1
|
Wang T, Yang T, Kedaigle A, Pregernig G, McCarthy R, Holmes B, Wu X, Becker L, Pan N, So K, Chen L, He J, Mahmoudi A, Negi S, Kowalczyk M, Gibson T, Druckenbrod N, Cheng AG, Burns J. Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle. Nat Commun 2024; 15:9166. [PMID: 39448563 PMCID: PMC11502789 DOI: 10.1038/s41467-024-53153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Vestibular hair cells are mechanoreceptors critical for detecting head position and motion. In mammals, hair cell loss causes vestibular dysfunction as spontaneous regeneration is nearly absent. Constitutive expression of exogenous ATOH1, a hair cell transcription factor, increases hair cell regeneration, however, these cells fail to fully mature. Here, we profiled mouse utricles at 14 time points, and defined transcriptomes of developing and mature vestibular hair cells. To mimic native hair cells which downregulate endogenous ATOH1 as they mature, we engineered viral vectors carrying the supporting cell promoters GFAP and RLBP1. In utricles damaged ex vivo, both CMV-ATOH1 and GFAP-ATOH1 increased regeneration more effectively than RLBP1-ATOH1, while GFAP-ATOH1 and RLBP1-ATOH1 induced hair cells with more mature transcriptomes. In utricles damaged in vivo, GFAP-ATOH1 induced regeneration of hair cells expressing genes indicative of maturing type II hair cells, and more hair cells with bundles and synapses than untreated organs. Together our results demonstrate the efficacy of spatiotemporal control of ATOH1 overexpression in inner ear hair cell regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Yang
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | - Gabriela Pregernig
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ryan McCarthy
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ben Holmes
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Xudong Wu
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Lars Becker
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ning Pan
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kathy So
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ahmad Mahmoudi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Soumya Negi
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | | | | | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| | | |
Collapse
|
2
|
Liu Q, Zhang L, Chen Z, He Y, Huang Y, Qiu C, Zhu C, Zhou D, Gan Z, Gao X, Wan G. Metabolic Profiling of Cochlear Organoids Identifies α-Ketoglutarate and NAD + as Limiting Factors for Hair Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308032. [PMID: 38993037 PMCID: PMC11425867 DOI: 10.1002/advs.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Cochlear hair cells are the sensory cells responsible for transduction of acoustic signals. In mammals, damaged hair cells do not regenerate, resulting in permanent hearing loss. Reprogramming of the surrounding supporting cells to functional hair cells represent a novel strategy to hearing restoration. However, cellular processes governing the efficient and functional hair cell reprogramming are not completely understood. Employing the mouse cochlear organoid system, detailed metabolomic characterizations of the expanding and differentiating organoids are performed. It is found that hair cell differentiation is associated with increased mitochondrial electron transport chain (ETC) activity and reactive oxidative species generation. Transcriptome and metabolome analyses indicate reduced expression of oxidoreductases and tricyclic acid (TCA) cycle metabolites. The metabolic decoupling between ETC and TCA cycle limits the availability of the key metabolic cofactors, α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide (NAD+). Reduced expression of NAD+ in cochlear supporting cells by PGC1α deficiency further impairs hair cell reprogramming, while supplementation of α-KG and NAD+ promotes hair cell reprogramming both in vitro and in vivo. These findings reveal metabolic rewiring as a central cellular process during hair cell differentiation, and highlight the insufficiency of key metabolites as a metabolic barrier for efficient hair cell reprogramming.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhen Chen
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yihan He
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Provincial Key Medical Discipline (Laboratory)Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Medical SchoolModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- State Key Laboratory of Pharmaceutical BiotechnologyMOE Key Laboratory of Model Animal for Disease Study and Jiangsu Key Laboratory of Molecular MedicineModel Animal Research Center of Medical SchoolNanjing UniversityNanjing210032China
- Research Institute of OtolaryngologyNo. 321 Zhongshan RoadNanjing210008China
| |
Collapse
|
3
|
Zhang L, Chen X, Wang X, Zhou Y, Fang Y, Gu X, Zhang Z, Sun Q, Li N, Xu L, Tan F, Chai R, Qi J. AAV-mediated Gene Cocktails Enhance Supporting Cell Reprogramming and Hair Cell Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304551. [PMID: 38810137 PMCID: PMC11304307 DOI: 10.1002/advs.202304551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yuan Fang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xingliang Gu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Nianci Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology‐Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
4
|
Liu Y, Yang L, Singh S, Beyer LA, Prieskorn DM, Swiderski DL, Groves AK, Raphael Y. Combinatorial Atoh1, Gfi1, Pou4f3, and Six1 gene transfer induces hair cell regeneration in the flat epithelium of mature guinea pigs. Hear Res 2024; 441:108916. [PMID: 38103445 PMCID: PMC11223172 DOI: 10.1016/j.heares.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.
Collapse
Affiliation(s)
- Yujie Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing 100730, China
| | - Lin Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Li X, Ren M, Gu Y, Zhu T, Zhang Y, Li J, Li C, Wang G, Song L, Bi Z, Liu Z. In situ regeneration of inner hair cells in the damaged cochlea by temporally regulated co-expression of Atoh1 and Tbx2. Development 2023; 150:dev201888. [PMID: 38078650 DOI: 10.1242/dev.201888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jie Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
6
|
You D, Ni W, Huang Y, Zhou Q, Zhang Y, Jiang T, Chen Y, Li W. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Cell Mol Life Sci 2023; 80:349. [PMID: 37930405 PMCID: PMC10628023 DOI: 10.1007/s00018-023-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.
