatory cytokines have long been thought to play an important role in pathogenesis and epileptogenicity. In the present study, we investigated the levels and expression patterns of the interleukin 17 (IL-17) system in temporal neocortex and hippocampus from 24 patients with MTLE and 8 control (Ctr) samples. We found that IL-17 and IL-17 receptor (IL-17R) were clearly upregulated in MTLE at both mRNA and protein levels, compared with Ctr. Immunostaining indicated that neurons, astrocytes, microglia and endothelial cells of blood vessels are the major sources of IL-17. These findings suggest that IL-17 system may be involved in the pathogenesis and epileptogenicity of MTLE.
Collapse
Affiliation(s)
- Jiao-Jiang He
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yu Wang
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Xiao-Qin Luo
- Department of Nephrology, Mianzhu People's Hospital, Sichuan 618200, China
| | - Peng Lei
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Jie Zhou
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Di Zhu
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China
| | - Zhi-Yun Li
- Department of Neurosurgery, Lanzhou General Hospital of PLA, Lanzhou 730050, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
22
|
Yang J, Kou J, Lim JE, Lalonde R, Fukuchi KI. Intracranial delivery of interleukin-17A via adeno-associated virus fails to induce physical and learning disabilities and neuroinflammation in mice but improves glucose metabolism through AKT signaling pathway. Brain Behav Immun 2016; 53:84-95. [PMID: 26562537 PMCID: PMC4783216 DOI: 10.1016/j.bbi.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023] Open
Abstract
Interleukin-17A (IL-17A) is generally considered as one of the pathogenic factors involved in multiple sclerosis (MS). Indirect evidence for this is that IL-17A-producing T helper 17 (Th17) cells preferentially accumulate in lesions of MS and experimental autoimmune encephalomyelitis (EAE). However, a direct involvement of IL-17A in MS pathogenesis is still an open question. In this study, we overexpressed IL-17A in the brains of mice (IL-17A-in-Brain mice) via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated gene delivery. In spite of high levels of IL-17A expression in the brain and blood, IL-17A-in-Brain mice exhibit no inflammatory responses and no abnormalities in motor coordination and spatial orientation. Unexpectedly, IL-17A-in-Brain mice show decreases in body weight and adipose tissue mass and an improvement in glucose tolerance and insulin sensitivity. IL-17A enhances glucose uptake in PC12 cells by activation of AKT. Our results provide direct evidence for the first time that IL-17A overexpression in the central nervous system does not cause physical and learning disabilities and neuroinflammation and suggest that IL-17A may regulate glucose metabolism through the AKT signaling pathway.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Jinghong Kou
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Jeong-Eun Lim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Robert Lalonde
- Department of Psychology, University of Rouen, Rouen, France
| | - Ken-ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA.,Corresponding author: Ken-ichiro Fukuchi, MD, PhD, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, Illinois USA; Phone: 309-671-8545;
| |
Collapse
|
23
|
Habash T, Saleh A, Roy Chowdhury SK, Smith DR, Fernyhough P. The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats. Exp Neurol 2015; 273:177-89. [PMID: 26321687 DOI: 10.1016/j.expneurol.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth. RESULTS IL-17A (10 ng/ml; p<0.05) significantly and dose-dependently increased total neurite outgrowth in cultures of adult dorsal root ganglia (DRG) sensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes. CONCLUSIONS IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons.
Collapse
Affiliation(s)
- Tarek Habash
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
24
|
The role of IL-17 in CNS diseases. Acta Neuropathol 2015; 129:625-37. [PMID: 25716179 DOI: 10.1007/s00401-015-1402-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on pathogenic conditions in the CNS.
