1
|
Justs KA, Sempertegui S, Riboul DV, Oliva CD, Durbin RJ, Crill S, Stawarski M, Su C, Renden RB, Fily Y, Macleod GT. Mitochondrial phosphagen kinases support the volatile power demands of motor nerve terminals. J Physiol 2023; 601:5705-5732. [PMID: 37942946 PMCID: PMC10841428 DOI: 10.1113/jp284872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.
Collapse
Affiliation(s)
- Karlis A. Justs
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sergio Sempertegui
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Danielle V. Riboul
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ryan J. Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Chenchen Su
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Robert B. Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Cho TS, Beigaitė E, Klein NE, Sweeney ST, Bhattacharya MRC. The Putative Drosophila TMEM184B Ortholog Tmep Ensures Proper Locomotion by Restraining Ectopic Firing at the Neuromuscular Junction. Mol Neurobiol 2022; 59:2605-2619. [PMID: 35107803 PMCID: PMC9018515 DOI: 10.1007/s12035-022-02760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
TMEM184B is a putative seven-pass membrane protein that promotes axon degeneration after injury. TMEM184B mutation causes aberrant neuromuscular architecture and sensory and motor behavioral defects in mice. The mechanism through which TMEM184B causes neuromuscular defects is unknown. We employed Drosophila melanogaster to investigate the function of the closely related gene, Tmep (CG12004), at the neuromuscular junction. We show that Tmep is required for full adult viability and efficient larval locomotion. Tmep mutant larvae have a reduced body contraction rate compared to controls, with stronger deficits in females. In recordings from body wall muscles, Tmep mutants show substantial hyperexcitability, with many postsynaptic potentials fired in response to a single stimulation, consistent with a role for Tmep in restraining synaptic excitability. Additional branches and satellite boutons at Tmep mutant neuromuscular junctions are consistent with an activity-dependent synaptic overgrowth. Tmep is expressed in endosomes and synaptic vesicles within motor neurons, suggesting a possible role in synaptic membrane trafficking. Using RNAi knockdown, we show that Tmep is required in motor neurons for proper larval locomotion and excitability, and that its reduction increases levels of presynaptic calcium. Locomotor defects can be rescued by presynaptic knockdown of endoplasmic reticulum calcium channels or by reducing evoked release probability, further suggesting that excess synaptic activity drives behavioral deficiencies. Our work establishes a critical function for Tmep in the regulation of synaptic transmission and locomotor behavior.
Collapse
Affiliation(s)
- Tiffany S Cho
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA
| | - Eglė Beigaitė
- Department of Biology, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Nathaniel E Klein
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Martha R C Bhattacharya
- Department of Neuroscience, University of Arizona, 1040 E 4th Street, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Han TH, Vicidomini R, Ramos CI, Wang Q, Nguyen P, Jarnik M, Lee CH, Stawarski M, Hernandez RX, Macleod GT, Serpe M. Neto-α Controls Synapse Organization and Homeostasis at the Drosophila Neuromuscular Junction. Cell Rep 2021; 32:107866. [PMID: 32640231 PMCID: PMC7484471 DOI: 10.1016/j.celrep.2020.107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glutamate receptor auxiliary proteins control receptor distribution and function, ultimately controlling synapse assembly, maturation, and plasticity. At the Drosophila neuromuscular junction (NMJ), a synapse with both pre- and postsynaptic kainate-type glutamate receptors (KARs), we show that the auxiliary protein Neto evolved functionally distinct isoforms to modulate synapse development and homeostasis. Using genetics, cell biology, and electrophysiology, we demonstrate that Neto-α functions on both sides of the NMJ. In muscle, Neto-α limits the size of the postsynaptic receptor field. In motor neurons (MNs), Neto-α controls neurotransmitter release in a KAR-dependent manner. In addition, Neto-α is both required and sufficient for the presynaptic increase in neurotransmitter release in response to reduced postsynaptic sensitivity. This KAR-independent function of Neto-α is involved in activity-induced cytomatrix remodeling. We propose that Drosophila ensures NMJ functionality by acquiring two Neto isoforms with differential expression patterns and activities.
Collapse
Affiliation(s)
- Tae Hee Han
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Functional Genomics of Lyon, Lyon, France
| | - Qi Wang
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Peter Nguyen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Chi-Hon Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Michal Stawarski
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA; Biomedical Department, University of Basel, Basel, Switzerland
| | - Roberto X Hernandez
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Gregory T Macleod
- Wilkes Honors College and Department of Biology, Florida Atlantic University, Jupiter, FL, USA
| | - Mihaela Serpe
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission. J Neurosci 2020; 40:1611-1624. [PMID: 31964719 DOI: 10.1523/jneurosci.1774-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.
Collapse
|
5
|
Dason JS, Allen AM, Vasquez OE, Sokolowski MB. Distinct functions of a cGMP-dependent protein kinase in nerve terminal growth and synaptic vesicle cycling. J Cell Sci 2019; 132:jcs.227165. [DOI: 10.1242/jcs.227165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
Sustained neurotransmission requires the tight coupling of synaptic vesicle (SV) exocytosis and endocytosis. The mechanisms underlying this coupling are poorly understood. We tested the hypothesis that a cGMP-dependent protein kinase (PKG), encoded by the foraging (for) gene in Drosophila melanogaster, is critical for this process using a for null mutant, genomic rescues, and tissue specific rescues. We uncoupled FOR's exocytic and endocytic functions in neurotransmission using a temperature-sensitive shibire mutant in conjunction with fluorescein-assisted light inactivation of FOR. We discovered a dual role for presynaptic FOR, where FOR inhibits SV exocytosis during low frequency stimulation by negatively regulating presynaptic Ca2+ levels and maintains neurotransmission during high frequency stimulation by facilitating SV endocytosis. Additionally, glial FOR negatively regulated nerve terminal growth through TGF-β signaling and this developmental effect was independent from FOR's effects on neurotransmission. Overall, FOR plays a critical role in coupling SV exocytosis and endocytosis, thereby balancing these two components to maintain sustained neurotransmission.
Collapse
Affiliation(s)
- Jeffrey S. Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aaron M. Allen
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Present Address: Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, UK
| | - Oscar E. Vasquez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Marla B. Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
6
|
Abstract
While readers of Journal of Neurogenetics may be familiar with Harold Atwood's work with Drosophila, most may know little of his previous work on crustacean neuromuscular systems that prepared him to utilise Drosophila neuromuscular junctions. Here, I will give brief overviews of his academic career, one line of his research that persisted throughout his career and his entry to the Drosophila field. This is not a review paper. Finally, I will relate my experiences with Atwood since 1967 as an undergraduate, Postdoctoral Fellow, and Faculty member and finish with some personal anecdotal observations.