Collapse
Affiliation(s)
- Dan You
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Wenli Ni
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yikang Huang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Qin Zhou
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yanping Zhang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Tao Jiang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yan Chen
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Wenyan Li
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
7
|
Yang X, Qi J, Zhang L, Tan F, Huang H, Xu C, Cui Y, Chai R, Wu P. The role of Espin in the stereocilia regeneration and protection in Atoh1-overexpressed cochlear epithelium. Cell Prolif 2023; 56:e13483. [PMID: 37084708 PMCID: PMC10623949 DOI: 10.1111/cpr.13483] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
Hair cells (HCs) in mammals cannot spontaneously regenerate after damage. Atoh1 overexpression can promote HC regeneration in the postnatal cochlea, but the regenerated HCs do not possess the structural and functional characteristics of HCs in situ. The stereocilia on the apical surface of HCs are the first-level structure for sound conduction, and regeneration of functional stereocilia is the key basis for the reproduction of functional HCs. Espin, as an actin bundling protein, plays an important role in the development and structural maintenance of the stereocilia. Here, we found that the upregulation of Espin by AAV-ie was able to induced the aggregation of actin fibres in Atoh1-induced HCs in both cochlear organoids and explants. In addition, we found that persistent Atoh1 overexpression resulted in impaired stereocilia in both endogenous and newly formed HCs. In contrast, the forced expression of Espin in endogenous and regenerative HCs was able to eliminate the stereocilia damage caused by persistent Atoh1 overexpression. Our study shows that the enhanced expression of Espin can optimize the developmental process of stereocilia in Atoh1-induced HCs and can attenuate the damage to native HCs induced by Atoh1 overexpression. These results suggest an effective method to induce the maturation of stereocilia in regenerative HCs and pave the way for functional HC regeneration via supporting cell transdifferentiation.
Collapse
Affiliation(s)
- Xuechun Yang
- School of Medicine, South China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Liyan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Fangzhi Tan
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
| | - Hongming Huang
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Chunlai Xu
- Department of OtolaryngologyHeyuan City People's Hospital, Jinan UniversityGuangzhouChina
| | - Yong Cui
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck SurgeryZhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research, Southeast UniversityNanjingChina
- Co‐Innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| | - Peina Wu
- School of Medicine, South China University of TechnologyGuangzhouChina
- Department of OtolaryngologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Liu X, Wen J, Liu X, Chen A, Li S, Liu J, Sun J, Gong W, Kang X, Feng Z, He C, Mei L, Ling J, Feng Y. Gene regulation analysis of patient-derived iPSCs and its CRISPR-corrected control provides a new tool for studying perturbations of ELMOD3 c.512A>G mutation during the development of inherited hearing loss. PLoS One 2023; 18:e0288640. [PMID: 37708136 PMCID: PMC10501637 DOI: 10.1371/journal.pone.0288640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/30/2023] [Indexed: 09/16/2023] Open
Abstract
The ELMOD3 gene is implicated in causing autosomal recessive/dominant non-syndromic hearing loss in humans. However, the etiology has yet to be completely elucidated. In this study, we generated a patient-derived iPSC line carrying ELMOD3 c.512A>G mutation. In addition, the patient-derived iPSC line was corrected by CRISPR/Cas9 genome editing system. Then we applied RNA sequencing profiling to compare the patient-derived iPSC line with different controls, respectively (the healthy sibling-derived iPSCs and the CRISPR/Cas9 corrected iPSCs). Functional enrichment and PPI network analysis revealed that differentially expressed genes (DEGs) were enriched in the gene ontology, such as sensory epithelial development, intermediate filament cytoskeleton organization, and the regulation of ion transmembrane transport. Our current work provided a new tool for studying how disruption of ELMOD3 mechanistically drives hearing loss.
Collapse
Affiliation(s)
- Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Anhai Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Sijun Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Futian District, Shenzhen, China
| | - Wei Gong
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xiaoming Kang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Zhili Feng
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| |
Collapse
|
9
|
Li X, Morgan C, Nadar‐Ponniah PT, Kolanus W, Doetzlhofer A. TRIM71 reactivation enhances the mitotic and hair cell-forming potential of cochlear supporting cells. EMBO Rep 2023; 24:e56562. [PMID: 37492931 PMCID: PMC10481673 DOI: 10.15252/embr.202256562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
Affiliation(s)
- Xiao‐Jun Li
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Charles Morgan
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Prathamesh T Nadar‐Ponniah
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Otolaryngology and Center for Hearing and BalanceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
10
|
Wang X, Llamas J, Trecek T, Shi T, Tao L, Makmura W, Crump JG, Segil N, Gnedeva K. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proc Natl Acad Sci U S A 2023; 120:e2301301120. [PMID: 37585469 PMCID: PMC10450657 DOI: 10.1073/pnas.2301301120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.
