1
|
Laamerad P, Liu LD, Pack CC. Decision-related activity and movement selection in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadk7214. [PMID: 38809984 PMCID: PMC11135405 DOI: 10.1126/sciadv.adk7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Liu D. Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
2
|
Kang JU, Mooshagian E, Snyder LH. Functional organization of posterior parietal cortex circuitry based on inferred information flow. Cell Rep 2024; 43:114028. [PMID: 38581681 PMCID: PMC11090617 DOI: 10.1016/j.celrep.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Many studies infer the role of neurons by asking what information can be decoded from their activity or by observing the consequences of perturbing their activity. An alternative approach is to consider information flow between neurons. We applied this approach to the parietal reach region (PRR) and the lateral intraparietal area (LIP) in posterior parietal cortex. Two complementary methods imply that across a range of reaching tasks, information flows primarily from PRR to LIP. This indicates that during a coordinated reach task, LIP has minimal influence on PRR and rules out the idea that LIP forms a general purpose spatial processing hub for action and cognition. Instead, we conclude that PRR and LIP operate in parallel to plan arm and eye movements, respectively, with asymmetric interactions that likely support eye-hand coordination. Similar methods can be applied to other areas to infer their functional relationships based on inferred information flow.
Collapse
Affiliation(s)
- Jung Uk Kang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Hüer J, Saxena P, Treue S. Pathway-selective optogenetics reveals the functional anatomy of top-down attentional modulation in the macaque visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2304511121. [PMID: 38194453 PMCID: PMC10801865 DOI: 10.1073/pnas.2304511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Collapse
Affiliation(s)
- Janina Hüer
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt60528, Germany
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen37073, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen37077, Germany
- Bernstein Center for Computational Neuroscience, Göttingen37073, Germany
| |
Collapse
|
4
|
Contò F, Tyler S, Paletta P, Battelli L. The role of the parietal lobe in task-irrelevant suppression during learning. Brain Stimul 2023; 16:715-723. [PMID: 37062348 DOI: 10.1016/j.brs.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Attention optimizes the selection of visual information, while suppressing irrelevant visual input through cortical mechanisms that are still unclear. We set to investigate these processes using an attention task with an embedded to-be-ignored interfering visual input. OBJECTIVE We delivered electrical stimulation to attention-related brain areas to modulate these facilitatory/inhibitory attentional mechanisms. We asked whether overtly training on a task while being covertly exposed to visual features from a visually identical but different task tested at baseline might influence post-training performance on the baseline task. METHODS In Experiment one, at baseline subjects performed an orientation discrimination (OD) task using a pair of gratings presented at individual's psychophysical threshold. We then trained participants over three-day separate sessions on a temporal order judgment task (TOJ), using the exact same gratings but presented with different time offsets. On the last post-training session we re-tested OD. We coupled training with transcranial random noise stimulation (tRNS) over the parietal cortex, the human middle temporal area or sham, in three separate groups. In Experiment two, subjects performed the same OD task at baseline and post-training, while tRNS was delivered at rest during the same sessions and stimulation conditions as in Experiment one. RESULTS Results showed that tRNS over parietal cortex facilitated learning of the trained TOJ task. Moreover, we found a detrimental effect on the untrained OD task when subjects received parietal tRNS coupled with training (Experiment one), but a benefit on OD when subjects received stimulation while at rest (Experiment two). CONCLUSIONS These results clearly indicate that task-irrelevant information is actively suppressed during learning, and that this prioritization mechanism of selection likely resides in the parietal cortex.
Collapse
Affiliation(s)
- F Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto (TN), Italy.
| | - S Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto (TN), Italy; Butte College, Oroville, CA, 95965, USA
| | - P Paletta
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto (TN), Italy
| | - L Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto (TN), Italy; Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Department of Psychology, Harvard University, Cambridge, MA, 01238, USA.