Collapse
Affiliation(s)
- Milton P Charlton
- a Physiology Department , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
7
|
da Silva LVF, Veras Mourão RH, Manimala J, Lnenicka GA. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. ACTA ACUST UNITED AC 2018; 221:jeb.176909. [PMID: 29880632 DOI: 10.1242/jeb.176909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
Lippia alba is a flowering shrub in the verbena family and its essential oil (EO) is known for its sedative, antidepressant and analgesic properties. In the Amazon region of Brazil, it is used in aquaculture to anesthetize fish during transport. Many of the specialized metabolites found in EOs presumably evolved to protect plants from herbivores, especially insects. We used Drosophila to test the behavioral and physiological actions of this EO and its components. We found that a 150 min exposure to the EO vapors resulted in immobilization of adult flies. Gas chromatography-mass spectrometry identified the major components of the EO as the monoterpenes citral (59%), carvone (7%) and limonene (7%). Fly immobilization by the EO was due to citral and carvone, with citral producing more rapid effects than carvone. We tested whether the EO affected synaptic physiology by applying it to the larval neuromuscular junction. The EO delivered at 0.012% (v/v) produced over a 50% reduction in excitatory postsynaptic potential (EPSP) amplitude within 3-4 min. When the EO components were applied at 0.4 mmol l-1, citral and carvone produced a significant reduction in EPSP amplitude, with citral producing the largest effect. Measurement of miniature EPSP amplitudes demonstrated that citral produced over a 50% reduction in transmitter release. Calcium imaging experiments showed that citral produced about 30% reduction in presynaptic Ca2+ influx, which likely resulted in the decrease in transmitter release. Thus, the EO blocks synaptic transmission, largely due to citral, and this likely contributes to its behavioral effects.
Collapse
Affiliation(s)
- Lenise Vargas Flores da Silva
- Water Science and Technology Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá, Brazil
| | - Rosa Helena Veras Mourão
- Health Collective Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá- Brazil
| | - Jibin Manimala
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
8
|
Unraveling Synaptic GCaMP Signals: Differential Excitability and Clearance Mechanisms Underlying Distinct Ca 2+ Dynamics in Tonic and Phasic Excitatory, and Aminergic Modulatory Motor Terminals in Drosophila. eNeuro 2018; 5:eN-NWR-0362-17. [PMID: 29464198 PMCID: PMC5818553 DOI: 10.1523/eneuro.0362-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
GCaMP is an optogenetic Ca2+ sensor widely used for monitoring neuronal activities but the precise physiological implications of GCaMP signals remain to be further delineated among functionally distinct synapses. The Drosophila neuromuscular junction (NMJ), a powerful genetic system for studying synaptic function and plasticity, consists of tonic and phasic glutamatergic and modulatory aminergic motor terminals of distinct properties. We report a first simultaneous imaging and electric recording study to directly contrast the frequency characteristics of GCaMP signals of the three synapses for physiological implications. Different GCaMP variants were applied in genetic and pharmacological perturbation experiments to examine the Ca2+ influx and clearance processes underlying the GCaMP signal. Distinct mutational and drug effects on GCaMP signals indicate differential roles of Na+ and K+ channels, encoded by genes including paralytic (para), Shaker (Sh), Shab, and ether-a-go-go (eag), in excitability control of different motor terminals. Moreover, the Ca2+ handling properties reflected by the characteristic frequency dependence of the synaptic GCaMP signals were determined to a large extent by differential capacity of mitochondria-powered Ca2+ clearance mechanisms. Simultaneous focal recordings of synaptic activities further revealed that GCaMPs were ineffective in tracking the rapid dynamics of Ca2+ influx that triggers transmitter release, especially during low-frequency activities, but more adequately reflected cytosolic residual Ca2+ accumulation, a major factor governing activity-dependent synaptic plasticity. These results highlight the vast range of GCaMP response patterns in functionally distinct synaptic types and provide relevant information for establishing basic guidelines for the physiological interpretations of presynaptic GCaMP signals from in situ imaging studies.
Collapse
|
9
|
Serotonergic Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in Drosophila. Neuron 2017; 95:623-638.e4. [PMID: 28712652 DOI: 10.1016/j.neuron.2017.06.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/06/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
Abstract
How experiences during development cause long-lasting changes in sensory circuits and affect behavior in mature animals are poorly understood. Here we establish a novel system for mechanistic analysis of the plasticity of developing neural circuits by showing that sensory experience during development alters nociceptive behavior and circuit physiology in Drosophila larvae. Despite the convergence of nociceptive and mechanosensory inputs on common second-order neurons (SONs), developmental noxious input modifies transmission from nociceptors to their SONs, but not from mechanosensors to the same SONs, which suggests striking sensory pathway specificity. These SONs activate serotonergic neurons to inhibit nociceptor-to-SON transmission; stimulation of nociceptors during development sensitizes nociceptor presynapses to this feedback inhibition. Our results demonstrate that, unlike associative learning, which involves inputs from two sensory pathways, sensory pathway-specific plasticity in the Drosophila nociceptive circuit is in part established through feedback modulation. This study elucidates a novel mechanism that enables pathway-specific plasticity in sensory systems. VIDEO ABSTRACT.
Collapse
|
10
|
Rossano AJ, Kato A, Minard KI, Romero MF, Macleod GT. Na + /H + exchange via the Drosophila vesicular glutamate transporter mediates activity-induced acid efflux from presynaptic terminals. J Physiol 2016; 595:805-824. [PMID: 27641622 DOI: 10.1113/jp273105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/14/2016] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Intracellular pH regulation is vital to neurons as nerve activity produces large and rapid acid loads in presynaptic terminals. Rapid clearance of acid loads is necessary to maintain control of neurotransmission, but neuronal acid clearance mechanisms remain poorly understood. Glutamate is loaded into synaptic vesicles via the vesicular glutamate transporter (VGLUT), a mechanism conserved across phyla, and this study reports a previously unknown role for VGLUT as an acid-extruding protein when deposited in the plasmamembrane during exocytosis. The finding was made in Drosophila (fruit fly) larval motor neurons through a combined pharamacological and genetic dissection of presynaptic pH homeostatic mechanisms. A dual role for VGLUT serves to integrate neuronal activity and pH regulation in presynaptic nerve terminals. ABSTRACT Neuronal activity can result in transient acidification of presynaptic terminals, and such shifts in cytosolic pH (pHcyto ) probably influence mechanisms underlying forms of synaptic plasticity with a presynaptic locus. As neuronal activity drives acid loading in presynaptic terminals, we hypothesized that the same activity might drive acid efflux mechanisms to maintain pHcyto homeostasis. To better understand the integration of neuronal activity and pHcyto regulation we investigated the acid extrusion mechanisms at Drosophila glutamatergic motorneuron terminals. Expression of a fluorescent genetically encoded pH indicator, named 'pHerry', in the presynaptic cytosol revealed acid efflux following nerve activity to be greater than that predicted from measurements of the intrinsic rate of acid efflux. Analysis of activity-induced acid transients in terminals deficient in either endocytosis or exocytosis revealed an acid efflux mechanism reliant upon synaptic vesicle exocytosis. Pharmacological and genetic dissection in situ and in a heterologous expression system indicate that this acid efflux is mediated by conventional plasmamembrane acid transporters, and also by previously unrecognized intrinsic H+ /Na+ exchange via the Drosophila vesicular glutamate transporter (DVGLUT). DVGLUT functions not only as a vesicular glutamate transporter but also serves as an acid-extruding protein when deposited on the plasmamembrane.