Collapse
Affiliation(s)
- Xizi Wang
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Talon Trecek
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Litao Tao
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Welly Makmura
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Neil Segil
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Ksenia Gnedeva
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| |
Collapse
|
11
|
Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. Gata3 is required in late proneurosensory development for proper sensory cell formation and organization. Sci Rep 2023; 13:12573. [PMID: 37537240 PMCID: PMC10400699 DOI: 10.1038/s41598-023-39707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023] Open
Abstract
It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-creERT2 mouse line to target and conditionally delete Gata3 at E11.5, a timepoint before cells have fully committed to a neurosensory fate. While the inner ears of Sox2-creERT2: Gata3 f/f mice appear normal with no gross structural defects, the sensory cells in the organ of Corti are partially lost and disorganized in an increasing severity from base to apex. Additionally, spiral ganglion neurons display aberrant peripheral projections, including increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-creERT2: Gata3 f/+ mice show a reduced aberrant phenotype in comparison to the homozygous mutant, supporting the hypothesis that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific expression level of Gata3 is required. Therefore, this study provides evidence that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory and neuronal cells in late proneurosensory stages.
Collapse
Affiliation(s)
- Paige V Blinkiewicz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Makayla R Long
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Zachary A Stoner
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
- Section On Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Elizabeth M Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
- Department of Biomedical Sciences, Western Michigan School of Medicine, Kalamazoo, MI, USA.
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Ebeid M, Kishimoto I, Roy P, Zaidi MAA, Cheng AG, Huh SH. β-Catenin transcriptional activity is required for establishment of inner pillar cell identity during cochlear development. PLoS Genet 2023; 19:e1010925. [PMID: 37639482 PMCID: PMC10491406 DOI: 10.1371/journal.pgen.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 09/08/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The mammalian cochlea is composed of sensory hair cells as well as multiple different types of non-sensory supporting cells. Pillar cells are one type of supporting cell that form the tunnel of Corti and include two morphologically and functionally distinct subtypes: inner pillar cells (IPCs) and outer pillar cells (OPCs). The processes of specification and differentiation of inner versus outer pillar cells are still unclear. Here, we show that β-Catenin is required for establishing IPC identity in the mammalian cochlea. To differentiate the transcriptional and adhesion roles of β-Catenin in establishing IPC identity, we examined two different models of β-Catenin deletion; one that deletes both transcriptional and structural functions and one which retains cell adhesion function but lacks transcriptional function. Here, we show that cochleae lacking β-Catenin transcriptional function lost IPCs and displayed extranumerary OPCs, indicating its requirement for establishing IPC identity. Overexpression of β-Catenin induced proliferation within IPCs but not ectopic IPCs. Single-cell transcriptomes of supporting cells lacking β-Catenin transcriptional function show a loss of the IPC and gain of OPC signatures. Finally, targeted deletion of β-Catenin in IPCs also led to the loss of IPC identity, indicating a cell autonomous role of β-Catenin in establishing IPC identity. As IPCs have the capacity to regenerate sensory hair cells in the postnatal cochlea, our results will aid in future IPC-based hair cell regeneration strategies.
Collapse
Affiliation(s)
- Michael Ebeid
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ippei Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Pooja Roy
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohd Ali Abbas Zaidi
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sung-Ho Huh
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
13
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. Gata3 is Required in Late Proneurosensory Development for Proper Sensory Cell Formation and Organization. RESEARCH SQUARE 2023:rs.3.rs-2747944. [PMID: 37090645 PMCID: PMC10120746 DOI: 10.21203/rs.3.rs-2747944/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
It has been previously shown that zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window to which Gata3 is required for the formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 on cochlear neurosensory development in the late prosensory stages, we used the Sox2-cre ERT2 mouse line to target and conditionally delete Gata3 at E11.5 before the cells have fully committed to a neurosensory fate. While the inner ears of Sox2-cre ERT2 : Gata3 f/f mice appear morphologically normal, the sensory cells in the organ of Corti are partially lost and disorganized in a basal to apical gradient with the apex demonstrating the more severe phenotype. Additionally, spiral ganglion neurons display aberrant peripheral projections, such as increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-cre ERT2 : Gata3 f/+ mice show a reduced phenotype in comparison to the homozygous mutant, supporting the concept that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific level of Gata3 is required. Therefore, our studies confirm that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory cells in the late proneurosensory stages.
Collapse
|
16
|
Future Pharmacotherapy for Sensorineural Hearing Loss by Protection and Regeneration of Auditory Hair Cells. Pharmaceutics 2023; 15:pharmaceutics15030777. [PMID: 36986638 PMCID: PMC10054686 DOI: 10.3390/pharmaceutics15030777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Sensorineural hearing loss has been a global burden of diseases for decades. However, according to recent progress in experimental studies on hair cell regeneration and protection, clinical trials of pharmacotherapy for sensorineural hearing loss have rapidly progressed. In this review, we focus on recent clinical trials for hair cell protection and regeneration and outline mechanisms based on associated experimental studies. Outcomes of recent clinical trials provided valuable data regarding the safety and tolerability of intra-cochlear and intra-tympanic applications as drug delivery methods. Recent findings in molecular mechanisms of hair cell regeneration suggested the realization of regenerative medicine for sensorineural hearing loss in the near future.