| |
Collapse
|
5
|
Roelfsema PR. Solving the binding problem: Assemblies form when neurons enhance their firing rate-they don't need to oscillate or synchronize. Neuron 2023; 111:1003-1019. [PMID: 37023707 DOI: 10.1016/j.neuron.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
When we look at an image, its features are represented in our visual system in a highly distributed manner, calling for a mechanism that binds them into coherent object representations. There have been different proposals for the neuronal mechanisms that can mediate binding. One hypothesis is that binding is achieved by oscillations that synchronize neurons representing features of the same perceptual object. This view allows separate communication channels between different brain areas. Another hypothesis is that binding of features that are represented in different brain regions occurs when the neurons in these areas that respond to the same object simultaneously enhance their firing rate, which would correspond to directing object-based attention to these features. This review summarizes evidence in favor of and against these two hypotheses, examining the neuronal correlates of binding and assessing the time course of perceptual grouping. I conclude that enhanced neuronal firing rates bind features into coherent object representations, whereas oscillations and synchrony are unrelated to binding.
Collapse
Affiliation(s)
- Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
6
|
Morrill RJ, Bigelow J, DeKloe J, Hasenstaub AR. Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex. eLife 2022; 11:e75839. [PMID: 35980027 PMCID: PMC9427107 DOI: 10.7554/elife.75839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday behavior, sensory systems are in constant competition for attentional resources, but the cellular and circuit-level mechanisms of modality-selective attention remain largely uninvestigated. We conducted translaminar recordings in mouse auditory cortex (AC) during an audiovisual (AV) attention shifting task. Attending to sound elements in an AV stream reduced both pre-stimulus and stimulus-evoked spiking activity, primarily in deep-layer neurons and neurons without spectrotemporal tuning. Despite reduced spiking, stimulus decoder accuracy was preserved, suggesting improved sound encoding efficiency. Similarly, task-irrelevant mapping stimuli during inter-trial intervals evoked fewer spikes without impairing stimulus encoding, indicating that attentional modulation generalized beyond training stimuli. Importantly, spiking reductions predicted trial-to-trial behavioral accuracy during auditory attention, but not visual attention. Together, these findings suggest auditory attention facilitates sound discrimination by filtering sound-irrelevant background activity in AC, and that the deepest cortical layers serve as a hub for integrating extramodal contextual information.
Collapse
Affiliation(s)
- Ryan J Morrill
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - James Bigelow
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - Jefferson DeKloe
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| | - Andrea R Hasenstaub
- Coleman Memorial Laboratory, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology–Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
7
|
Seideman JA, Stanford TR, Salinas E. A conflict between spatial selection and evidence accumulation in area LIP. Nat Commun 2022; 13:4463. [PMID: 35915096 PMCID: PMC9343639 DOI: 10.1038/s41467-022-32209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The lateral intraparietal area (LIP) contains spatially selective neurons that help guide eye movements and, according to numerous studies, do so by accumulating sensory evidence in favor of one choice (e.g., look left) or another (look right). To examine this functional link, we trained two monkeys on an urgent motion discrimination task, a task with which the evolution of both the recorded neuronal activity and the subject's choice can be tracked millisecond by millisecond. We found that while choice accuracy increased steeply with increasing sensory evidence, at the same time, the LIP selection signal became progressively weaker, as if it hindered performance. This effect was consistent with the transient deployment of spatial attention to disparate locations away from the relevant sensory cue. The results demonstrate that spatial selection in LIP is dissociable from, and may even conflict with, evidence accumulation during informed saccadic choices.
Collapse
Affiliation(s)
- Joshua A Seideman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| |
Collapse
|
8
|
Goldstein AT, Stanford TR, Salinas E. Exogenous capture accounts for fundamental differences between pro- and antisaccade performance. eLife 2022; 11:e76964. [PMID: 35894379 PMCID: PMC9328762 DOI: 10.7554/elife.76964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
To generate the next eye movement, oculomotor circuits take into consideration the physical salience of objects in view and current behavioral goals, exogenous and endogenous influences, respectively. However, the interactions between exogenous and endogenous mechanisms and their dynamic contributions to target selection have been difficult to resolve because they evolve extremely rapidly. In a recent study (Salinas et al., 2019), we achieved the necessary temporal precision using an urgent variant of the antisaccade task wherein motor plans are initiated early and choice accuracy depends sharply on when exactly the visual cue information becomes available. Empirical and modeling results indicated that the exogenous signal arrives ∼80 ms after cue onset and rapidly accelerates the (incorrect) plan toward the cue, whereas the informed endogenous signal arrives ∼25 ms later to favor the (correct) plan away from the cue. Here, we scrutinize a key mechanistic hypothesis about this dynamic, that the exogenous and endogenous signals act at different times and independently of each other. We test quantitative model predictions by comparing the performance of human participants instructed to look toward a visual cue or away from it under high urgency. We find that, indeed, the exogenous response is largely impervious to task instructions; it simply flips its sign relative to the correct choice, and this largely explains the drastic differences in psychometric performance between the two tasks. Thus, saccadic choices are strongly dictated by the alignment between salience and behavioral goals.
