1
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Barker DJ, Zhang S, Wang H, Estrin DJ, Miranda-Barrientos J, Liu B, Kulkarni RJ, de Deus JL, Morales M. Lateral preoptic area glutamate neurons relay nociceptive information to the ventral tegmental area. Cell Rep 2023; 42:113029. [PMID: 37632750 PMCID: PMC10584074 DOI: 10.1016/j.celrep.2023.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
The ventral tegmental area (VTA) has been proposed to play a role in pain, but the brain structures modulating VTA activity in response to nociceptive stimuli remain unclear. Here, we demonstrate that the lateral preoptic area (LPO) glutamate neurons relay nociceptive information to the VTA. These LPO glutamatergic neurons synapsing on VTA neurons respond to nociceptive stimulation and conditioned stimuli predicting nociceptive stimulation and also mediate aversion. In contrast, LPO GABA neurons synapsing in the VTA mediate reward. By ultrastructural quantitative synaptic analysis, ex vivo electrophysiology, and functional neuroanatomy we identify a complex circuitry between LPO glutamatergic and GABAergic neurons and VTA dopaminergic, GABAergic, and glutamatergic neurons. We conclude that LPO glutamatergic neurons play a causal role in the processing of nociceptive stimuli and in relaying information about nociceptive stimuli. The pathway from LPO glutamatergic neurons to the VTA represents an unpredicted interface between peripheral nociceptive information and the limbic system.
Collapse
Affiliation(s)
- David J Barker
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Huiling Wang
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - David J Estrin
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Bing Liu
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Rucha J Kulkarni
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Junia Lara de Deus
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Branch, Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Goedhoop JN, van den Boom BJG, Robke R, Veen F, Fellinger L, van Elzelingen W, Arbab T, Willuhn I. Nucleus accumbens dopamine tracks aversive stimulus duration and prediction but not value or prediction error. eLife 2022; 11:e82711. [PMID: 36366962 PMCID: PMC9651945 DOI: 10.7554/elife.82711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
There is active debate on the role of dopamine in processing aversive stimuli, where inferred roles range from no involvement at all, to signaling an aversive prediction error (APE). Here, we systematically investigate dopamine release in the nucleus accumbens core (NAC), which is closely linked to reward prediction errors, in rats exposed to white noise (WN, a versatile, underutilized, aversive stimulus) and its predictive cues. Both induced a negative dopamine ramp, followed by slow signal recovery upon stimulus cessation. In contrast to reward conditioning, this dopamine signal was unaffected by WN value, context valence, or probabilistic contingencies, and the WN dopamine response shifted only partially toward its predictive cue. However, unpredicted WN provoked slower post-stimulus signal recovery than predicted WN. Despite differing signal qualities, dopamine responses to simultaneous presentation of rewarding and aversive stimuli were additive. Together, our findings demonstrate that instead of an APE, NAC dopamine primarily tracks prediction and duration of aversive events.
Collapse
Affiliation(s)
- Jessica N Goedhoop
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Bastijn JG van den Boom
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Rhiannon Robke
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Felice Veen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Lizz Fellinger
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Wouter van Elzelingen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Tara Arbab
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Department of Psychiatry, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
5
|
Zafiri D, Duvarci S. Dopaminergic circuits underlying associative aversive learning. Front Behav Neurosci 2022; 16:1041929. [PMID: 36439963 PMCID: PMC9685162 DOI: 10.3389/fnbeh.2022.1041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Associative aversive learning enables animals to predict and avoid threats and thus is critical for survival and adaptive behavior. Anxiety disorders are characterized with deficits in normal aversive learning mechanisms and hence understanding the neural circuits underlying aversive learning and memory has high clinical relevance. Recent studies have revealed the dopamine system as one of the key modulators of aversive learning. In this review, we highlight recent advances that provide insights into how distinct dopaminergic circuits contribute to aversive learning and memory.
Collapse
|
6
|
Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022; 13:859563. [PMID: 35462918 PMCID: PMC9021401 DOI: 10.3389/fphar.2022.859563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, millions of people suffer from various substance use disorders (SUD), including mono-and polydrug use of opioids and methamphetamine. Brain regions such as the cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and central amygdala have been shown to play important roles in addiction-related behavioral changes. Clinical and pre-clinical studies have characterized these brain regions and their corresponding neurochemical changes in numerous phases of drug dependence such as acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies have reported the individual effects of opioids and methamphetamine. However, little is known about their combined effects. Co-use of these drugs produces effects greater than either drug alone, where one decreases the side effects of the other, and the combination produces a prolonged intoxication period or a more desirable intoxication effect. An increasing number of studies have associated polydrug abuse with poorer treatment outcomes, drug-related deaths, and more severe psychopathologies. To date, the pharmacological treatment efficacy for polydrug abuse is vague, and still at the experimental stage. This present review discusses the human and animal behavioral, neuroanatomical, and neurochemical changes underlying both morphine and methamphetamine dependence separately, as well as its combination. This narrative review also delineates the recent advances in the pharmacotherapy of mono- and poly drug-use of opioids and methamphetamine at clinical and preclinical stages.