Collapse
|
25
|
Lukewich MK, Lomax AE. Mouse models of sepsis elicit spontaneous action potential discharge and enhance intracellular Ca2+ signaling in postganglionic sympathetic neurons. Neuroscience 2015; 284:668-677. [PMID: 25450963 DOI: 10.1016/j.neuroscience.2014.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
Sepsis is a severe systemic inflammatory disorder that rapidly activates the sympathetic nervous system to enhance catecholamine secretion from postganglionic sympathetic neurons and adrenal chromaffin cells. Although an increase in preganglionic drive to postganglionic sympathetic tissues has been known to contribute to this response for quite some time, only recently was it determined that sepsis also has direct effects on adrenal chromaffin cell Ca2+ signaling and epinephrine release. In the present study, we characterized the direct effects of sepsis on postganglionic sympathetic neuron function. Using the endotoxemia model of sepsis in mice, we found that almost a quarter of postganglionic neurons acquired the ability to fire spontaneous action potentials, which was absent in cells from control mice. Spontaneously firing neurons possessed significantly lower rheobases and fired a greater number of action potentials at twice the rheobase compared to neurons from control mice. Sepsis did not significantly affect voltage-gated Ca2+ currents. However, global Ca2+ signaling was enhanced in postganglionic neurons isolated from 1 to 24 h endotoxemic mice. A similar increase in the amplitude of high-K+-stimulated Ca2+ transients was observed during the cecal ligation and puncture model of sepsis. The enhanced excitability and Ca2+ signaling produced during sepsis likely amplify the effect of increased preganglionic drive on norepinephrine release from postganglionic neurons. This is important, as sympathetic neurons are integral to the anti-inflammatory autonomic reflex that is activated during sepsis.
Collapse
Affiliation(s)
- M K Lukewich
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A E Lomax
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
26
|
Moynes DM, Vanner SJ, Lomax AE. Participation of interleukin 17A in neuroimmune interactions. Brain Behav Immun 2014; 41:1-9. [PMID: 24642072 DOI: 10.1016/j.bbi.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Inflammation involving the helper T cell 17 (Th17) subset of lymphocytes has been implicated in a number of diseases that affect the nervous system. As the canonical cytokine of Th17 cells, interleukin 17A (IL-17A) is thought to contribute to these neuroimmune interactions. The main receptor for IL-17A is expressed in many neural tissues. IL-17A has direct effects on neurons but can also impact neural function via signaling to satellite cells and immune cells. In the central nervous system, IL-17A has been associated with neuropathology in multiple sclerosis, epilepsy syndromes and ischemic brain injury. Effects of IL-17A at the level of dorsal root ganglia and the spinal cord may contribute to enhanced nociception during neuropathic and inflammatory pain. Finally, IL-17A plays a role in sympathetic axon growth and regeneration of damaged axons that innervate the cornea. Given the widespread effects of IL-17A on neural tissues, it will be important to determine whether selectively mitigating the damaging effects of this cytokine while augmenting its beneficial effects is a possible strategy to treat inflammatory damage to the nervous system.
Collapse
Affiliation(s)
- Derek M Moynes
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
27
|
Niebling J, E Rünker A, Schallenberg S, Kretschmer K, Kempermann G. Myelin-specific T helper 17 cells promote adult hippocampal neurogenesis through indirect mechanisms. F1000Res 2014; 3:169. [PMID: 25383186 DOI: 10.12688/f1000research.4439.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 01/05/2023] Open
Abstract
CD4 + T cells provide a neuro-immunological link in the regulation of adult hippocampal neurogenesis, but the exact mechanisms underlying enhanced neural precursor cell proliferation and the relative contribution of different T helper (Th) cell subsets have remained unclear. Here, we explored the pro-proliferative potential of interleukin 17-producing T helper (Th17) cells, a developmentally and functionally distinct Th cell subset that is a key mediator of autoimmune neurodegeneration. We found that base-line proliferation of hippocampal precursor cells in a T cell-deficient mouse model of impaired hippocampal neurogenesis can be restored upon adoptive transfer with homogeneous Th17 populations enriched for myelin-reactive T cell receptors (TCR). In these experiments, enhanced proliferation was independent of direct interactions of infiltrating Th17 cells with precursor cells or neighboring cells in the hippocampal neurogenic niche. Complementary studies in immunocompetent mice identified several receptors for Th17 cell-derived cytokines with mRNA expression in hippocampal precursor cells and dentate gyrus tissue, suggesting that Th17 cell activity in peripheral lymphoid tissues might promote hippocampal neurogenesis through secreted cytokines.