Collapse
Affiliation(s)
- Allison T Goldstein
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| |
Collapse
|
9
|
Moerel D, Grootswagers T, Robinson AK, Shatek SM, Woolgar A, Carlson TA, Rich AN. The time-course of feature-based attention effects dissociated from temporal expectation and target-related processes. Sci Rep 2022; 12:6968. [PMID: 35484363 PMCID: PMC9050682 DOI: 10.1038/s41598-022-10687-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Selective attention prioritises relevant information amongst competing sensory input. Time-resolved electrophysiological studies have shown stronger representation of attended compared to unattended stimuli, which has been interpreted as an effect of attention on information coding. However, because attention is often manipulated by making only the attended stimulus a target to be remembered and/or responded to, many reported attention effects have been confounded with target-related processes such as visual short-term memory or decision-making. In addition, attention effects could be influenced by temporal expectation about when something is likely to happen. The aim of this study was to investigate the dynamic effect of attention on visual processing using multivariate pattern analysis of electroencephalography (EEG) data, while (1) controlling for target-related confounds, and (2) directly investigating the influence of temporal expectation. Participants viewed rapid sequences of overlaid oriented grating pairs while detecting a "target" grating of a particular orientation. We manipulated attention, one grating was attended and the other ignored (cued by colour), and temporal expectation, with stimulus onset timing either predictable or not. We controlled for target-related processing confounds by only analysing non-target trials. Both attended and ignored gratings were initially coded equally in the pattern of responses across EEG sensors. An effect of attention, with preferential coding of the attended stimulus, emerged approximately 230 ms after stimulus onset. This attention effect occurred even when controlling for target-related processing confounds, and regardless of stimulus onset expectation. These results provide insight into the effect of feature-based attention on the dynamic processing of competing visual information.
Collapse
Affiliation(s)
- Denise Moerel
- School of Psychological Sciences, Macquarie University, Sydney, Australia.
- Perception in Action Research Centre, Macquarie University, Sydney, Australia.
- School of Psychology, University of Sydney, Sydney, Australia.
| | - Tijl Grootswagers
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- School of Psychology, University of Sydney, Sydney, Australia
| | - Amanda K Robinson
- School of Psychology, University of Sydney, Sydney, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sophia M Shatek
- School of Psychology, University of Sydney, Sydney, Australia
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Anina N Rich
- School of Psychological Sciences, Macquarie University, Sydney, Australia
- Perception in Action Research Centre, Macquarie University, Sydney, Australia
- Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
11
|
Dynamics of coherent activity between cortical areas defines a two-stage process of top-down attention. Exp Brain Res 2021; 239:2767-2779. [PMID: 34241642 DOI: 10.1007/s00221-021-06166-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Analysing a visual scene requires the brain to briefly keep in memory potentially relevant items of that scene and then direct attention to their locations for detailed processing. To reveal the neuronal basis of the underlying working memory and top-down attention processes, we trained macaques to match two patterns presented with a delay between them. As the above processes are likely to require communication between brain regions, and the parietal cortex is known to be involved in spatial attention, we simultaneously recorded neuronal activities from the interconnected parietal and middle temporal areas. We found that mnemonic information about features of the first pattern was retained in coherent oscillating activity between the two areas in high-frequency bands, followed by coherent activity in lower frequency bands mediating top-down attention on the relevant spatial location. Oscillations maintaining featural information also modulated activity of the cells of the parietal cortex that mediate attention. This could potentially enable transfer of information to organize top-down signals necessary for selective attention. Our results provide evidence in support of a two-stage model of visual attention where the first stage involves creating a saliency map representing a visual scene and at the second stage attentional feedback is provided to cortical areas involved in detailed analysis of the attended parts of a scene.