Collapse
Affiliation(s)
- Hanis Mohammad Hazani
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | | | | | | | - Ravi Ramadah
- National Anti-Drugs Agency Malaysia, Selangor, Malaysia
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| |
Collapse
|
7
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Moaddab M, McDannald MA. Retrorubral field is a hub for diverse threat and aversive outcome signals. Curr Biol 2021; 31:2099-2110.e5. [PMID: 33756109 DOI: 10.1016/j.cub.2021.02.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023]
Abstract
Adaptive fear scales to the degree of threat and requires diverse neural signals for threat and aversive outcome. We propose that the retrorubral field (RRF), a midbrain region containing A8 dopamine, is a neural origin of such signals. To reveal these signals, we recorded RRF single-unit activity while male rats discriminated danger, uncertainty, and safety. Many RRF neurons showed firing extremes to danger and safety that framed intermediate firing to uncertainty. The remaining neurons showed unique, threat-selective cue firing patterns. Diversity in firing direction, magnitude, and temporal characteristics led to the detection of at least eight functional neuron types. Neuron types defined with respect to threat showed unique firing patterns following aversive outcome. The result was RRF signals for foot shock receipt, positive prediction error, anti-positive prediction error, persistent safety, and persistent threat. The diversity of threat and aversive outcome signals points to a key role for the RRF in adaptive fear.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.
| | - Michael A McDannald
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
10
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
11
|
Cavalcante KM, Bispo JM, Souza MF, Medeiros KA, Lins LC, Santos ER, Melo JE, Gois AM, Meurer YS, Leal PC, Marchioro M, Santos JR. Short-term but not long-term exposure to an enriched environment facilitates the extinction of aversive memory. Behav Brain Res 2020; 393:112806. [DOI: 10.1016/j.bbr.2020.112806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
|
12
|
Cai LX, Pizano K, Gundersen GW, Hayes CL, Fleming WT, Holt S, Cox JM, Witten IB. Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different times. eLife 2020; 9:54936. [PMID: 32519951 PMCID: PMC7363446 DOI: 10.7554/elife.54936] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Dopamine (DA) neurons are thought to encode reward prediction error (RPE), in addition to other signals, such as salience. While RPE is known to support learning, the role of salience in learning remains less clear. To address this, we recorded and manipulated VTA DA neurons in mice during fear extinction. We applied deep learning to classify mouse freezing behavior, eliminating the need for human scoring. Our fiber photometry recordings showed DA neurons in medial and lateral VTA have distinct activity profiles during fear extinction: medial VTA activity more closely reflected RPE, while lateral VTA activity more closely reflected a salience-like signal. Optogenetic inhibition of DA neurons in either region slowed fear extinction, with the relevant time period for inhibition differing across regions. Our results indicate salience-like signals can have similar downstream consequences to RPE-like signals, although with different temporal dependencies.
Collapse
Affiliation(s)
- Lili X Cai
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Katherine Pizano
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Gregory W Gundersen
- Department of Computer Science, Princeton University, Princeton, United States
| | - Cameron L Hayes
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Weston T Fleming
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Sebastian Holt
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Julia M Cox
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States
| |
Collapse
|
13
|
Gordon-Fennell AG, Will RG, Ramachandra V, Gordon-Fennell L, Dominguez JM, Zahm DS, Marinelli M. The Lateral Preoptic Area: A Novel Regulator of Reward Seeking and Neuronal Activity in the Ventral Tegmental Area. Front Neurosci 2020; 13:1433. [PMID: 32009893 PMCID: PMC6978721 DOI: 10.3389/fnins.2019.01433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
The lateral preoptic area (LPO) is a hypothalamic region whose function has been largely unexplored. Its direct and indirect projections to the ventral tegmental area (VTA) suggest that the LPO could modulate the activity of the VTA and the reward-related behaviors that the VTA underlies. We examined the role of the LPO on reward taking and seeking using operant self-administration of cocaine or sucrose. Rats were trained to self-administer cocaine or sucrose and then subjected to extinction, whereby responding was no longer reinforced. We tested if stimulating the LPO pharmacologically with bicuculline or chemogenetically with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) modifies self-administration and/or seeking. In another set of experiments, we tested if manipulating the LPO influences cocaine self-administration during and after punishment. To examine the functional connectivity between the LPO and VTA, we used in vivo electrophysiology recordings in anesthetized rats. We tested if stimulating the LPO modifies the activity of GABA and dopamine neurons of the VTA. We found that stimulating the LPO reinstated cocaine and sucrose seeking behavior but had no effect on reward intake. Furthermore, both stimulating and inhibiting the LPO prevented the sustained reduction in cocaine intake seen after punishment. Finally, stimulating the LPO inhibited the activity of VTA GABA neurons while enhancing that of VTA dopamine neurons. These findings indicate that the LPO has the capacity to drive reward seeking, modulate sustained reductions in self-administration following punishment, and regulate the activity of VTA neurons. Taken together, these findings implicate the LPO as a previously overlooked member of the reward circuit.
Collapse
Affiliation(s)
- Adam G Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ryan G Will
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, United States
| | - Vorani Ramachandra
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Lydia Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Juan M Dominguez
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, United States
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Michela Marinelli
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Department of Psychiatry, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
14
|
The power of price compels you: Behavioral economic insights into dopamine-based valuation of rewarding and aversively motivated behavior. Brain Res 2018; 1713:32-41. [PMID: 30543771 DOI: 10.1016/j.brainres.2018.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Abstract
The mesocorticolimbic dopamine pathway is generally considered to be a reward pathway. While shortsighted, there is a strong basis for this view of dopamine function. Here, we first describe the role of phasic dopamine release events in reward seeking. We then explain why these release events are being reconsidered as value signals and how we applied behavioral economics to confirm they play a causal role in the valuation of reward. Just because dopamine release can function as a dopamine reward value signal however, does not imply that dopamine is solely a reward molecule. Rather, mesocorticolimbic dopamine appears to mediate many adaptive behaviors, including: reward seeking, avoidance, escape and fear-associated conditioned freezing. While more studies are needed before a consensus is reached on when, where and how dopamine mediates aversively-motivated behavior, its involvement is almost irrefutable. Thus, we next describe the role dopamine plays in these ethologically-relevant defensive behaviors. We conclude by describing our recent behavioral economics results that reveal a causal role for dopamine in the valuation of avoidance.