Collapse
Affiliation(s)
- Johannes Niebling
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Annette E Rünker
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18b, 01307 Dresden, Germany
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18b, 01307 Dresden, Germany
| |
Collapse
|
28
|
Niebling J, E Rünker A, Schallenberg S, Kretschmer K, Kempermann G. Myelin-specific T helper 17 cells promote adult hippocampal neurogenesis through indirect mechanisms. F1000Res 2014; 3:169. [PMID: 25383186 PMCID: PMC4215755 DOI: 10.12688/f1000research.4439.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/31/2022] Open
Abstract
CD4
+ T cells provide a neuro-immunological link in the regulation of adult hippocampal neurogenesis, but the exact mechanisms underlying enhanced neural precursor cell proliferation and the relative contribution of different T helper (Th) cell subsets have remained unclear. Here, we explored the pro-proliferative potential of interleukin 17-producing T helper (Th17) cells, a developmentally and functionally distinct Th cell subset that is a key mediator of autoimmune neurodegeneration. We found that base-line proliferation of hippocampal precursor cells in a T cell-deficient mouse model of impaired hippocampal neurogenesis can be restored upon adoptive transfer with homogeneous Th17 populations enriched for myelin-reactive T cell receptors (TCR). In these experiments, enhanced proliferation was independent of direct interactions of infiltrating Th17 cells with precursor cells or neighboring cells in the hippocampal neurogenic niche. Complementary studies in immunocompetent mice identified several receptors for Th17 cell-derived cytokines with mRNA expression in hippocampal precursor cells and dentate gyrus tissue, suggesting that Th17 cell activity in peripheral lymphoid tissues might promote hippocampal neurogenesis through secreted cytokines.
Collapse
Affiliation(s)
- Johannes Niebling
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Annette E Rünker
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18b, 01307 Dresden, Germany
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18b, 01307 Dresden, Germany
| |
Collapse
|
29
|
Amor S, Peferoen LAN, Vogel DYS, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases--an update. Immunology 2014; 142:151-66. [PMID: 24329535 DOI: 10.1111/imm.12233] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands; Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H. Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol 2014; 175:268-84. [PMID: 24117055 DOI: 10.1111/cei.12219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 01/24/2023] Open
Abstract
An increase in interleukin (IL)-17A-producing cells, particularly at sites of tissue inflammation, is observed frequently, yet the mechanism is not fully understood. This study aims to dissect the role of IL-17 in autoimmunity-mediated neuroinflammation. The cytokine milieu containing elevated IL-17, which often appears in active states of autoimmunity, was mimicked in vitro by a supernatant obtained from rat peripheral blood monocytes stimulated with phorbol mystistate acetate (PMA)/ionomycin. The application of such inflammatory media on only primary cultured cerebellar granule neurones resulted in significant apoptosis, but the presence of astrocytes largely prevented the effect. The supernatants of the stimulated astrocytes, especially those that contained the highest level of IL-17, achieved the best protection, and this effect could be blocked by anti-IL-17 antibodies. Protein IL-17 inhibited intracellular calcium increase and protected the neurones under inflammatory attack from apoptosis. IL-17, but not interferon (IFN)-γ, in the inflammatory media contributed to astrocyte secretion of IL-17, which depended on the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway activation. The astrocytes that were treated with IL-17 alone or with prolonged treatment of the inflammatory media failed to produce sufficient levels of IL-17. Moreover, confirmatory data were obtained in vivo in a monophasic experimental autoimmune uveitis (EAU) in Lewis rats; in this preparation, the high-level IL-17-containing the cytokine milieu was demonstrated, along with IL-17 secretion by the resident neural cells. The antagonism of IL-17 at a late stage disturbed the disease resolution and resulted in significant neural apoptosis. Our data show a dynamic role of IL-17 in the maintenance of homeostasis and neuroprotection in active neuroinflammation.
Collapse
Affiliation(s)
- M H Hu
- Department of Immunology, Harbin Medical University, Harbin, China; Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33:12105-21. [PMID: 23864696 DOI: 10.1523/jneurosci.5369-12.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Collapse
|