Collapse
|
12
|
Abstract
Remapping is a property of some cortical and subcortical neurons that update their responses around the time of an eye movement to account for the shift of stimuli on the retina due to the saccade. Physiologically, remapping is traditionally tested by briefly presenting a single stimulus around the time of the saccade and looking at the onset of the response and the locations in space to which the neuron is responsive. Here we suggest that a better way to understand the functional role of remapping is to look at the time at which the neural signal emerges when saccades are made across a stable scene. Based on data obtained using this approach, we suggest that remapping in the lateral intraparietal area is sufficient to play a role in maintaining visual stability across saccades, whereas in the frontal eye field, remapped activity carries information that affects future saccadic choices and, in a separate subset of neurons, is used to maintain a map of locations in the scene that have been previously fixated.
Collapse
Affiliation(s)
- James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yelda Alkan
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Attention can be subdivided into neurobiological components corresponding to distinct behavioral effects. Proc Natl Acad Sci U S A 2019; 116:26187-26194. [PMID: 31871179 DOI: 10.1073/pnas.1902286116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Attention is a common but highly complex term associated with a large number of distinct behavioral and perceptual phenomena. In the brain, attention-related changes in neuronal activity are observed in widespread structures. The many distinct behavioral and neuronal phenomena related to attention suggest that it might be subdivided into components corresponding to distinct biological mechanisms. Recent neurophysiological studies in monkeys have isolated behavioral changes related to attention along the 2 indices of signal detection theory and found that these 2 behavioral changes are associated with distinct neuronal changes in different brain areas. These results support the view that attention is made up of distinct neurobiological mechanisms.
Collapse
|
14
|
Cox MA, Dougherty K, Adams GK, Reavis EA, Westerberg JA, Moore BS, Leopold DA, Maier A. Spiking Suppression Precedes Cued Attentional Enhancement of Neural Responses in Primary Visual Cortex. Cereb Cortex 2019; 29:77-90. [PMID: 29186348 PMCID: PMC6294403 DOI: 10.1093/cercor/bhx305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Attending to a visual stimulus increases its detectability, even if gaze is directed elsewhere. This covert attentional selection is known to enhance spiking across many brain areas, including the primary visual cortex (V1). Here we investigate the temporal dynamics of attention-related spiking changes in V1 of macaques performing a task that separates attentional selection from the onset of visual stimulation. We found that preceding attentional enhancement there was a sharp, transient decline in spiking following presentation of an attention-guiding cue. This disruption of V1 spiking was not observed in a task-naïve subject that passively observed the same stimulus sequence, suggesting that sensory activation is insufficient to cause suppression. Following this suppression, attended stimuli evoked more spiking than unattended stimuli, matching previous reports of attention-related activity in V1. Laminar analyses revealed a distinct pattern of activation in feedback-associated layers during both the cue-induced suppression and subsequent attentional enhancement. These findings suggest that top-down modulation of V1 spiking can be bidirectional and result in either suppression or enhancement of spiking responses.
Collapse
Affiliation(s)
- Michele A Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Wilson Hall, 111 21st Ave S, Nashville, TN, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Wilson Hall, 111 21st Ave S, Nashville, TN, USA
| | - Geoffrey K Adams
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
| | - Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Wilson Hall, 111 21st Ave S, Nashville, TN, USA
| | - Brandon S Moore
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Wilson Hall, 111 21st Ave S, Nashville, TN, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49, Convent Drive, Bethesda, MD, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Wilson Hall, 111 21st Ave S, Nashville, TN, USA
| |
Collapse
|
15
|
Arcizet F, Krauzlis RJ. Covert spatial selection in primate basal ganglia. PLoS Biol 2018; 16:e2005930. [PMID: 30365496 PMCID: PMC6221351 DOI: 10.1371/journal.pbio.2005930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/07/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The basal ganglia are important for action selection. They are also implicated in perceptual and cognitive functions that seem far removed from motor control. Here, we tested whether the role of the basal ganglia in selection extends to nonmotor aspects of behavior by recording neuronal activity in the caudate nucleus while animals performed a covert spatial attention task. We found that caudate neurons strongly select the spatial location of the relevant stimulus throughout the task even in the absence of any overt action. This spatially selective activity was dependent on task and visual conditions and could be dissociated from goal-directed actions. Caudate activity was also sufficient to correctly identify every epoch in the covert attention task. These results provide a novel perspective on mechanisms of attention by demonstrating that the basal ganglia are involved in spatial selection and tracking of behavioral states even in the absence of overt orienting movements.