Collapse
|
15
|
Limbrick-Oldfield EH, Leech R, Wise RJS, Ungless MA. Financial gain- and loss-related BOLD signals in the human ventral tegmental area and substantia nigra pars compacta. Eur J Neurosci 2018; 49:1196-1209. [PMID: 30471149 PMCID: PMC6618000 DOI: 10.1111/ejn.14288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022]
Abstract
Neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) play central roles in reward-related behaviours. Nonhuman animal studies suggest that these neurons also process aversive events. However, our understanding of how the human VTA and SNC responds to such events is limited and has been hindered by the technical challenge of using functional magnetic resonance imaging (fMRI) to investigate a small structure where the signal is particularly vulnerable to physiological noise. Here we show, using methods optimized specifically for the midbrain (including high-resolution imaging, a novel registration protocol, and physiological noise modelling), a BOLD (blood-oxygen-level dependent) signal to both financial gain and loss in the VTA and SNC, along with a response to nil outcomes that are better or worse than expected in the VTA. Taken together, these findings suggest that the human VTA and SNC are involved in the processing of both appetitive and aversive financial outcomes in humans.
Collapse
Affiliation(s)
- Eve H Limbrick-Oldfield
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robert Leech
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Richard J S Wise
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Emotional and Motivational Pain Processing: Current State of Knowledge and Perspectives in Translational Research. Pain Res Manag 2018; 2018:5457870. [PMID: 30123398 PMCID: PMC6079355 DOI: 10.1155/2018/5457870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/03/2018] [Indexed: 01/13/2023]
Abstract
Pain elicits fear and anxiety and promotes escape, avoidance, and adaptive behaviors that are essential for survival. When pain persists, motivational priority and attention shift to pain-related information. Such a shift often results in impaired functionality, leading to maladaptive pain-related fear and anxiety and escape and avoidance behaviors. Neuroimaging studies in chronic pain patients have established that brain activity, especially in cortical and mesolimbic regions, is different from activity observed during acute pain in control subjects. In this review, we discuss the psychophysiological and neuronal factors that may be associated with the transition to chronic pain. We review information from human studies on neural circuits involved in emotional and motivational pain processing and how these circuits are altered in chronic pain conditions. We then highlight findings from animal research that can increase our understanding of the molecular and cellular mechanisms underlying emotional-motivational pain processing in the brain. Finally, we discuss how translational approaches incorporating results from both human and animal investigations may aid in accelerating the discovery of therapies.
Collapse
|
17
|
Dorsal tegmental dopamine neurons gate associative learning of fear. Nat Neurosci 2018; 21:952-962. [PMID: 29950668 PMCID: PMC6166775 DOI: 10.1038/s41593-018-0174-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Functional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here, we have identified a circuit reciprocally connecting the ventral periaqueductal grey (vPAG)/dorsal raphe (DR) region and the central amygdala (CE) that gates fear learning. We found that vPAG/DR dopaminergic (vPdRD) neurons encode a positive prediction error in response to unpredicted shocks, and may reshape intra-amygdala connectivity via a dopamine-dependent form of long-term potentiation (LTP). Negative feedback from the CE to vPdRD neurons might limit reinforcement to events that have not been predicted. These findings add a new module to the midbrain DA circuit architecture underlying associative reinforcement learning and identify vPdRD neurons as critical component of Pavlovian fear conditioning. We propose that dysregulation of vPdRD neuronal activity may contribute to fear-related psychiatric disorders.
Collapse
|
18
|
Fakhoury M. The dorsal diencephalic conduction system in reward processing: Spotlight on the anatomy and functions of the habenular complex. Behav Brain Res 2018; 348:115-126. [PMID: 29684476 DOI: 10.1016/j.bbr.2018.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
The dorsal diencephalic conduction system (DDC) is a highly conserved pathway in vertebrates that provides a route for the neural information to flow from forebrain to midbrain structures. It contains the bilaterally paired habenular nuclei along with two fiber tracts, the stria medullaris and the fasciculus retroflexus. The habenula is the principal player in mediating the dialogue between forebrain and midbrain regions, and functional abnormalities in this structure have often been attributed to pathologies like mood disorders and substance use disorder. Following Matsumoto and Hikosaka seminal work on the lateral habenula as a source of negative reward signals, the last decade has witnessed a great surge of interest in the role of the DDC in reward-related processes. However, despite significant progress in research, much work remains to unfold the behavioral functions of this intriguing, yet complex, pathway. This review describes the current state of knowledge on the DDC with respect to its anatomy, connectivity, and functions in reward and aversion processes.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3C3J7, Canada.
| |
Collapse
|
19
|
Adrenergic Receptor Agonists’ Modulation of Dopaminergic and Non-dopaminergic Neurons in the Ventral Tegmental Area. Neuroscience 2018; 375:119-134. [DOI: 10.1016/j.neuroscience.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/02/2023]
|
20
|
Pultorak KJ, Schelp SA, Isaacs DP, Krzystyniak G, Oleson EB. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid. eNeuro 2018; 5:ENEURO.0058-18.2018. [PMID: 29766047 PMCID: PMC5952648 DOI: 10.1523/eneuro.0058-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid.