Collapse
Affiliation(s)
- Adam J Rossano
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Kato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Karyl I Minard
- Biological Sciences & Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33431, USA
| | - Michael F Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Gregory T Macleod
- Biological Sciences & Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33431, USA
| |
Collapse
|
11
|
Krill JL, Dawson-Scully K. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae. PLoS One 2016; 11:e0164114. [PMID: 27711243 PMCID: PMC5053426 DOI: 10.1371/journal.pone.0164114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.
Collapse
Affiliation(s)
- Jennifer L. Krill
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lu Z, Chouhan AK, Borycz JA, Lu Z, Rossano AJ, Brain KL, Zhou Y, Meinertzhagen IA, Macleod GT. High-Probability Neurotransmitter Release Sites Represent an Energy-Efficient Design. Curr Biol 2016; 26:2562-2571. [PMID: 27593375 DOI: 10.1016/j.cub.2016.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/06/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Nerve terminals contain multiple sites specialized for the release of neurotransmitters. Release usually occurs with low probability, a design thought to confer many advantages. High-probability release sites are not uncommon, but their advantages are not well understood. Here, we test the hypothesis that high-probability release sites represent an energy-efficient design. We examined release site probabilities and energy efficiency at the terminals of two glutamatergic motor neurons synapsing on the same muscle fiber in Drosophila larvae. Through electrophysiological and ultrastructural measurements, we calculated release site probabilities to differ considerably between terminals (0.33 versus 0.11). We estimated the energy required to release and recycle glutamate from the same measurements. The energy required to remove calcium and sodium ions subsequent to nerve excitation was estimated through microfluorimetric and morphological measurements. We calculated energy efficiency as the number of glutamate molecules released per ATP molecule hydrolyzed, and high-probability release site terminals were found to be more efficient (0.13 versus 0.06). Our analytical model indicates that energy efficiency is optimal (∼0.15) at high release site probabilities (∼0.76). As limitations in energy supply constrain neural function, high-probability release sites might ameliorate such constraints by demanding less energy. Energy efficiency can be viewed as one aspect of nerve terminal function, in balance with others, because high-efficiency terminals depress significantly during episodic bursts of activity.
Collapse
Affiliation(s)
- Zhongmin Lu
- Integrative Biology and Neuroscience Graduate Program, Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Amit K Chouhan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9AJ, Scotland, UK
| | - Jolanta A Borycz
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Adam J Rossano
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Keith L Brain
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - You Zhou
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gregory T Macleod
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
13
|
Wong MY, Cavolo SL, Levitan ES. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles. Mol Biol Cell 2015; 26:2466-74. [PMID: 25904335 PMCID: PMC4571301 DOI: 10.1091/mbc.e15-01-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Neurons release neuropeptides, enzymes, and neurotrophins by exocytosis of dense-core vesicles (DCVs). Peptide release from individual DCVs has been imaged in vitro with endocrine cells and at the neuron soma, growth cones, neurites, axons, and dendrites but not at nerve terminals, where peptidergic neurotransmission occurs. Single presynaptic DCVs have, however, been tracked in native terminals with simultaneous photobleaching and imaging (SPAIM) to show that DCVs undergo anterograde and retrograde capture as they circulate through en passant boutons. Here dynamin (encoded by the shibire gene) is shown to enhance activity-evoked peptide release at the Drosophila neuromuscular junction. SPAIM demonstrates that activity depletes only a portion of a single presynaptic DCV's content. Activity initiates exocytosis within seconds, but subsequent release occurs slowly. Synaptic neuropeptide release is further sustained by DCVs undergoing multiple rounds of exocytosis. Synaptic neuropeptide release is surprisingly similar regardless of anterograde or retrograde DCV transport into boutons, bouton location, and time of arrival in the terminal. Thus vesicle circulation and bidirectional capture supply synapses with functionally competent DCVs. These results show that activity-evoked synaptic neuropeptide release is independent of a DCV's past traffic and occurs by slow, dynamin-dependent partial emptying of DCVs, suggestive of kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Man Yan Wong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Samantha L Cavolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
14
|
Tian X, Gala U, Zhang Y, Shang W, Nagarkar Jaiswal S, di Ronza A, Jaiswal M, Yamamoto S, Sandoval H, Duraine L, Sardiello M, Sillitoe RV, Venkatachalam K, Fan H, Bellen HJ, Tong C. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLoS Biol 2015; 13:e1002103. [PMID: 25811491 PMCID: PMC4374850 DOI: 10.1371/journal.pbio.1002103] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/11/2015] [Indexed: 01/03/2023] Open
Abstract
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis. A voltage-gated calcium channel required for neurotransmitter release also regulates the fusion of neuronal lysosomes with endosomes and autophagosomes, thereby helping to maintain cellular homeostasis. Autophagy is a cellular process used by cells to prevent the accumulation of toxic substances. It delivers misfolded proteins and damaged organelles by fusing autophagosomes—organelles formed by a double membrane that surrounds the “debris” to be eliminated—with lysosomes. How this fusion process is regulated during autophagy, however, remains to be established. Here, we analyze this process in flies and mice, and find that loss of different subunits of a specific type of Voltage Gated Calcium Channel (VGCC) leads to defects in lysosomal fusion with autophagosomes in neurons. It was already known that VGCCs control calcium entry at synaptic terminals to promote the fusion of synaptic vesicles with the plasma membrane, and that mutations in the subunits of VGCCs in humans cause neurological diseases. Our data indicate that defects in autophagy and lysosomal fusion are independent of defects in synaptic vesicle fusion and neurotransmitter release, and we show that a specific VGCC is present on lysosomal membranes where it is required for lysosomal fusion with endosomes and autophagosomes. These observations suggest that the fusion events required in autophagy rely on mechanisms similar to those that trigger the fusion of synaptic vesicles with the presynaptic membrane.