Collapse
|
17
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
18
|
Li XJ, Morgan C, Nadar-Ponniah PT, Kolanus W, Doetzlhofer A. Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523802. [PMID: 36711735 PMCID: PMC9882147 DOI: 10.1101/2023.01.12.523802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
|
19
|
Iyer AA, Hosamani I, Nguyen JD, Cai T, Singh S, McGovern MM, Beyer L, Zhang H, Jen HI, Yousaf R, Birol O, Sun JJ, Ray RS, Raphael Y, Segil N, Groves AK. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife 2022; 11:e79712. [PMID: 36445327 PMCID: PMC9708077 DOI: 10.7554/elife.79712] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Reprogramming of the cochlea with hair-cell-specific transcription factors such as ATOH1 has been proposed as a potential therapeutic strategy for hearing loss. ATOH1 expression in the developing cochlea can efficiently induce hair cell regeneration but the efficiency of hair cell reprogramming declines rapidly as the cochlea matures. We developed Cre-inducible mice to compare hair cell reprogramming with ATOH1 alone or in combination with two other hair cell transcription factors, GFI1 and POU4F3. In newborn mice, all transcription factor combinations tested produced large numbers of cells with the morphology of hair cells and rudimentary mechanotransduction properties. However, 1 week later, only a combination of ATOH1, GFI1 and POU4F3 could reprogram non-sensory cells of the cochlea to a hair cell fate, and these new cells were less mature than cells generated by reprogramming 1 week earlier. We used scRNA-seq and combined scRNA-seq and ATAC-seq to suggest at least two impediments to hair cell reprogramming in older animals. First, hair cell gene loci become less epigenetically accessible in non-sensory cells of the cochlea with increasing age. Second, signaling from hair cells to supporting cells, including Notch signaling, can prevent reprogramming of many supporting cells to hair cells, even with three hair cell transcription factors. Our results shed light on the molecular barriers that must be overcome to promote hair cell regeneration in the adult cochlea.
Collapse
Affiliation(s)
- Amrita A Iyer
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ishwar Hosamani
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - John D Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
| | - Tiantian Cai
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Sunita Singh
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Lisa Beyer
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Hsin-I Jen
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Rizwan Yousaf
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Onur Birol
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
20
|
Connolly K, Gonzalez-Cordero A. Modelling inner ear development and disease using pluripotent stem cells - a pathway to new therapeutic strategies. Dis Model Mech 2022; 15:dmm049593. [PMID: 36331565 PMCID: PMC10621662 DOI: 10.1242/dmm.049593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The sensory epithelia of the mammalian inner ear enable sound and movement to be perceived. Damage to these epithelia can cause irreversible sensorineural hearing loss and vestibular dysfunction because they lack regenerative capacity. The human inner ear cannot be biopsied without causing permanent damage, significantly limiting the tissue samples available for research. Investigating disease pathology and therapeutic developments have therefore traditionally relied on animal models, which often cannot completely recapitulate the human otic systems. These challenges are now being partly addressed using induced pluripotent stem cell-derived cultures, which generate the sensory epithelial-like tissues of the inner ear. Here, we review how pluripotent stem cells have been used to produce two-dimensional and three-dimensional otic cultures, the strengths and limitations of these new approaches, and how they have been employed to investigate genetic and acquired forms of audiovestibular dysfunction. This Review provides an overview of the progress in pluripotent stem cell-derived otic cultures thus far, focusing on their applications in disease modelling and therapeutic trials. We survey their current limitations and future directions, highlighting their prospective utility for high-throughput drug screening and developing personalised medicine approaches.
Collapse
Affiliation(s)
- Keeva Connolly
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| |
Collapse
|
21
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
22
|
Abstract
Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.
Collapse
|
23
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
24
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Lewis RM. From Bench to Booth: Examining Hair-Cell Regeneration Through an Audiologist's Scope. J Am Acad Audiol 2022; 32:654-660. [PMID: 35609592 DOI: 10.1055/s-0041-1731700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Damage to auditory hair cells is a key feature of sensorineural hearing loss due to aging, noise exposure, or ototoxic drugs. Though hair-cell loss is permanent in humans, research in bird species led to the discovery that analogous hair cells of the avian basilar papilla are able to regenerate after being damaged by ototoxic agents. Regeneration appears to occur through a combination of the mitotic expansion of a precursor population of supporting cells and direct transdifferentiation of supporting cells into functioning hair cells. This review will synthesize the relevant anatomy and pathophysiology of sensorineural hearing loss, the historical observations that led to the genesis of the hair-cell regeneration field, and perspectives on initial human hair-cell regeneration trials.
Collapse
Affiliation(s)
- Rebecca M Lewis
- Whisper.ai, Department of Clinical Research, San Francisco, California.,Georgetown University Medical Center, Department of Neuroscience, Washington, D.C
| |
Collapse
|
26
|
GFI1 regulates hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1, and a DNA-binding repressor. Sci Rep 2022; 12:7793. [PMID: 35551236 PMCID: PMC9098437 DOI: 10.1038/s41598-022-11931-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
GFI1 is a zinc finger transcription factor that is necessary for the differentiation and survival of hair cells in the cochlea. Deletion of Gfi1 in mice significantly reduces the expression of hundreds of hair cell genes: this is a surprising result, as GFI1 normally acts as a transcriptional repressor by recruiting histone demethylases and methyltransferases to its targets. To understand the mechanisms by which GFI1 promotes hair cell differentiation, we used CUT&RUN to identify the direct targets of GFI1 and ATOH1 in hair cells. We found that GFI1 regulates hair cell differentiation in two distinct ways—first, GFI1 and ATOH1 can bind to the same regulatory elements in hair cell genes, but while ATOH1 directly binds its target DNA motifs in many of these regions, GFI1 does not. Instead, it appears to enhance ATOH1’s transcriptional activity by acting as part of a complex in which it does not directly bind DNA. Second, GFI1 can act in its more typical role as a direct, DNA-binding transcriptional repressor in hair cells; here it represses non-hair cell genes, including many neuronal genes. Together, our results illuminate the function of GFI1 in hair cell development and hair cell reprogramming strategies.