Collapse
|
21
|
Park J, Moghaddam B. Risk of punishment influences discrete and coordinated encoding of reward-guided actions by prefrontal cortex and VTA neurons. eLife 2017; 6:e30056. [PMID: 29058673 PMCID: PMC5697935 DOI: 10.7554/elife.30056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Actions motivated by rewards are often associated with risk of punishment. Little is known about the neural representation of punishment risk during reward-seeking behavior. We modeled this circumstance in rats by designing a task where actions were consistently rewarded but probabilistically punished. Spike activity and local field potentials were recorded during task performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship between action and punishment. At the network level, we found that coherent theta oscillations synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal spike activity in the two regions during punishment-free actions. This synchrony declined as a function of punishment probability, suggesting that during reward-seeking actions, risk of punishment diminishes VTA-driven neural synchrony between the two regions.
Collapse
Affiliation(s)
- Junchol Park
- Department of NeuroscienceUniversity of PittsburghPittsburghUnited States
| | - Bita Moghaddam
- Department of Behavioral NeuroscienceOregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
22
|
Conditioned task-set competition: Neural mechanisms of emotional interference in depression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:269-289. [PMID: 27943159 DOI: 10.3758/s13415-016-0478-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Depression has been associated with increased response times at the incongruent-, neutral-, and negative-word trials of the classical and emotional Stroop tasks (Epp et al., Clinical Psychology Review, 32, 316-328, 2012). Response-time slowdown effects at incongruent- and negative-word trials of the Stroop tasks were reported to correlate with depressive severity, indicating strong relevance of the effects to the symptomatology. This study proposes a novel integrative computational model of neural mechanisms of both the classical and emotional Stroop effects, drawing on the previous prominent theoretical explanations of performance at the classical Stroop task (Cohen, Dunbar, & McClelland, Psychological Review, 97, 332-361, 1990; Herd, Banich, & O'Reilly, Journal of Cognitive Neuroscience, 18, 22-32, 2006), and in addition suggesting that negative emotional words represent conditioned stimuli for future negative outcomes. The model is shown to explain the classical Stroop effect and the slow (between-trial) emotional Stroop effect with biologically plausible mechanisms, providing an advantage over the previous theoretical accounts (Matthews & Harley, Cognition & Emotion, 10, 561-600, 1996; Wyble, Sharma, & Bowman, Cognition & Emotion, 22, 1019-1051, 2008). Simulation results suggested a candidate mechanism responsible for the pattern of depressive performance at the classical and the emotional Stroop tasks. Hyperactivity of the amygdala, together with increased inhibitory influence of the amygdala over dopaminergic neurotransmission, could be at the origin of the performance deficits.
Collapse
|
23
|
Devonshire IM, Burston JJ, Xu L, Lillywhite A, Prior MJ, Watson DJG, Greenspon CM, Iwabuchi SJ, Auer DP, Chapman V. Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: A new window to study experimental spontaneous pain? Neuroimage 2017. [PMID: 28633971 PMCID: PMC5607296 DOI: 10.1016/j.neuroimage.2017.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10µg/50µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1mg/50µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats.
Collapse
Affiliation(s)
- I M Devonshire
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - J J Burston
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - L Xu
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - A Lillywhite
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK
| | - M J Prior
- Medical Imaging Unit, School of Medicine, University of Nottingham, UK
| | - D J G Watson
- School of Life Sciences, University of Nottingham, UK
| | - C M Greenspon
- School of Life Sciences, University of Nottingham, UK
| | - S J Iwabuchi
- Medical Imaging Unit, School of Medicine, University of Nottingham, UK; Neuroradiology, Nottingham University Hospitals Trust, Nottingham NG7 2UH, UK
| | - D P Auer
- Arthritis Research UK Pain Centre, University of Nottingham, UK; Medical Imaging Unit, School of Medicine, University of Nottingham, UK; Neuroradiology, Nottingham University Hospitals Trust, Nottingham NG7 2UH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, UK; School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
24
|
Walczak M, Błasiak T. Midbrain dopaminergic neuron activity across alternating brain states of urethane anaesthetized rat. Eur J Neurosci 2017; 45:1068-1077. [PMID: 28177164 DOI: 10.1111/ejn.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Midbrain dopaminergic neurons are implicated in the control of motor functions and reward-driven behaviours. The function of this neuronal population is strongly connected with distinct patterns of firing - irregular or bursting, which either maintains basal levels of dopamine (DA) or leads to phasic release, respectively. Heterogeneity of dopaminergic neurons, observed on both structural and functional levels, is also reflected in different responses of DA neurons to changes in global brain states. Preparation of urethane anaesthetized animal is a broadly used model to study brain state dependent activity of neurons. Unfortunately activity of midbrain DA neurons across urethane induced cyclic, spontaneous brain state alternations is poorly described. To fulfil this gap in our knowledge we have performed simultaneous, extracellular recordings of the firing of single putative DA neurons combined with continuous brain state monitoring. We found that during slow wave activity, the firing rate of recorded putative DA neurons was significantly higher compared to firing rates during activated state, both in ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). In the presence of cortical slow waves, putative dopaminergic neurons also intensified bursting activity, but the magnitude of this phenomena differed in respect to the examined region (VTA or SNc). Our results show that activity of DA neurons under urethane anaesthesia is brain-state dependent and emphasize the importance of brain state monitoring during electrophysiological experiments.