Collapse
Affiliation(s)
- Xuejun Tian
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Upasana Gala
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongping Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Weina Shang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco Sardiello
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kartik Venkatachalam
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, Texas, United States of America
| | - Hengyu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (CT), (HJB)
| | - Chao Tong
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
- * E-mail: (CT), (HJB)
| |
Collapse
|
15
|
Dason JS, Charlton MP. A novel extraction protocol to probe the role of cholesterol in synaptic vesicle recycling. Methods Mol Biol 2014; 1174:361-373. [PMID: 24947395 DOI: 10.1007/978-1-4939-0944-5_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cholesterol helps to stabilize membrane fluidity and many membrane proteins interact with cholesterol and are functionally clustered in cholesterol rich "rafts." Synaptic vesicle (SV) membranes are enriched in cholesterol in comparison to other organelles. Attempts to study the function of this high cholesterol content have been hampered by the inability to extract cholesterol from SVs in live presynaptic terminals. Here, we describe a method to extract vesicular cholesterol using a temperature-sensitive Drosophila dynamin mutant, shibire-ts1 (shi), to trap SVs on the plasma membrane. Trapped SVs are more accessible to cholesterol extraction by the cholesterol chelator, methyl-β-cyclodextrin (MβCD). This method can likely be extended to extract other lipids from SVs and could also be used to add lipids. We speculate that this method could be used on mammalian preparations in conjunction with dynamin inhibitors.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S1A8,
| | | |
Collapse
|
16
|
Dason JS, Smith AJ, Marin L, Charlton MP. Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. J Physiol 2013; 592:621-33. [PMID: 24297851 DOI: 10.1113/jphysiol.2013.265447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synaptic vesicles (SVs) and their proteins must be recycled for sustained synaptic transmission. We tested the hypothesis that SV cholesterol is required for proper sorting of SV proteins during recycling in live presynaptic terminals. We used the reversible block of endocytosis in the Drosophila temperature-sensitive dynamin mutant shibire-ts1 to trap exocytosed SV proteins, and then examined the effect of experimental treatments on the distribution of these proteins within the presynaptic plasma membrane by confocal microscopy. SV proteins synaptotagmin, vglut and csp were clustered following SV trapping in control experiments but dispersed in samples treated with the cholesterol chelator methyl-β-cyclodextrin to extract SV cholesterol. There was accumulation of phosphatidylinositol (4,5)-bisphosphate (PIP2) in presynaptic terminals following SV trapping and this was reduced following SV cholesterol extraction. Reduced PIP2 accumulation was associated with disrupted accumulation of actin in presynaptic terminals. Similar to vesicular cholesterol extraction, disruption of actin by latrunculin A after SV proteins had been trapped on the plasma membrane resulted in the dispersal of SV proteins and prevented recovery of synaptic transmission due to impaired endocytosis following relief of the endocytic block. Our results demonstrate that vesicular cholesterol is required for aggregation of exocytosed SV proteins in the presynaptic plasma membrane and are consistent with a mechanism involving regulation of PIP2 accumulation and local actin polymerization by cholesterol. Thus, alteration of membrane or SV lipids may affect the ability of synapses to undergo sustained synaptic transmission by compromising the recycling of SV proteins.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
17
|
Gillespie JM, Hodge JJL. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning. Front Mol Neurosci 2013; 6:27. [PMID: 24062638 PMCID: PMC3769642 DOI: 10.3389/fnmol.2013.00027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022] Open
Abstract
Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation.
Collapse
Affiliation(s)
- John M Gillespie
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | | |
Collapse
|
18
|
Tsuyama T, Kishikawa JI, Han YW, Harada Y, Tsubouchi A, Noji H, Kakizuka A, Yokoyama K, Uemura T, Imamura H. In vivo fluorescent adenosine 5'-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem 2013; 85:7889-96. [PMID: 23875533 DOI: 10.1021/ac4015325] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is the major energy currency of all living organisms. Despite its important functions, the spatiotemporal dynamics of ATP levels inside living multicellular organisms is unclear. In this study, we modified the genetically encoded Förster resonance energy transfer (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures. This new biosensor, AT1.03NL, detected ATP changes inside Drosophila S2 cells more sensitively than the original biosensor did, at 25 °C. By expressing AT1.03NL in Drosophila melanogaster and Caenorhabditis elegans, we succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SSH, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 2012; 32:13819-40. [PMID: 23035093 PMCID: PMC3482105 DOI: 10.1523/jneurosci.2601-12.2012] [Citation(s) in RCA: 887] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/14/2023] Open
Abstract
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
Collapse
Affiliation(s)
- Jasper Akerboom
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Tsai-Wen Chen
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Trevor J. Wardill
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Lin Tian
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Jonathan S. Marvin
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Sevinç Mutlu
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Doca de Pedrouços, 1400-038 Lisboa, Portugal
| | - Nicole Carreras Calderón
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH United Kingdom
- Department of Chemistry, University of Puerto Rico–Río Piedras, San Juan, Puerto Rico 00931
| | - Federico Esposti
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH United Kingdom
| | - Bart G. Borghuis
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Xiaonan Richard Sun
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Andrew Gordus
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Doca de Pedrouços, 1400-038 Lisboa, Portugal
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Ruben Portugues
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Florian Engert
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - John J. Macklin
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Alessandro Filosa
- Department of Physiology, Programs in Neuroscience, Genetics, and Developmental Biology, University of California, San Francisco, San Francisco, California 94158
| | - Aman Aggarwal
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India, and
| | - Rex A. Kerr
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Ryousuke Takagi
- Department of Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Sebastian Kracun
- Department of Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Eiji Shigetomi
- Department of Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Baljit S. Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Herwig Baier
- Department of Physiology, Programs in Neuroscience, Genetics, and Developmental Biology, University of California, San Francisco, San Francisco, California 94158
| | - Leon Lagnado
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH United Kingdom
| | - Samuel S.-H. Wang
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Cornelia I. Bargmann
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065
| | - Bruce E. Kimmel
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Vivek Jayaraman
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Douglas S. Kim
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Eric R. Schreiter
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
- Department of Chemistry, University of Puerto Rico–Río Piedras, San Juan, Puerto Rico 00931
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| |
Collapse
|
20
|
Macleod GT. Forward-filling of dextran-conjugated indicators for calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc 2012; 2012:791-6. [PMID: 22753611 DOI: 10.1101/pdb.prot070094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium imaging is a technique in which Ca(2+)-binding molecules are loaded into live cells and as they bind Ca(2+) they "indicate" the concentration of free calcium through a change in either the intensity or the wavelength of light emitted (fluorescence or bioluminescence). There are several possible methods for loading synthetic Ca(2+) indicators into subcellular compartments, including topical application of membrane-permeant Ca(2+) indicators, forward-filling of dextran conjugates, and direct injection. Calcium imaging is a highly informative technique in neurobiology because Ca(2+) is involved in many neuronal signaling pathways and serves as the trigger for neurotransmitter release. This article describes the forward-filling of dextran-conjugated indicators at the Drosophila larval neuromuscular junction (NMJ). This technique is particularly well suited for imaging changes in cytosolic Ca(2+) as dextran conjugation prevents compartmentalization of the Ca(2+) indicator. The major drawback is that the nerves must be severed at the start of the loading process, several hours before nerve terminals are ready to examine.
Collapse
|
21
|
Macleod GT. Calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc 2012; 2012:758-66. [PMID: 22753609 DOI: 10.1101/pdb.top070078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium imaging uses optical imaging techniques to measure the concentration of free calcium [Ca(2+)] in live cells. It is a highly informative technique in neurobiology because Ca(2+) is involved in many neuronal signaling pathways and serves as the trigger for neurotransmitter release. The technique relies on loading Ca(2+) indicators into cells, measuring the quantity and/or wavelength of the photons emitted by the Ca(2+) indicator, and interpreting these data in terms of [Ca(2+)]. There are several possible methods for loading synthetic Ca(2+) indicators into subcellular compartments, for example, topical application of membrane-permeant Ca(2+) indicators, forward-filling of dextran conjugates, and direct injection. These techniques are applicable to calcium imaging at the Drosophila larval neuromuscular junction (NMJ), and are also readily adaptable to Drosophila embryo and adult preparations.