Collapse
Affiliation(s)
- Fabrice Arcizet
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Yao T, Treue S, Krishna BS. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT. Nat Commun 2018; 9:958. [PMID: 29511189 PMCID: PMC5840291 DOI: 10.1038/s41467-018-03398-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades. Saccades result in remapping the neural representation of a target object as well as its attentional modulation. Here the authors show that the trans-saccadic attentional shift is precisely synchronized with the saccade resulting in optimal maintenance of the locus of spatial attention.
Collapse
Affiliation(s)
- Tao Yao
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077, Goettingen, Germany.,Laboratory for Neuro-and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, 37077, Goettingen, Germany.,Leibniz-ScienceCampus Primate Cognition, 37077, Goettingen, Germany.,Faculty of Biology and Psychology, University of Goettingen, 37073, Goettingen, Germany
| | - B Suresh Krishna
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077, Goettingen, Germany. .,Leibniz-ScienceCampus Primate Cognition, 37077, Goettingen, Germany.
| |
Collapse
|
17
|
Levichkina E, Saalmann YB, Vidyasagar TR. Coding of spatial attention priorities and object features in the macaque lateral intraparietal cortex. Physiol Rep 2017; 5:5/5/e13136. [PMID: 28270589 PMCID: PMC5350164 DOI: 10.14814/phy2.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022] Open
Abstract
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities.
Collapse
Affiliation(s)
- Ekaterina Levichkina
- Department of Optometry & Vision Sciences, University of Melbourne, Melbourne, Australia.,Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Yuri B Saalmann
- Department of Optometry & Vision Sciences, University of Melbourne, Melbourne, Australia.,Department of Psychology, University of Wisconsin - Madison, Madison, Wisconsin
| | - Trichur R Vidyasagar
- Department of Optometry & Vision Sciences, University of Melbourne, Melbourne, Australia .,Melbourne Neuroscience Institute, University of Melbourne, Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Ong WS, Mirpour K, Bisley JW. Object comparison in the lateral intraparietal area. J Neurophysiol 2017; 118:2458-2469. [PMID: 28794195 DOI: 10.1152/jn.00400.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
Abstract
We can search for and locate specific objects in our environment by looking for objects with similar features. Object recognition involves stimulus similarity responses in ventral visual areas and task-related responses in prefrontal cortex. We tested whether neurons in the lateral intraparietal area (LIP) of posterior parietal cortex could form an intermediary representation, collating information from object-specific similarity map representations to allow general decisions about whether a stimulus matches the object being looked for. We hypothesized that responses to stimuli would correlate with how similar they are to a sample stimulus. When animals compared two peripheral stimuli to a sample at their fovea, the response to the matching stimulus was similar, independent of the sample identity, but the response to the nonmatch depended on how similar it was to the sample: the more similar, the greater the response to the nonmatch stimulus. These results could not be explained by task difficulty or confidence. We propose that LIP uses its known mechanistic properties to integrate incoming visual information, including that from the ventral stream about object identity, to create a dynamic representation that is concise, low dimensional, and task relevant and that signifies the choice priorities in mental matching behavior.NEW & NOTEWORTHY Studies in object recognition have focused on the ventral stream, in which neurons respond as a function of how similar a stimulus is to their preferred stimulus, and on prefrontal cortex, where neurons indicate which stimulus is being looked for. We found that parietal area LIP uses its known mechanistic properties to form an intermediary representation in this process. This creates a perceptual similarity map that can be used to guide decisions in prefrontal areas.