Collapse
Affiliation(s)
- Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
25
|
Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations. J Neurosci 2017; 37:3311-3330. [PMID: 28219982 DOI: 10.1523/jneurosci.2969-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons.SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons.
Collapse
|
26
|
Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017; 18:73-85. [DOI: 10.1038/nrn.2016.165] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Matsumoto H, Tian J, Uchida N, Watabe-Uchida M. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner. eLife 2016; 5. [PMID: 27760002 PMCID: PMC5070948 DOI: 10.7554/elife.17328] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/23/2016] [Indexed: 11/14/2022] Open
Abstract
Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI:http://dx.doi.org/10.7554/eLife.17328.001 There are many types of learning; one type of learning means that rewards and punishments can shape future behavior. Dopamine is a molecule that allows neurons in the brain to communicate with one another, and it is released in response to unexpected rewards. Most neuroscientists believe that dopamine is important to learn from the reward; however, there are different opinions about whether dopamine is important to learn from punishments or not. Previous studies that tried to examine how dopamine activities change in response to punishment have reported different results. One of the likely reasons for the controversy is that it was difficult to measure only the activity of dopamine-releasing neurons. To overcome this issue, Matsumoto et al. used genetically engineered mice in which shining a blue light into their brain would activate their dopamine neurons but not any other neurons. Tiny electrodes were inserted into the brains of these mice, and a blue light was used to confirm that these electrodes were recording from the dopamine-producing neurons. Specifically if the electrode detected an electrical impulse when blue light was beamed into the brain, then the recorded neuron was confirmed to be a dopamine-producing neuron. Measuring the activities of these dopamine neurons revealed that they were indeed activated by reward but inhibited by punishment. In other words, dopamine neurons indeed can signal punishments as negative and rewards as positive on a single axis. Further experiments showed that, if the mice predicted both a reward and a punishment, the dopamine neurons could integrate information from both to direct learning. Matsumoto et al. also saw that when mice received rewards too often, their dopamine neurons did not signal punishment correctly. These results suggest that how we feel about punishment may depend on how often we experience rewards. In addition to learning, dopamine has also been linked to many psychiatric symptoms such as addiction and depression. The next challenge will be to examine how the frequency of rewards changes an animal’s state and responses to punishment in more detail, and how this relates to normal and abnormal behaviors. DOI:http://dx.doi.org/10.7554/eLife.17328.002
Collapse
Affiliation(s)
- Hideyuki Matsumoto
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Ju Tian
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
28
|
Chen NA, Ganella DE, Bathgate RAD, Chen A, Lawrence AJ, Kim JH. Knockdown of corticotropin-releasing factor 1 receptors in the ventral tegmental area enhances conditioned fear. Eur Neuropsychopharmacol 2016; 26:1533-1540. [PMID: 27397862 DOI: 10.1016/j.euroneuro.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 12/01/2022]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) coordinates the physiological and behavioural responses to stress. CRF receptors are highly expressed in the ventral tegmental area (VTA), an important region for motivated behaviour. Therefore, we examined the role of CRF receptor type 1 (CRFR1) in the VTA in conditioned fear, using a viral-mediated RNA interference approach. Following stereotaxic injection of a lentivirus that contained either shCRF-R1 or a control sequence, mice received tone-footshock pairings. Intra-VTA shCRF-R1 did not affect tone-elicited freezing during conditioning. Once conditioned fear was acquired, however, shCRF-R1 mice consistently showed stronger freezing to the tone even after extinction and reinstatement. These results implicate a novel role of VTA CRF-R1 in conditioned fear, and suggest how stress may modulate aversive learning and memory.
Collapse
Affiliation(s)
- Nicola A Chen
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Despina E Ganella
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Ross A D Bathgate
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, VIC 3010 Australia
| | - Alon Chen
- Department of stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia.