Collapse
|
22
|
Brink DL, Gilbert M, Xie X, Petley-Ragan L, Auld VJ. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth. PLoS One 2012; 7:e37876. [PMID: 22666403 PMCID: PMC3362601 DOI: 10.1371/journal.pone.0037876] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ), we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.
Collapse
Affiliation(s)
- Deidre L. Brink
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaojun Xie
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay Petley-Ragan
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vanessa J. Auld
- Department of Zoology, Cell and Developmental Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
23
|
Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY. Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease. PLoS One 2012; 7:e37564. [PMID: 22662171 PMCID: PMC3360782 DOI: 10.1371/journal.pone.0037564] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood. METHODOLOGY We investigated the mechanism of dopamine induced cell death in transgenic PINK1 knockout mouse neurons. We show that dopamine results in mitochondrial depolarisation caused by mitochondrial permeability transition pore (mPTP) opening. Dopamine-induced mPTP opening is dependent on a complex of reactive oxygen species production and calcium signalling. Dopamine-induced mPTP opening, and dopamine-induced cell death, could be prevented by inhibition of reactive oxygen species production, by provision of respiratory chain substrates, and by alteration in calcium signalling. CONCLUSIONS These data demonstrate the mechanism of dopamine toxicity in PINK1 deficient neurons, and suggest potential therapeutic strategies for neuroprotection in Parkinson's disease.
Collapse
Affiliation(s)
- Sonia Gandhi
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Iyengar BG, Chou CJ, Vandamme KM, Klose MK, Zhao X, Akhtar-Danesh N, Campos AR, Atwood HL. Silencing synaptic communication between random interneurons duringDrosophilalarval locomotion. GENES BRAIN AND BEHAVIOR 2011; 10:883-900. [DOI: 10.1111/j.1601-183x.2011.00729.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
He T, Lnenicka GA. Ca²+ buffering at a drosophila larval synaptic terminal. Synapse 2011; 65:687-93. [PMID: 21218450 DOI: 10.1002/syn.20909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/23/2010] [Indexed: 11/12/2022]
Abstract
A quantitative analysis of Ca²+ dynamics requires knowledge of the Ca²+-binding ratio (κ(S) ); this has not been measured at Drosophila synaptic terminals or any invertebrate synaptic terminal. We measured κ(S) at a Ib motor terminal in Drosophila larvae comparing single-AP Ca²+ transients in synaptic terminals that contained varying concentrations of the Ca²+ indicator, Oregon Green 488 BAPTA-1 (OGB-1). Using a linear single-compartment model, κ(S) was calculated based upon the effect of [OGB-1] on the time constant (τ(decay) ) for the decay of intracellular free Ca²+ concentration ([Ca²+](i)). This gave a κ(S) of 77 indicating that nearly 99% of entering Ca²+ is immediately bound by endogenous fast Ca²+ buffers. Extrapolation to zero [OGB-1] gave a τ(decay) of 46 ms and a Ca²+-removal rate constant of 1641 s⁻¹ for single APs. We calculated that a single AP produced an increase in [Ca²+](i) of 196 nM and an increase in the total intracellular [Ca²+](free + bound) of 15.3 μM for measurements made in 1.0 mM external Ca²+. The increase in [Ca²+](i) for AP trains was 185 nM/ 10 Hz; this gave a Ca²+ extrusion rate constant of 827 s⁻¹, which likely reflects the activity of the plasma membrane Ca²+ ATPase. Experiments were performed to examine the effect of altering external Ca²+ or Mg²+ on Ca²+ influx at these terminals.
Collapse
Affiliation(s)
- Tao He
- Department of Biological Sciences, University at Albany, Suny, Albany, New York 12222, USA
| | | |
Collapse
|
26
|
Abstract
Synaptic vesicles have a high sterol content, but the importance of vesicular sterols during vesicle recycling is unclear. We used the Drosophila temperature-sensitive dynamin mutant, shibire-ts1, to block endocytosis of recycling synaptic vesicles and to trap them reversibly at the plasma membrane where they were accessible to sterol extraction. Depletion of sterols from trapped vesicles prevented recovery of synaptic transmission after removal of the endocytic block. Measurement of vesicle recycling with synaptopHluorin, FM1-43, and FM4-64 demonstrated impaired membrane retrieval after vesicular sterol depletion. When plasma membrane sterols were extracted before vesicle trapping, no vesicle recycling defects were observed. Ultrastructural analysis indicated accumulation of endosomes and a defect in the formation of synaptic vesicles in synaptic terminals subjected to vesicular sterol depletion. Our results demonstrate the importance of a high vesicular sterol concentration for endocytosis and suggest that vesicular and membrane sterol pools do not readily intermingle during vesicle recycling.
Collapse
|
27
|
Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 2010; 30:1869-81. [PMID: 20130196 DOI: 10.1523/jneurosci.4701-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.
Collapse
|
28
|
Desai-Shah M, Cooper RL. Different mechanisms of Ca2+ regulation that influence synaptic transmission: comparison between crayfish and Drosophila neuromuscular junctions. Synapse 2010; 63:1100-21. [PMID: 19650116 DOI: 10.1002/syn.20695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A brief historical background on synaptic transmission in relation to Ca(2+) dynamics and short-term facilitation is described. This study focuses on the mechanisms responsible for the regulation of intracellular calcium concentration ([Ca(2+)](i)) in high output terminals of larval Drosophila compared to a low-output terminal of the crayfish neuromuscular junction (NMJ). Three processes; plasmalemmal Na(+)/Ca(2+) exchanger [NCX], Ca(2+)-ATPase (PMCA), and sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA) are important in regulating the [Ca(2+)](i) are examined. When the NCX is compromised by reduced [Na(+)](o), no consistent effect occurred; but a NCX blocker KB-R7943 decreased the excitatory postsynaptic potential (EPSP) amplitudes. Compromising the PMCA with pH 8.8 resulted in an increase in EPSP amplitude but treatment with a PMCA specific inhibitor carboxyeosin produced opposite results. Thapsigargin exposure to block the SERCA generally decreases EPSP amplitude. Compromising the activity of the above Ca(2+) regulating proteins had no substantial effects on short-term depression. The Kum(170TS) strain (with dysfunctional SERCA), showed a decrease in EPSP amplitudes including the first EPSP within the train. Synaptic transmission is altered by reducing the function of the above three [Ca(2+)](i) regulators; but they are not consistent among different species as expected. Results in crayfish NMJ were more consistent with expected results as compared to the Drosophila NMJ. It is predicated that different mechanisms are used for regulating the [Ca(2+)](i) in high and low output synaptic terminals.