Collapse
Affiliation(s)
- Wei Song Ong
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California; .,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California; and.,Department of Psychology and Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
19
|
Two subdivisions of macaque LIP process visual-oculomotor information differently. Proc Natl Acad Sci U S A 2016; 113:E6263-E6270. [PMID: 27681616 DOI: 10.1073/pnas.1605879113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the cerebral cortex is thought to be composed of functionally distinct areas, the actual parcellation of area and assignment of function are still highly controversial. An example is the much-studied lateral intraparietal cortex (LIP). Despite the general agreement that LIP plays an important role in visual-oculomotor transformation, it remains unclear whether the area is primary sensory- or motor-related (the attention-intention debate). Although LIP has been considered as a functionally unitary area, its dorsal (LIPd) and ventral (LIPv) parts differ in local morphology and long-distance connectivity. In particular, LIPv has much stronger connections with two oculomotor centers, the frontal eye field and the deep layers of the superior colliculus, than does LIPd. Such anatomical distinctions imply that compared with LIPd, LIPv might be more involved in oculomotor processing. We tested this hypothesis physiologically with a memory saccade task and a gap saccade task. We found that LIP neurons with persistent memory activities in memory saccade are primarily provoked either by visual stimulation (vision-related) or by both visual and saccadic events (vision-saccade-related) in gap saccade. The distribution changes from predominantly vision-related to predominantly vision-saccade-related as the recording depth increases along the dorsal-ventral dimension. Consistently, the simultaneously recorded local field potential also changes from visual evoked to saccade evoked. Finally, local injection of muscimol (GABA agonist) in LIPv, but not in LIPd, dramatically decreases the proportion of express saccades. With these results, we conclude that LIPd and LIPv are more involved in visual and visual-saccadic processing, respectively.
Collapse
|
20
|
Freedman DJ, Assad JA. Neuronal Mechanisms of Visual Categorization: An Abstract View on Decision Making. Annu Rev Neurosci 2016; 39:129-47. [DOI: 10.1146/annurev-neuro-071714-033919] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Freedman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637;
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - John A. Assad
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115;
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
21
|
Steering Transforms the Cortical Representation of Self-Movement from Direction to Destination. J Neurosci 2016; 35:16055-63. [PMID: 26658859 DOI: 10.1523/jneurosci.2368-15.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Steering demands rapid responses to heading deviations and uses optic flow to redirect self-movement toward the intended destination. We trained monkeys in a naturalistic steering paradigm and recorded dorsal medial superior temporal area (MSTd) cortical neuronal responses to the visual motion and spatial location cues in optic flow. We found that neuronal responses to the initial heading direction are dominated by the optic flow's global radial pattern cue. Responses to subsequently imposed heading deviations are dominated by the local direction of motion cue. Finally, as the monkey steers its heading back to the goal location, responses are dominated by the spatial location cue, the screen location of the flow field's center of motion. We conclude that MSTd responses are not rigidly linked to specific stimuli, but rather are transformed by the task relevance of cues that guide performance in learned, naturalistic behaviors. SIGNIFICANCE STATEMENT Unplanned heading changes trigger lifesaving steering back to a goal. Conventionally, such behaviors are thought of as cortical sensory-motor reflex arcs. We find that a more reciprocal process underlies such cycles of perception and action, rapidly transforming visual processing to suit each stage of the task. When monkeys monitor their simulated self-movement, dorsal medial superior temporal area (MSTd) neurons represent their current heading direction. When monkeys steer to recover from an unplanned change in heading direction, MSTd shifts toward representing the goal location. We hypothesize that this transformation reflects the reweighting of bottom-up visual motion signals and top-down spatial location signals, reshaping MSTd's response properties through task-dependent interactions with adjacent cortical areas.