| |
Collapse
|
29
|
Root DH, Wang HL, Liu B, Barker DJ, Mód L, Szocsics P, Silva AC, Maglóczky Z, Morales M. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans. Sci Rep 2016; 6:30615. [PMID: 27477243 PMCID: PMC4967922 DOI: 10.1038/srep30615] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Hui-Ling Wang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Bing Liu
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - László Mód
- Department of Psychology, Szent Borbála Hospital, H-2800, Tatabánya, Hungary
| | - Péter Szocsics
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, 49 Convent Drive Bldg 49 Room 3A72, Bethesda, MD 20892-4478, USA
| | - Zsófia Maglóczky
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Mitsi V, Zachariou V. Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience 2016; 338:81-92. [PMID: 27189881 DOI: 10.1016/j.neuroscience.2016.05.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
The midbrain dopamine center comprises a key network for reward, salience, motivation, and mood. Evidence from various clinical and preclinical settings points to the midbrain dopamine circuit as an important modulator of pain perception and pain-induced anxiety and depression. This review summarizes recent findings that shed light to the neuroanatomical, electrophysiological and molecular adaptations that chronic pain conditions promote in the mesolimbic dopamine system. Chronic pain states induce changes in neuronal plasticity and functional connectivity in several parts of the brain reward center, including nucleus accumbens, the ventral tegmental area and the prefrontal cortex. Here, we discuss recent findings on the mechanisms involved in the perception of chronic pain, in pain-induced anxiety and depression, as well as in pain-killer addiction vulnerability. Several new studies also show that the mesolimbic dopamine circuit potently modulates responsiveness to opioids and antidepressants used for the treatment of chronic pain. We discuss recent data supporting a role of the brain reward pathway in treatment efficacy and we summarize novel findings on intracellular adaptations in the brain reward circuit under chronic pain states.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
31
|
Lee JC, Wang LP, Tsien JZ. Dopamine Rebound-Excitation Theory: Putting Brakes on PTSD. Front Psychiatry 2016; 7:163. [PMID: 27729874 PMCID: PMC5037223 DOI: 10.3389/fpsyt.2016.00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023] Open
Abstract
It is not uncommon for humans or animals to experience traumatic events in their lifetimes. However, the majority of individuals are resilient to long-term detrimental changes turning into anxiety and depression, such as post-traumatic stress disorder (PTSD). What underlying neural mechanism accounts for individual variability in stress resilience? Hyperactivity in fear circuits, such as the amygdalar system, is well-known to be the major pathophysiological basis for PTSD, much like a "stuck accelerator." Interestingly, increasing evidence demonstrates that dopamine (DA) - traditionally known for its role in motivation, reward prediction, and addiction - is also crucial in regulating fear learning and anxiety. Yet, how dopaminergic (DAergic) neurons control stress resilience is unclear, especially given that DAergic neurons have multiple subtypes with distinct temporal dynamics. Here, we propose the Rebound-Excitation Theory, which posits that DAergic neurons' rebound-excitation at the termination of fearful experiences serves as an important "brake" by providing intrinsic safety-signals to fear-processing neural circuits in a spatially and temporally controlled manner. We discuss how DAergic neuron rebound-excitation may be regulated by genetics and experiences, and how such physiological properties may be used as a brain-activity biomarker to predict and confer individual resilience to stress and anxiety.
Collapse
Affiliation(s)
- Jason C Lee
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University , Augusta, GA , USA
| | - Lei Philip Wang
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Psychiatry, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Joe Z Tsien
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University , Augusta, GA , USA
| |
Collapse
|
32
|
Dopamine and Its Actions in the Basal Ganglia System. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nat Neurosci 2015; 19:111-6. [PMID: 26642092 PMCID: PMC4696902 DOI: 10.1038/nn.4191] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Correlative studies have strongly linked phasic changes in dopamine activity with reward prediction error signaling. But causal evidence that these brief changes in firing actually serve as error signals to drive associative learning is more tenuous. While there is direct evidence that brief increases can substitute for positive prediction errors, there is no comparable evidence that similarly brief pauses can substitute for negative prediction errors. Lacking such evidence, the effect of increases in firing could reflect novelty or salience, variables also correlated with dopamine activity. Here we provide such evidence, showing in a modified Pavlovian over-expectation task that brief pauses in the firing of dopamine neurons in rat ventral tegmental area at the time of reward are sufficient to mimic the effects of endogenous negative prediction errors. These results support the proposal that brief changes in the firing of dopamine neurons serve as full-fledged bidirectional prediction error signals.
Collapse
|
34
|
Navratilova E, Atcherley CW, Porreca F. Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci 2015; 38:741-750. [PMID: 26603560 PMCID: PMC4752429 DOI: 10.1016/j.tins.2015.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
Abstract
Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward-predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging, and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex (ACC), activation of midbrain dopamine neurons, and the release of dopamine in the nucleus accumbens (NAc). Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute or chronic pain.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA; Deparment of Research, Mayo Clinic, Scottsdale, AZ 85453, USA.
| |
Collapse
|
35
|
Li M, Zhao F, Lee J, Wang D, Kuang H, Tsien JZ. Computational Classification Approach to Profile Neuron Subtypes from Brain Activity Mapping Data. Sci Rep 2015. [PMID: 26212360 PMCID: PMC4515637 DOI: 10.1038/srep12474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The analysis of cell type-specific activity patterns during behaviors is important for better understanding of how neural circuits generate cognition, but has not been well explored from in vivo neurophysiological datasets. Here, we describe a computational approach to uncover distinct cell subpopulations from in vivo neural spike datasets. This method, termed “inter-spike-interval classification-analysis” (ISICA), is comprised of four major steps: spike pattern feature-extraction, pre-clustering analysis, clustering classification, and unbiased classification-dimensionality selection. By using two key features of spike dynamic - namely, gamma distribution shape factors and a coefficient of variation of inter-spike interval - we show that this ISICA method provides invariant classification for dopaminergic neurons or CA1 pyramidal cell subtypes regardless of the brain states from which spike data were collected. Moreover, we show that these ISICA-classified neuron subtypes underlie distinct physiological functions. We demonstrate that the uncovered dopaminergic neuron subtypes encoded distinct aspects of fearful experiences such as valence or value, whereas distinct hippocampal CA1 pyramidal cells responded differentially to ketamine-induced anesthesia. This ISICA method should be useful to better data mining of large-scale in vivo neural datasets, leading to novel insights into circuit dynamics associated with cognitions.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Fang Zhao
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Jason Lee
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Dong Wang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Hui Kuang
- 1] Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA [2] The Brain Decoding Center, Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province 666100, China
| | - Joe Z Tsien
- 1] Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA [2] The Brain Decoding Center, Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province 666100, China
| |
Collapse
|
36
|
Abstract
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Wenzel JM, Rauscher NA, Cheer JF, Oleson EB. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 2015; 6:16-26. [PMID: 25491156 DOI: 10.1021/cn500255p] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Survival is dictated by an organism's fitness in approaching positive stimuli and avoiding harm. While a rich literature outlines a role for mesolimbic dopamine in reward and appetitive behaviors, dopamine's involvement in aversion and avoidance behaviors remains controversial. Debate surrounding dopamine's function in the processing of negative stimuli likely stems from conflicting results reported by single-unit electrophysiological studies. Indeed, a number of studies suggest that midbrain dopaminergic cells are inhibited by the presentation of negative or fearful stimuli, while others report no change, or even an increase, in their activity. These disparate results may be due to population heterogeneity. Recent evidence demonstrates that midbrain dopamine neurons are heterogeneous in their projection targets, responses to environmental stimuli, pharmacology, and influences on motivated behavior. Thus, in order to assemble an accurate account of dopamine function during aversive stimulus experience and related behavior, it is necessary to examine the functional output of dopamine neural activity at mesolimbic terminal regions. This Review presents a growing body of evidence that dopamine release in the nucleus accumbens encodes not only reward, but also aversion. For example, our laboratory recently utilized fast-scan cyclic voltammetry to show that real-time changes in accumbal dopamine release are detected when animals are presented with predictors of aversion and its avoidance. These data, along with other reports, support a considerably more nuanced view of dopamine neuron function, wherein accumbal dopamine release is differentially modulated by positive and negative affective stimuli to promote adaptive behaviors.