Collapse
|
27
|
Tao Y, Liu X, Yang L, Chu C, Tan F, Yu Z, Ke J, Li X, Zheng X, Zhao X, Qi J, Lin CP, Chai R, Zhong G, Wu H. AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduct Target Ther 2022; 7:109. [PMID: 35449181 PMCID: PMC9023545 DOI: 10.1038/s41392-022-00938-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaoyi Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Liu Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, PR China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, PR China.
| | - Guisheng Zhong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China.
| |
Collapse
|
28
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
29
|
Li XJ, Morgan C, Goff LA, Doetzlhofer A. Follistatin promotes LIN28B-mediated supporting cell reprogramming and hair cell regeneration in the murine cochlea. SCIENCE ADVANCES 2022; 8:eabj7651. [PMID: 35148175 PMCID: PMC8836811 DOI: 10.1126/sciadv.abj7651] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/18/2021] [Indexed: 05/27/2023]
Abstract
Hair cell (HC) loss within the inner ear cochlea is a leading cause for deafness in humans. Before the onset of hearing, immature supporting cells (SCs) in neonatal mice have some limited capacity for HC regeneration. Here, we show that in organoid culture, transient activation of the progenitor-specific RNA binding protein LIN28B and Activin antagonist follistatin (FST) enhances regenerative competence of maturing/mature cochlear SCs by reprogramming them into progenitor-like cells. Transcriptome profiling and mechanistic studies reveal that LIN28B drives SC reprogramming, while FST is required to counterbalance hyperactivation of transforming growth factor-β-type signaling by LIN28B. Last, we show that LIN28B and FST coactivation enhances spontaneous cochlear HC regeneration in neonatal mice and that LIN28B may be part of an endogenous repair mechanism that primes SCs for HC regeneration. These findings indicate that SC dedifferentiation is critical for HC regeneration and identify LIN28B and FST as main regulators.
Collapse
Affiliation(s)
- Xiao-Jun Li
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Morgan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A. Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otolaryngology and Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Verhaegen ME, Harms PW, Van Goor JJ, Arche J, Patrick MT, Wilbert D, Zabawa H, Grachtchouk M, Liu CJ, Hu K, Kelly MC, Chen P, Saunders TL, Weidinger S, Syu LJ, Runge JS, Gudjonsson JE, Wong SY, Brownell I, Cieslik M, Udager AM, Chinnaiyan AM, Tsoi LC, Dlugosz AA. Direct cellular reprogramming enables development of viral T antigen-driven Merkel cell carcinoma in mice. J Clin Invest 2022; 132:152069. [PMID: 35143422 PMCID: PMC8970662 DOI: 10.1172/jci152069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that frequently carries an integrated Merkel cell polyomavirus (MCPyV) genome and expresses viral transforming antigens (TAgs). MCC tumor cells also express signature genes detected in skin-resident, postmitotic Merkel cells, including atonal bHLH transcription factor 1 (ATOH1), which is required for Merkel cell development from epidermal progenitors. We now report the use of in vivo cellular reprogramming, using ATOH1, to drive MCC development from murine epidermis. We generated mice that conditionally expressed MCPyV TAgs and ATOH1 in epidermal cells, yielding microscopic collections of proliferating MCC-like cells arising from hair follicles. Immunostaining of these nascent tumors revealed p53 accumulation and apoptosis, and targeted deletion of transformation related protein 53 (Trp53) led to development of gross skin tumors with classic MCC histology and marker expression. Global transcriptome analysis confirmed the close similarity of mouse and human MCCs, and hierarchical clustering showed conserved upregulation of signature genes. Our data establish that expression of MCPyV TAgs in ATOH1-reprogrammed epidermal cells and their neuroendocrine progeny initiates hair follicle–derived MCC tumorigenesis in adult mice. Moreover, progression to full-blown MCC in this model requires loss of p53, mimicking the functional inhibition of p53 reported in human MCPyV-positive MCCs.