Collapse
Affiliation(s)
- Mohati Desai-Shah
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | |
Collapse
|
29
|
Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrús A, Atwood HL. Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth. J Cell Sci 2009; 122:4109-21. [PMID: 19861494 DOI: 10.1242/jcs.055095] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Frequenin (Frq) and its mammalian and worm homologue, NCS-1, are Ca(2+)-binding proteins involved in neurotransmission. Using site-specific recombination in Drosophila, we created two deletions that removed the entire frq1 gene and part of the frq2 gene, resulting in no detectable Frq protein. Frq-null mutants were viable, but had defects in larval locomotion, deficient synaptic transmission, impaired Ca(2+) entry and enhanced nerve-terminal growth. The impaired Ca(2+) entry was sufficient to account for reduced neurotransmitter release. We hypothesized that Frq either modulates Ca(2+) channels, or that it regulates the PI4Kbeta pathway as described in other organisms. To determine whether Frq interacts with PI4Kbeta with consequent effects on Ca(2+) channels, we first characterized a PI4Kbeta-null mutant and found that PI4Kbeta was dispensable for synaptic transmission and nerve-terminal growth. Frq gain-of-function phenotypes remained present in a PI4Kbeta-null background. We conclude that the effects of Frq are not due to an interaction with PI4Kbeta. Using flies that were trans-heterozygous for a null frq allele and a null cacophony (encoding the alpha(1)-subunit of voltage-gated Ca(2+) channels) allele, we show a synergistic effect between these proteins in neurotransmitter release. Gain-of-function Frq phenotypes were rescued by a hypomorphic cacophony mutation. Overall, Frq modulates Ca(2+) entry through a functional interaction with the alpha(1) voltage-gated Ca(2+)-channel subunit; this interaction regulates neurotransmission and nerve-terminal growth.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY, Wensel TG, Bellen HJ. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 2009; 138:947-60. [PMID: 19737521 PMCID: PMC2749961 DOI: 10.1016/j.cell.2009.06.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/27/2009] [Accepted: 06/12/2009] [Indexed: 02/06/2023]
Abstract
Synaptic vesicle (SV) exo- and endocytosis are tightly coupled to sustain neurotransmission in presynaptic terminals, and both are regulated by Ca(2+). Ca(2+) influx triggered by voltage-gated Ca(2+) channels is necessary for SV fusion. However, extracellular Ca(2+) has also been shown to be required for endocytosis. The intracellular Ca(2+) levels (<1 microM) that trigger endocytosis are typically much lower than those (>10 microM) needed to induce exocytosis, and endocytosis is inhibited when the Ca(2+) level exceeds 1 microM. Here, we identify and characterize a transmembrane protein associated with SVs that, upon SV fusion, localizes at periactive zones. Loss of Flower results in impaired intracellular resting Ca(2+) levels and impaired endocytosis. Flower multimerizes and is able to form a channel to control Ca(2+) influx. We propose that Flower functions as a Ca(2+) channel to regulate synaptic endocytosis and hence couples exo- with endocytosis.
Collapse
Affiliation(s)
- Chi-Kuang Yao
- Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Brink D, Gilbert M, Auld V. Visualizing the live Drosophila glial-neuromuscular junction with fluorescent dyes. J Vis Exp 2009:1154. [PMID: 19440184 DOI: 10.3791/1154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Our project identified GFP labeled glial structures at the developing larval fly neuromuscular synapse. To look at development of live glial-nerve-muscle synapses, we developed a larval tissue preparation that had features of live intact larvae, but also had good optical properties. This new preparation also allowed for access of perfusates to the synapse. We used fly larvae, immersed them in artificial hemolymph, and relaxed their normal rhythmic body contractions by chilling them. Next we dissected off the posterior segments of each animal and with a blunt insect pin pushed the mouth parts backward through the body cavity. This everted the larval body wall, like turning a sock inside-out. We completed the dissection with ultra-fine dissection scissors and thus exposed the visceral side of the body wall muscles. The glial structures at the NMJ expressed membrane targeted GFP under the control of glial specific promoters. The post-synaptic membrane, the SSR (Subsynaptic Reticula) in muscle expressed synaptically targeted dsRed. We needed to acutely label the motor neuron terminals, the third part of the synapse. To do this we applied primary antibodies to HRP, conjugated to a far-red emitting flurophore. To test for dye diffusion properties into the perisynaptic space between the motor neuron terminals and the SSR, we applied a solution of large Dextran molecules conjugated to far-red emitting flurophore and collected images.
Collapse
Affiliation(s)
- Dee Brink
- Department of Zoology, University of British Columbia
| | | | | |
Collapse
|
32
|
He T, Singh V, Rumpal N, Lnenicka GA. Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae. Neuroscience 2009; 159:1283-91. [PMID: 19409207 DOI: 10.1016/j.neuroscience.2009.01.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/19/2022]
Abstract
We determined whether two classes of Drosophila larval motor terminals with known differences in structure and transmitter release also showed differences in Ca(2+) regulation. Larval motor neurons can be separated into those producing large synaptic boutons (Ib) and those with small boutons (Is). Ib terminals release less transmitter during single action potentials (APs) than Is terminals, but show greater facilitation during high-frequency stimulation. We measured Ca(2+) transients produced by single APs and AP trains after loading the terminals with the dextran-conjugated Ca(2+) indicator Oregon Green 488 BAPTA-1 (OGB-1). The two pairs of Is and Ib terminals innervating muscle fiber 4 and fibers 6 and 7 were examined. The OGB-1 concentrations were measured in order to compare measurements from terminals with similar OGB-1 loading. For single APs, the change in OGB-1 fluorescence (DeltaF/F) in Is boutons was significantly larger than in Ib boutons due to greater Ca(2+) influx per bouton volume. The Is boutons had greater surface area and active zone number per bouton volume than Ib boutons; this could account for the differences in Ca(2+) influx and argues for similar Ca(2+) influx at Is and Ib active zones. As previously reported for the Ib boutons, the distal Is boutons had larger single-AP Ca(2+) transients than proximal ones on muscle fibers 6 and 7, but not on fiber 4. This difference was not due to proximal-distal differences in surface area or active zones per bouton volume and may be due to greater Ca(2+) influx at distal active zones. During AP trains, the Is Ca(2+) transients were larger in amplitude and had longer decay time constants than Ib ones. This can be explained by a slower rate of Ca(2+) extrusion from the Is boutons apparently due to lower plasma membrane Ca(2+) ATPase activity at Is boutons compared to Ib boutons.
Collapse
Affiliation(s)
- T He
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
33
|
Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 2008; 28:7399-411. [PMID: 18632944 DOI: 10.1523/jneurosci.1038-08.2008] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent advance in the design of genetically encoded calcium indicators (GECIs) has further increased their potential for direct measurements of activity in intact neural circuits. However, a quantitative analysis of their fluorescence changes (DeltaF) in vivo and the relationship to the underlying neural activity and changes in intracellular calcium concentration (Delta[Ca(2+)](i)) has not been given. We used two-photon microscopy, microinjection of synthetic Ca(2+) dyes and in vivo calibration of Oregon-Green-BAPTA-1 (OGB-1) to estimate [Ca(2+)](i) at rest and Delta[Ca(2+)](i) at different action potential frequencies in presynaptic motoneuron boutons of transgenic Drosophila larvae. We calibrated DeltaF of eight different GECIs in vivo to neural activity, Delta[Ca(2+)](i), and DeltaF of purified GECI protein at similar Delta[Ca(2+)] in vitro. Yellow Cameleon 3.60 (YC3.60), YC2.60, D3cpv, and TN-XL exhibited twofold higher maximum DeltaF compared with YC3.3 and TN-L15 in vivo. Maximum DeltaF of GCaMP2 and GCaMP1.6 were almost identical. Small Delta[Ca(2+)](i) were reported best by YC3.60, D3cpv, and YC2.60. The kinetics of Delta[Ca(2+)](i) was massively distorted by all GECIs, with YC2.60 showing the slowest kinetics, whereas TN-XL exhibited the fastest decay. Single spikes were only reported by OGB-1; all GECIs were blind for Delta[Ca(2+)](i) associated with single action potentials. YC3.60 and D3cpv tentatively reported spike doublets. In vivo, the K(D) (dissociation constant) of all GECIs was shifted toward lower values, the Hill coefficient was changed, and the maximum DeltaF was reduced. The latter could be attributed to resting [Ca(2+)](i) and the optical filters of the equipment. These results suggest increased sensitivity of new GECIs but still slow on rates for calcium binding.