Collapse
Affiliation(s)
| | - Noah A. Rauscher
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| | | | - Erik B. Oleson
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| |
Collapse
|
38
|
Messer M, Kirchner M, Schiemann J, Roeper J, Neininger R, Schneider G. A multiple filter test for the detection of rate changes in renewal processes with varying variance. Ann Appl Stat 2014. [DOI: 10.1214/14-aoas782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 2014; 9:2369-81. [PMID: 25211514 DOI: 10.1038/nprot.2014.161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that neural circuits consist of a great diversity of cell types, but very little is known about how neuronal diversity contributes to cognition and behavior. One approach to addressing this problem is to directly link cellular diversity to neuronal activity recorded in vivo in behaving animals. Here we describe the technical procedures for obtaining juxtacellular recordings from single neurons in trained rats engaged in exploratory behavior. The recorded neurons can be labeled to allow subsequent anatomical identification. In its current format, the protocol can be used for resolving the cellular identity of spatially modulated neurons (i.e., head-direction cells and grid cells), which form the basis of the animal's internal representation of space, but this approach can easily be extended to other unrestrained behaviors. The procedures described here, from the beginning of animal training to the histological processing of brain sections, can be completed in ≈ 3-4 weeks.
Collapse
|
40
|
Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors. Neuropsychologia 2014; 61:1-10. [DOI: 10.1016/j.neuropsychologia.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022]
|
41
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
42
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
43
|
Overton PG, Vautrelle N, Redgrave P. Sensory regulation of dopaminergic cell activity: Phenomenology, circuitry and function. Neuroscience 2014; 282:1-12. [PMID: 24462607 DOI: 10.1016/j.neuroscience.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
Abstract
Dopaminergic neurons in a range of species are responsive to sensory stimuli. In the anesthetized preparation, responses to non-noxious and noxious sensory stimuli are usually tonic in nature, although long-duration changes in activity have been reported in the awake preparation as well. However, in the awake preparation, short-latency, phasic changes in activity are most common. These phasic responses can occur to unconditioned aversive and non-aversive stimuli, as well as to the stimuli which predict them. In both the anesthetized and awake preparations, not all dopaminergic neurons are responsive to sensory stimuli, however responsive neurons tend to respond to more than a single stimulus modality. Evidence suggests that short-latency sensory information is provided to dopaminergic neurons by relatively primitive subcortical structures - including the midbrain superior colliculus for vision and the mesopontine parabrachial nucleus for pain and possibly gustation. Although short-latency visual information is provided to dopaminergic neurons by the relatively primitive colliculus, dopaminergic neurons can discriminate between complex visual stimuli, an apparent paradox which can be resolved by the recently discovered route of information flow through to dopaminergic neurons from the cerebral cortex, via a relay in the colliculus. Given that projections from the cortex to the colliculus are extensive, such a relay potentially allows the activity of dopaminergic neurons to report the results of complex stimulus processing from widespread areas of the cortex. Furthermore, dopaminergic neurons could acquire their ability to reflect stimulus value by virtue of reward-related modification of sensory processing in the cortex. At the forebrain level, sensory-related changes in the tonic activity of dopaminergic neurons may regulate the impact of the cortex on forebrain structures such as the nucleus accumbens. In contrast, the short latency of the phasic responses to sensory stimuli in dopaminergic neurons, coupled with the activation of these neurons by non-rewarding stimuli, suggests that phasic responses of dopaminergic neurons may provide a signal to the forebrain which indicates that a salient event has occurred (and possibly an estimate of how salient that event is). A stimulus-related salience signal could be used by downstream systems to reinforce behavioral choices.