Collapse
Affiliation(s)
- Monique E Verhaegen
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Julia J Van Goor
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Jacob Arche
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Dawn Wilbert
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Haley Zabawa
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Kevin Hu
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, United States of America
| | - Michael C Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States of America
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States of America
| | - Thomas L Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Li-Jyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - John S Runge
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Sunny Y Wong
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Isaac Brownell
- Dermatology Branch, National Cancer Institute, Bethesda, United States of America
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, United States of America
| | - Andrzej A Dlugosz
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
31
|
Li W, Quan Y, Huang M, Wei W, Shu Y, Li H, Chen ZY. A Novel in vitro Model Delineating Hair Cell Regeneration and Neural Reinnervation in Adult Mouse Cochlea. Front Mol Neurosci 2022; 14:757831. [PMID: 35082601 PMCID: PMC8785685 DOI: 10.3389/fnmol.2021.757831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The study of an adult mammalian auditory system, such as regeneration, has been hampered by the lack of an in vitro system in which hypotheses can be tested efficiently. This is primarily due to the fact that the adult inner ear is encased in the toughest bone of the body, whereas its removal leads to the death of the sensory epithelium in culture. We hypothesized that we could take advantage of the integral cochlear structure to maintain the overall inner ear architecture and improve sensory epithelium survival in culture. We showed that by culturing adult mouse cochlea with the (surrounding) bone intact, the supporting cells (SCs) survived and almost all hair cells (HCs) degenerated. To evaluate the utility of the explant culture system, we demonstrated that the overexpression of Atoh1, an HC fate-determining factor, is sufficient to induce transdifferentiation of adult SCs to HC-like cells (HCLCs). Transdifferentiation-derived HCLCs resemble developmentally young HCs and are able to attract adult ganglion neurites. Furthermore, using a damage model, we showed that degenerated adult ganglions respond to regenerated HCLCs by directional neurite outgrowth that leads to HCLC-neuron contacts, strongly supporting the intrinsic properties of the HCLCs in establishing HCLC-neuron connections. The adult whole cochlear explant culture is suitable for diverse studies of the adult inner ear including regeneration, HC-neuron pathways, and inner ear drug screening.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yizhou Quan
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Yilai Shu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Huawei Li,
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Zheng-Yi Chen,
| |
Collapse
|
32
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Todd L, Hooper MJ, Haugan AK, Finkbeiner C, Jorstad N, Radulovich N, Wong CK, Donaldson PC, Jenkins W, Chen Q, Rieke F, Reh TA. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep 2021; 37:109857. [PMID: 34686336 PMCID: PMC8691131 DOI: 10.1016/j.celrep.2021.109857] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Regenerative neuroscience aims to stimulate endogenous repair in the nervous system to replace neurons lost from degenerative diseases. Recently, we reported that overexpressing the transcription factor Ascl1 in Müller glia (MG) is sufficient to stimulate MG to regenerate functional neurons in the adult mouse retina. However, this process is inefficient, and only a third of the Ascl1-expressing MG generate new neurons. Here, we test whether proneural transcription factors of the Atoh1/7 class can further promote the regenerative capacity of MG. We find that the combination of Ascl1:Atoh1 is remarkably efficient at stimulating neurogenesis, even in the absence of retinal injury. Using electrophysiology and single-cell RNA sequencing (scRNA-seq), we demonstrate that Ascl1:Atoh1 generates a diversity of retinal neuron types, with the majority expressing characteristics of retinal ganglion cells. Our results provide a proof of principle that combinations of developmental transcription factors can substantially improve glial reprogramming to neurons and expand the repertoire of regenerated cell fates.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marcus J Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Alexandra K Haugan
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nikolas Jorstad
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Radulovich
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Claire K Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Wesley Jenkins
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Qiang Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Hu Z, Singh A, Bojrab D, Sim N. Insights into the molecular mechanisms regulating mammalian hair cell regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 29:400-406. [PMID: 34374666 DOI: 10.1097/moo.0000000000000752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW To give an overview of recent advances in mammalian auditory hair cell regeneration. RECENT FINDINGS Supporting cells act as progenitors to regenerate hair cells in the prehearing mammalian cochlea but not in the mature cochlea. To overcome this developmental obstacle, manipulation of multiple genes and intracellular pathways has been investigated, which has obtained promising data. This review focuses on recent advances in auditory hair cell regeneration, including synergic gene regulation associated with Atoh1 and Notch signaling, epigenetics, and functional recovery of regenerated hair cells. Co-manipulation of genes critical for hair cell development and cell cycle re-entry, including Atoh1, Isl1, Pou4f3, Gata3, Gfi1, P27kip1, RB, Myc, and Notch-signaling genes, has generated hair cell-like cells in the adult cochlea both in vitro and in vivo. The epigenetic mechanism has been studied in hair cell development and regeneration. Regeneration of hair cell function has a very limited progress, which lacks in-vitro and in-vivo electrophysiology data. SUMMARY Regeneration of adult auditory hair cells remains a major challenge. Manipulation of multiple genes and pathways together with epigenetic regulation might potentially regenerate functional hair cells in the adult mammalian cochlea.
Collapse
Affiliation(s)
- Zhengqing Hu
- John D. Dingell VA Medical Center
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit
| | - Aditi Singh
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit
| | - Dennis Bojrab
- Michigan Ear Institute, Farmington Hills, Michigan, USA
| | - Nathan Sim
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit
| |
Collapse
|
35
|
Norrie disease protein is essential for cochlear hair cell maturation. Proc Natl Acad Sci U S A 2021; 118:2106369118. [PMID: 34544869 DOI: 10.1073/pnas.2106369118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of β-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.
Collapse
|
36
|
Sun S, Li S, Luo Z, Ren M, He S, Wang G, Liu Z. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. eLife 2021; 10:66547. [PMID: 34477109 PMCID: PMC8439656 DOI: 10.7554/elife.66547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.
Collapse
Affiliation(s)
- Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengnan Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
37
|
Ajdari S, Saffari-Chaleshtori J, Pourteymourfard-Tabrizi Z, Ghasemi-Dehkordi P, Samani MG, Validi M, Kabiri H, Chaleshtori MH, Jami MS. Rare mutations in Atoh1 lead to hearing loss. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev Cell 2021; 56:2471-2485.e5. [PMID: 34331868 DOI: 10.1016/j.devcel.2021.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti.