Collapse
|
34
|
Klose MK, Atwood HL, Robertson RM. Hyperthermic preconditioning of presynaptic calcium regulation in Drosophila. J Neurophysiol 2008; 99:2420-30. [PMID: 18272873 DOI: 10.1152/jn.01251.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the thermosensitivity of calcium regulation in Drosophila larval neuromuscular junctions, testing effects of prior heat shock and Hsp70 expression. Motor neurons were loaded with either the ratiometric indicator Fura-dextran or the nonratiometric indicator Oregon Green bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid to monitor parameters of calcium regulation as temperature increased. Nerve terminals treated to a prior heat shock, and those of transgenic flies expressing higher than normal levels of Hsp70, were better able to maintain near-normal resting calcium concentrations, calcium influx, and calcium clearance at higher temperatures. Synaptic transmission was also protected by prior heat shock and by higher than normal Hsp70 expression. Thus the thermal limit of synaptic transmission may be directly linked to the stability of calcium regulation.
Collapse
Affiliation(s)
- M K Klose
- Department of Physiology, University of Toronto, 1 King's College Circle, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Rossano AJ, Macleod GT. Loading Drosophila nerve terminals with calcium indicators. J Vis Exp 2007:250. [PMID: 18997898 DOI: 10.3791/250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Calcium plays many roles in the nervous system but none more impressive than as the trigger for neurotransmitter release, and none more profound than as the messenger essential for the synaptic plasticity that supports learning and memory. To further elucidate the molecular underpinnings of Ca(2+)-dependent synaptic mechanisms, a model system is required that is both genetically malleable and physiologically accessible. Drosophila melanogaster provides such a model. In this system, genetically-encoded fluorescent indicators are available to detect Ca(2+) changes in nerve terminals. However, these indicators have limited sensitivity to Ca(2+) and often show a non-linear response. Synthetic fluorescent indicators are better suited for measuring the rapid Ca(2+) changes associated with nerve activity. Here we demonstrate a technique for loading dextran-conjugated synthetic Ca(2+) indicators into live nerve terminals in Drosophila larvae. Particular emphasis is placed on those aspects of the protocol most critical to the technique's success, such as how to avoid static electricity discharges along the isolated nerves, maintaining the health of the preparation during extended loading periods, and ensuring axon survival by providing Ca(2+) to promote sealing of severed axon endings. Low affinity dextran-conjugated Ca(2+)-indicators, such as fluo-4 and rhod, are available which show a high signal-to-noise ratio while minimally disrupting presynaptic Ca(2+) dynamics. Dextran-conjugation helps prevent Ca(2+) indicators being sequestered into organelles such as mitochondria. The loading technique can be applied equally to larvae, embryos and adults.
Collapse
Affiliation(s)
- Adam J Rossano
- Department of Physiology, University of Texas Health Science Center, San Antonio, USA
| | | |
Collapse
|
36
|
Oheim M, Kirchhoff F, Stühmer W. Calcium microdomains in regulated exocytosis. Cell Calcium 2006; 40:423-39. [PMID: 17067670 DOI: 10.1016/j.ceca.2006.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
Katz and co-workers showed that Ca(2+) triggers exocytosis. The existence of sub-micrometer domains of greater than 100 microM [Ca(2+)](i) was postulated on theoretical grounds. Using a modified, low-affinity aequorin, Llinas et al. were the first to demonstrate the existence of Ca(2+) 'microdomains' in squid presynaptic terminals. Over the past several years, it has become clear that individual Ca(2+) nano- and microdomains forming around the mouth of voltage-gated Ca(2+) channels ascertain the tight coupling of fast synaptic vesicle release to membrane depolarization by action potentials. Recent work has established different geometric arrangements of vesicles and Ca(2+) channels at different central synapses and pointed out the role of Ca(2+) syntillas - localized, store operated Ca(2+) signals - in facilitation and spontaneous release. The coupling between Ca(2+) increase and evoked exocytosis is more sluggish in peripheral terminals and neuroendocrine cells, where channels are less clustered and Ca(2+) comes from different sources, including Ca(2+) influx via the plasma membrane and the mobilization of Ca(2+) from intracellular stores. Finally, also non- (electrically) excitable cells display highly localized Ca(2+) signaling domains. We discuss in particular the organization of structural microdomains of Bergmann glia, specialized astrocytes of the cerebellum that have only recently been considered as secretory cells. Glial microdomains are the spatial substrate for functionally segregated Ca(2+) signals upon metabotropic activation. Our review emphasizes the large diversity of different geometric arrangements of vesicles and Ca(2+) sources, leading to a wide spectrum of Ca(2+) signals triggering release.
Collapse
Affiliation(s)
- Martin Oheim
- Molecular and Cellular Biophysics of Synaptic Transmission, INSERM, U603, Paris, France.
| | | | | |
Collapse
|
37
|
Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP. TheDrosophila cacts2mutation reduces presynaptic Ca2+entry and defines an important element in Cav2.1 channel inactivation. Eur J Neurosci 2006; 23:3230-44. [PMID: 16820014 DOI: 10.1111/j.1460-9568.2006.04873.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cac(ts2) mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cac(ts2) mutation occurs in the cytoplasmic carboxyl tail of the alpha1-subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+-imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cac(ts2) mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Ca(v)2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 degrees C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Ca(v)2.1 channel inactivation.
Collapse
Affiliation(s)
- G T Macleod
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Majumdar A, Ramagiri S, Rikhy R. Drosophila homologue of Eps15 is essential for synaptic vesicle recycling. Exp Cell Res 2006; 312:2288-98. [PMID: 16709407 DOI: 10.1016/j.yexcr.2006.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/15/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
The mammalian protein Eps15 is phosphorylated by EGF receptor tyrosine kinase and has been shown to interact with several components of the endocytic machinery. We have identified a hypomorphic Eps15 mutant in Drosophila which shows reversible paralysis and an altered physiology at restrictive temperatures. In addition, the temperature-sensitive paralytic defect of shibire mutant is enhanced by this mutant. Eps15 is enriched in the larval neuromuscular junction in endocytic 'hot spots' in a pattern similar to Dynamin. Eps15 mutants show a decrease in the alpha-Adaptin levels at the larval neuromuscular junction synapse. Genetic and biochemical studies of interactions with components of the endocytic machinery suggest that Eps15 has an important role in synaptic vesicle recycling and regulates recruitment of alpha-Adaptin.