Collapse
Affiliation(s)
- P G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - N Vautrelle
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - P Redgrave
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
44
|
Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 2014; 8:8. [PMID: 24478655 PMCID: PMC3897868 DOI: 10.3389/fnbeh.2014.00008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA) and the nucleus accumbens (NAc) as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to dopamine (DA) neurons, the VTA also contains approximately 30% γ-aminobutyric acid (GABA) neurons. The task of signaling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs), a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioral level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs) to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Niels R Ntamati
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Kelly R Tan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| |
Collapse
|
45
|
Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci 2014; 37:85-94. [PMID: 24388426 DOI: 10.1016/j.tins.2013.11.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022]
Abstract
Disrupted salience processing is proposed as central in linking dysregulated dopamine function with psychotic symptoms. Several strands of evidence are now converging in support of this model. Animal studies show that midbrain dopamine neurons are activated by unexpected salient events. In psychotic patients, neurochemical studies have confirmed subcortical striatal dysregulation of dopaminergic neurotransmission, whereas functional magnetic resonance imaging (fMRI) studies of salience tasks have located alterations in prefrontal and striatal dopaminergic projection fields. At the clinical level, this may account for the altered sense of meaning and significance that predates the onset of psychosis. This review draws these different strands of evidence together in support of an emerging understanding of how dopamine dysregulation may lead to aberrant salience and psychotic symptoms.
Collapse
Affiliation(s)
- Toby T Winton-Brown
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, SE58AF London, UK.
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, SE58AF London, UK; OASIS Prodromal Service, South London and Maudsley (SLaM) National Health Service (NHS) Foundation Trust, London, UK
| | - Mark A Ungless
- Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, SE58AF London, UK; Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| |
Collapse
|
46
|
Huys QJ, Tobler PN, Hasler G, Flagel SB. The role of learning-related dopamine signals in addiction vulnerability. PROGRESS IN BRAIN RESEARCH 2014; 211:31-77. [DOI: 10.1016/b978-0-444-63425-2.00003-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 2013; 108:65-77. [PMID: 24269353 DOI: 10.1016/j.nlm.2013.11.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.
Collapse
|
48
|
Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli. J Neurosci 2013; 33:4710-25. [PMID: 23486944 DOI: 10.1523/jneurosci.3883-12.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transient response of dopamine neurons has been described as reward prediction error (RPE), with activation or suppression by events that are better or worse than expected, respectively. However, at least a minority of neurons are activated by aversive or high-intensity stimuli, casting doubt on the generality of RPE in describing the dopamine signal. To overcome limitations of previous studies, we studied neuronal responses to a wider variety of high-intensity and aversive stimuli, and we quantified and controlled aversiveness through a choice task in which macaques sacrificed juice to avoid aversive stimuli. Whereas most previous work has portrayed the RPE as a single impulse or "phase," here we demonstrate its multiphasic temporal dynamics. Aversive or high-intensity stimuli evoked a triphasic sequence of activation-suppression-activation extending over a period of 40-700 ms. The initial activation at short latencies (40-120 ms) reflected sensory intensity. The influence of motivational value became dominant between 150 and 250 ms, with activation in the case of appetitive stimuli, and suppression in the case of aversive and neutral stimuli. The previously unreported late activation appeared to be a modest "rebound" after strong suppression. Similarly, strong activation by reward was often followed by suppression. We suggest that these "rebounds" may result from overcompensation by homeostatic mechanisms in some cells. Our results are consistent with a realistic RPE, which evolves over time through a dynamic balance of excitation and inhibition.
Collapse
|
49
|
Abstract
Dopamine neurons of the ventral midbrain have been found to signal a reward prediction error that can mediate positive reinforcement. Despite the demonstration of modest diversity at the cellular and molecular levels, there has been little analysis of response diversity in behaving animals. Here we examine response diversity in rhesus macaques to appetitive, aversive, and neutral stimuli having relative motivational values that were measured and controlled through a choice task. First, consistent with previous studies, we observed a continuum of response variability and an apparent absence of distinct clusters in scatter plots, suggesting a lack of statistically discrete subpopulations of neurons. Second, we found that a group of "sensitive" neurons tend to be more strongly suppressed by a variety of stimuli and to be more strongly activated by juice. Third, neurons in the "ventral tier" of substantia nigra were found to have greater suppression, and a subset of these had higher baseline firing rates and late "rebound" activation after suppression. These neurons could belong to a previously identified subgroup of dopamine neurons that express high levels of H-type cation channels but lack calbindin. Fourth, neurons further rostral exhibited greater suppression. Fifth, although we observed weak activation of some neurons by aversive stimuli, this was not associated with their aversiveness. In conclusion, we find a diversity of response properties, distributed along a continuum, within what may be a single functional population of neurons signaling reward prediction error.
Collapse
|
50
|
Brooks AM, Berns GS. Aversive stimuli and loss in the mesocorticolimbic dopamine system. Trends Cogn Sci 2013; 17:281-6. [PMID: 23623264 DOI: 10.1016/j.tics.2013.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
There is mounting evidence that the mesolimbic dopamine system carries valuation signals not only for appetitive or gain-related stimuli, with which it is traditionally associated, but also for aversive and loss-related stimuli. Cellular-level studies demonstrate that the neuronal architecture to support aversive stimuli encoding in this system does exist. Both cellular-level and human neuroimaging research suggest the co-existence of appetitive and aversive prediction-error signals within the mesocorticolimbic system. These findings shift the view of the mesocorticolimbic system as a singular pathway for reward to a system with multiple signals across a wide range of domains that drive value-based decision making.
Collapse
Affiliation(s)
- Andrew M Brooks
- Center for Neuropolicy, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|