Collapse
|
39
|
Differentiation of embryonic stem cells into a putative hair cell-progenitor cells via co-culture with HEI-OC1 cells. Sci Rep 2021; 11:13893. [PMID: 34230535 PMCID: PMC8260610 DOI: 10.1038/s41598-021-93049-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown how different cell lines can influence the differentiation of stem cells through co-culture systems. The House Ear Institute-Organ of Corti 1 (HEI-OC1) is considered an important cell line for in vitro auditory research. However, it is unknown if HEI-OC1 cells can promote the differentiation of embryonic stem cells (ESCs). In this study, we investigated whether co-culture of ESCs with HEI-OC1 cells promotes differentiation. To this end, we developed a co-culture system of mouse ESCs with HEI-OC1 cells. Dissociated or embryonic bodies (EBs) of ESCs were introduced to a conditioned and inactivated confluent layer of HEI-OC1 cells for 14 days. The dissociated ESCs coalesced into an EB-like form that was smaller than the co-cultured EBs. Contact co-culture generated cells expressing several otic progenitor markers as well as hair cell specific markers. ESCs and EBs were also cultured in non-contact setup but using conditioned medium from HEI-OC1 cells, indicating that soluble factors alone could have a similar effect. The ESCs did not form into aggregates but were still Myo7a-positive, while the EBs degenerated. However, in the fully differentiated EBs, evidence to prove mature differentiation of inner ear hair cell was still rudimentary. Nevertheless, these results suggest that cellular interactions between ESCs and HEI-OC1 cells may both stimulate ESC differentiation.
Collapse
|
40
|
Selective ablation of inner hair cells and subsequent in-situ hair cell regeneration in the neonatal mouse cochlea. Hear Res 2021; 407:108275. [PMID: 34089989 DOI: 10.1016/j.heares.2021.108275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Loss of hair cells (HCs) accounts for most sensorineural hearing loss, and regeneration of cochlear HCs is considered as the ultimate strategy for restoring hearing. Several lines of evidence have shown that Lgr5+ progenitor cells can spontaneously regenerate new HCs after HC loss at the neonatal stage, and most of which are immature. IHCs are resistant to ototoxic drugs and noise and cannot be ablated efficiently in order to precisely investigate IHC regeneration in existing hearing injury models, and thus we generated a new transgenic mouse model by inserting diphtheria toxin receptor (DTR) under the control of the Vglut3 promoter. In this model, IHCs were selectively ablated in a dose-dependent manner after the injection of diphtheria toxin (DT) at the neonatal stage, while OHCs remained intact with normal hair bundle structures until adulthood. With this IHC-specific injury model, we observed HC regeneration from Lgr5+ progenitors after IHC ablation at the neonatal stage. Some of the newly generated HCs replaced the lost IHCs in-situ and re-build the structure of the organ of Corti through the asymmetrical mitosis of progenitor cells. While, the majority of the regenerated HCs did not survive until adulthood, and the loss of spiral ganglion neurons was observed after the IHC ablation, which led to profound hearing loss after DT injection in Vglut3DTR+ mice at the neonatal stage. The model presented here shows promise for investigating the mechanisms behind IHC loss and subsequent regeneration.
Collapse
|
41
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
42
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
43
|
Abdul-Aziz D, Hathiramani N, Phung L, Sykopetrites V, Edge ASB. HIC1 Represses Atoh1 Transcription and Hair Cell Differentiation in the Cochlea. Stem Cell Reports 2021; 16:797-809. [PMID: 33770497 PMCID: PMC8072069 DOI: 10.1016/j.stemcr.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/23/2022] Open
Abstract
Across species, expression of the basic helix-loop-helix transcription factor ATOH1 promotes differentiation of cochlear supporting cells to sensory hair cells required for hearing. In mammals, this process is limited to development, whereas nonmammalian vertebrates can also regenerate hair cells after injury. The mechanistic basis for this difference is not fully understood. Hypermethylated in cancer 1 (HIC1) is a transcriptional repressor known to inhibit Atoh1 in the cerebellum. We therefore investigated its potential role in cochlear hair cell differentiation. We find that Hic1 is expressed throughout the postnatal murine cochlear sensory epithelium. In cochlear organoids, Hic1 knockdown induces Atoh1 expression and promotes hair cell differentiation, while Hic1 overexpression hinders differentiation. Wild-type HIC1, but not the DNA-binding mutant C521S, suppresses activity of the Atoh1 autoregulatory enhancer and blocks its responsiveness to β-catenin activation. Our findings reveal the importance of HIC1 repression of Atoh1 in the cochlea, which may be targeted to promote hair cell regeneration.
Collapse
Affiliation(s)
- Dunia Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | | | - Lauren Phung
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Vittoria Sykopetrites
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; Università degli Studi di Milano, Milan, Italy
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
44
|
Chen Y, Gu Y, Li Y, Li GL, Chai R, Li W, Li H. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Rep 2021; 35:109016. [PMID: 33882317 DOI: 10.1016/j.celrep.2021.109016] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.