Collapse
Affiliation(s)
- Amitabha Majumdar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba Mumbai 400005, India.
| | | | | |
Collapse
|
39
|
Bronk P, Nie Z, Klose MK, Dawson-Scully K, Zhang J, Robertson RM, Atwood HL, Zinsmaier KE. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J Neurosci 2006; 25:2204-14. [PMID: 15745946 PMCID: PMC6726096 DOI: 10.1523/jneurosci.3610-04.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic vesicle-associated cysteine-string protein (CSP) is important for synaptic transmission. Previous studies revealed multiple defects at neuromuscular junctions (NMJs) of csp null-mutant Drosophila, but whether these defects are independent of each other or mechanistically linked through J domain mediated-interactions with heat-shock cognate protein 70 (Hsc70) has not been established. To resolve this issue, we genetically dissected the individual functions of CSP by an in vivo structure/function analysis. Expression of mutant CSP lacking the J domain at csp null-mutant NMJs fully restored normal thermo-tolerance of evoked transmitter release but did not completely restore evoked release at room temperature and failed to reverse the abnormal intraterminal Ca2+ levels. This suggests that J domain-mediated functions are essential for the regulation of intraterminal Ca2+ levels but only partially required for regulating evoked release and not required for protecting evoked release against thermal stress. Hence, CSP can also act as an Hsc70-independent chaperone protecting evoked release from thermal stress. Expression of mutant CSP lacking the L domain restored neurotransmission and partially reversed the abnormal intraterminal Ca2+ levels, suggesting that the L domain is important, although not essential, for the role of CSP in regulating intraterminal Ca2+ levels. We detected no effects of csp mutations on individual presynaptic Ca2+ signals triggered by action potentials, suggesting that presynaptic Ca2+ entry is not primarily impaired. Both the J and L domains were also required for the role of CSP in synaptic growth. Together, these results suggest that CSP has several independent synaptic functions, affecting synaptic growth, evoked release, thermal protection of evoked release, and intraterminal Ca2+ levels at rest and during stimulation.
Collapse
Affiliation(s)
- Peter Bronk
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A. In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 2006; 25:4766-78. [PMID: 15888652 PMCID: PMC1464576 DOI: 10.1523/jneurosci.4900-04.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetically encoded fluorescent probes of neural activity represent new promising tools for systems neuroscience. Here, we present a comparative in vivo analysis of 10 different genetically encoded calcium indicators, as well as the pH-sensitive synapto-pHluorin. We analyzed their fluorescence changes in presynaptic boutons of the Drosophila larval neuromuscular junction. Robust neural activity did not result in any or noteworthy fluorescence changes when Flash-Pericam, Camgaroo-1, and Camgaroo-2 were expressed. However, calculated on the raw data, fractional fluorescence changes up to 18% were reported by synapto-pHluorin, Yellow Cameleon 2.0, 2.3, and 3.3, Inverse-Pericam, GCaMP1.3, GCaMP1.6, and the troponin C-based calcium sensor TN-L15. The response characteristics of all of these indicators differed considerably from each other, with GCaMP1.6 reporting high rates of neural activity with the largest and fastest fluorescence changes. However, GCaMP1.6 suffered from photobleaching, whereas the fluorescence signals of the double-chromophore indicators were in general smaller but more photostable and reproducible, with TN-L15 showing the fastest rise of the signals at lower activity rates. We show for GCaMP1.3 and YC3.3 that an expanded range of neural activity evoked fairly linear fluorescence changes and a corresponding linear increase in the signal-to-noise ratio (SNR). The expression level of the indicator biased the signal kinetics and SNR, whereas the signal amplitude was independent. The presented data will be useful for in vivo experiments with respect to the selection of an appropriate indicator, as well as for the correct interpretation of the optical signals.
Collapse
Affiliation(s)
- Dierk F Reiff
- Department of Systems and Computational Neuroscience, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, Atwood HL, Zinsmaier KE. The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses. Neuron 2005; 47:379-93. [PMID: 16055062 DOI: 10.1016/j.neuron.2005.06.027] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/21/2005] [Accepted: 06/21/2005] [Indexed: 01/22/2023]
Abstract
We have identified EMS-induced mutations in Drosophila Miro (dMiro), an atypical mitochondrial GTPase that is orthologous to human Miro (hMiro). Mutant dmiro animals exhibit defects in locomotion and die prematurely. Mitochondria in dmiro mutant muscles and neurons are abnormally distributed. Instead of being transported into axons and dendrites, mitochondria accumulate in parallel rows in neuronal somata. Mutant neuromuscular junctions (NMJs) lack presynaptic mitochondria, but neurotransmitter release and acute Ca2+ buffering is only impaired during prolonged stimulation. Neuronal, but not muscular, expression of dMiro in dmiro mutants restored viability, transport of mitochondria to NMJs, the structure of synaptic boutons, the organization of presynaptic microtubules, and the size of postsynaptic muscles. In addition, gain of dMiro function causes an abnormal accumulation of mitochondria in distal synaptic boutons of NMJs. Together, our findings suggest that dMiro is required for controlling anterograde transport of mitochondria and their proper distribution within nerve terminals.
Collapse
Affiliation(s)
- Xiufang Guo
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu Y, Kawasaki F, Ordway RW. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila. J Neurophysiol 2005; 93:2396-405. [PMID: 15845998 DOI: 10.1152/jn.01108.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The larval neuromuscular synapse of Drosophila serves as an important model for genetic and molecular analysis of synaptic development and function. Further functional characterization of this synapse, as well as adult neuromuscular synapses, will greatly enhance the impact of this model system on our understanding of synaptic transmission. Here we describe a form of short-term synaptic depression observed at larval, but not adult, neuromuscular synapses and explore the underlying mechanisms. Larval neuromuscular synapses exhibited a form of short-term depression that was strongly dependent on stimulation frequency over a narrow range of low frequencies (0.1-1 Hz). This form of synaptic depression, referred to here as low-frequency short-term depression (LF-STD), results from an activity-dependent reduction in neurotransmitter release. However, in contrast to the predictions of depletion models, the degree of depression was independent of the initial level of neurotransmitter release over a range of extracellular calcium concentrations. This conclusion was confirmed in two temperature-sensitive (TS) paralytic mutants, cacophony and shibire, which exhibit reduced neurotransmitter release resulting from conditional disruption of presynaptic calcium channels and dynamin, respectively. Higher stimulation frequencies (40 or 60 Hz) produced two components of depression that appeared to include LF-STD as well as a more conventional component of short-term depression. These findings reveal novel properties of short-term synaptic depression and suggest that complementary genetic analysis of larval and adult neuromuscular synapses will further define the in vivo mechanisms of neurotransmitter release and short-term synaptic plasticity.
Collapse
Affiliation(s)
- Ying Wu
- Department of Biology and Center for Cellular and Molecular Neuroscience, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|