Collapse
Affiliation(s)
- Yan Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yuyan Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yige Li
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Geng-Lin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| | - Wenyan Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
45
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
46
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
47
|
Borse V, Barton M, Arndt H, Kaur T, Warchol ME. Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep 2021; 11:2140. [PMID: 33495483 PMCID: PMC7835353 DOI: 10.1038/s41598-020-77775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| | - Matthew Barton
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Harry Arndt
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University School of Medicine, Nebraska, USA
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| |
Collapse
|
48
|
Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2020; 39:375-388. [PMID: 33378797 DOI: 10.1002/stem.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most widely spread sensory disorder in our society. In the majority of cases, it is caused by the loss or malfunctioning of cells in the cochlea: the mechanosensory hair cells, which act as primary sound receptors, and the connecting auditory neurons of the spiral ganglion, which relay the signal to upper brain centers. In contrast to other vertebrates, where damage to the hearing organ can be repaired through the activity of resident cells, acting as tissue progenitors, in mammals, sensory cell damage or loss is irreversible. The understanding of gene and cellular functions, through analysis of different animal models, has helped to identify causes of disease and possible targets for hearing restoration. Translation of these findings to novel therapeutics is, however, hindered by the lack of cellular assays, based on human sensory cells, to evaluate the conservation of molecular pathways across species and the efficacy of novel therapeutic strategies. In the last decade, stem cell technologies enabled to generate human sensory cell types in vitro, providing novel tools to study human inner ear biology, model disease, and validate therapeutics. This review focuses specifically on two technologies: directed differentiation of pluripotent stem cells and direct reprogramming of somatic cell types to sensory hair cells and neurons. Recent development in the field are discussed as well as how these tools could be implemented to become routinely adopted experimental models for hearing research.
Collapse
Affiliation(s)
- Marta Roccio
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
49
|
Matsunaga M, Kita T, Yamamoto R, Yamamoto N, Okano T, Omori K, Sakamoto S, Nakagawa T. Initiation of Supporting Cell Activation for Hair Cell Regeneration in the Avian Auditory Epithelium: An Explant Culture Model. Front Cell Neurosci 2020; 14:583994. [PMID: 33281558 PMCID: PMC7688741 DOI: 10.3389/fncel.2020.583994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sensorineural hearing loss is a common disability often caused by the loss of sensory hair cells in the cochlea. Hair cell (HCs) regeneration has long been the main target for the development of novel therapeutics for sensorineural hearing loss. In the mammalian cochlea, hair cell regeneration is limited, but the auditory epithelia of non-mammalian organisms retain the capacity for hair cell regeneration. In the avian basilar papilla (BP), supporting cells (SCs), which give rise to regenerated hair cells, are usually quiescent. Hair cell loss induces both direct transdifferentiation and mitotic division of supporting cells. Here, we established an explant culture model for hair cell regeneration in chick basilar papillae and validated it for investigating the initial phase of hair cell regeneration. The histological assessment demonstrated hair cell regeneration via direct transdifferentiation of supporting cells. Labeling with 5-ethynyl-2′-deoxyuridine (EdU) revealed the occurrence of mitotic division in the supporting cells at specific locations in the basilar papillae, while no EdU labeling was observed in newly generated hair cells. RNA sequencing indicated alterations in known signaling pathways associated with hair cell regeneration, consistent with previous findings. Also, unbiased analyses of RNA sequencing data revealed novel genes and signaling pathways that may be related to the induction of supporting cell activation in the chick basilar papillae. These results indicate the advantages of our explant culture model of the chick basilar papillae for exploring the molecular mechanisms of hair cell regeneration.
Collapse
Affiliation(s)
- Mami Matsunaga
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
50
|
Developmental and Functional Hair Cell-Like Cells Induced by Atoh1 Overexpression in the Adult Mammalian Cochlea In Vitro. Neural Plast 2020; 2020:8885813. [PMID: 33204251 PMCID: PMC7661126 DOI: 10.1155/2020/8885813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Hair cells (HCs) in the mammalian cochleae cannot spontaneously regenerate once damaged, resulting in permanent hearing loss. It has been shown that Atoh1 overexpression induces hair cell-like cells (HCLCs) in the cochlea of newborn rodents, but this is hard to achieve in adult mammals. In this study, we used a three-dimensional cochlear culture system and an adenoviral-mediated delivery vector to overexpress Atoh1 in adult mouse cochleae. HCLCs were successfully induced from 3 days after virus infection (3 DVI) in vitro, and the number increased with time. HCLCs were myosin7a positive and distinguishable from remnant HCs in a culture environment. Meanwhile, patch-clamp results showed that noninactive outward potassium currents (sustained outward potassium currents) could be recorded in HCLCs and that their magnitude increased with time, similar to normal HCs. Furthermore, transient HCN currents were recorded in some HCLCs, indicating that the HCLCs experienced a developmental stage similar to normal HCs. We also compared the electrophysiological features of HCLCs from adult mice with native HCs and found the HCLCs gradually matured, similar to the normal HCs. Meanwhile, HCLCs from adult mice possessed the same bundles as developmental HCs. However, these HCLCs did not express prestin, which is a special marker for outer hair cells (OHCs), even at 13 DVI. These results demonstrate that Atoh1 overexpression induces HCLC formation in the adult mammalian cochlea and that these HCLCs were functional and experienced a developmental process similar to that of normal HCs.
Collapse
|