Collapse
|
22
|
Mayo JP, Morrison RM, Smith MA. A Probabilistic Approach to Receptive Field Mapping in the Frontal Eye Fields. Front Syst Neurosci 2016; 10:25. [PMID: 27047352 PMCID: PMC4796031 DOI: 10.3389/fnsys.2016.00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Studies of the neuronal mechanisms of perisaccadic vision often lack the resolution needed to determine important changes in receptive field (RF) structure. Such limited analytical power can lead to inaccurate descriptions of visuomotor processing. To address this issue, we developed a precise, probabilistic technique that uses a generalized linear model (GLM) for mapping the visual RFs of frontal eye field (FEF) neurons during stable fixation (Mayo et al., 2015). We previously found that full-field RF maps could be obtained using 1–8 dot stimuli presented at frame rates of 10–150 ms. FEF responses were generally robust to changes in the number of stimuli presented or the rate of presentation, which allowed us to visualize RFs over a range of spatial and temporal resolutions. Here, we compare the quality of RFs obtained over different stimulus and GLM parameters to facilitate future work on the detailed mapping of FEF RFs. We first evaluate the interactions between the number of stimuli presented per trial, the total number of trials, and the quality of RF mapping. Next, we vary the spatial resolution of our approach to illustrate the tradeoff between visualizing RF sub-structure and sampling at high resolutions. We then evaluate local smoothing as a possible correction for situations where under-sampling occurs. Finally, we provide a preliminary demonstration of the usefulness of a probabilistic approach for visualizing full-field perisaccadic RF shifts. Our results present a powerful, and perhaps necessary, framework for studying perisaccadic vision that is applicable to FEF and possibly other visuomotor regions of the brain.
Collapse
Affiliation(s)
- J Patrick Mayo
- Department of Neurobiology, Duke University Durham, NC, USA
| | - Robert M Morrison
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Medical Scientist Training Program, University of PittsburghPittsburgh, PA, USA
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Medical Scientist Training Program, University of PittsburghPittsburgh, PA, USA; Department of Ophthalmology and Department of Bioengineering, University of PittsburghPittsburgh, PA, USA; Fox Center for Vision Restoration, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
23
|
Abstract
Advances on several fronts have refined our understanding of the neuronal mechanisms of attention. This review focuses on recent progress in understanding visual attention through single-neuron recordings made in behaving subjects. Simultaneous recordings from populations of individual cells have shown that attention is associated with changes in the correlated firing of neurons that can enhance the quality of sensory representations. Other work has shown that sensory normalization mechanisms are important for explaining many aspects of how visual representations change with attention, and these mechanisms must be taken into account when evaluating attention-related neuronal modulations. Studies comparing different brain structures suggest that attention is composed of several cognitive processes, which might be controlled by different brain regions. Collectively, these and other recent findings provide a clearer picture of how representations in the visual system change when attention shifts from one target to another.
Collapse
Affiliation(s)
- John H R Maunsell
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
24
|
Dotson NM, Goodell B, Salazar RF, Hoffman SJ, Gray CM. Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate. Front Syst Neurosci 2015; 9:149. [PMID: 26578906 PMCID: PMC4630292 DOI: 10.3389/fnsys.2015.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field.
Collapse
Affiliation(s)
- Nicholas M. Dotson
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Baldwin Goodell
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Rodrigo F. Salazar
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
- Faculty of Medicine, Department of Basic Neurosciences, University of GenevaGeneva, Switzerland
| | - Steven J. Hoffman
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Charles M. Gray
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
25
|
Jazayeri M, Shadlen MN. A Neural Mechanism for Sensing and Reproducing a Time Interval. Curr Biol 2015; 25:2599-609. [PMID: 26455307 DOI: 10.1016/j.cub.2015.08.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/15/2015] [Accepted: 08/17/2015] [Indexed: 11/28/2022]
Abstract
Timing plays a crucial role in sensorimotor function. However, the neural mechanisms that enable the brain to flexibly measure and reproduce time intervals are not known. We recorded neural activity in parietal cortex of monkeys in a time reproduction task. Monkeys were trained to measure and immediately afterward reproduce different sample intervals. While measuring an interval, neural responses had a nonlinear profile that increased with the duration of the sample interval. Activity was reset during the transition from measurement to production and was followed by a ramping activity whose slope encoded the previously measured sample interval. We found that firing rates at the end of the measurement epoch were correlated with both the slope of the ramp and the monkey's corresponding production interval on a trial-by-trial basis. Analysis of response dynamics further linked the rate of change of firing rates in the measurement epoch to the slope of the ramp in the production epoch. These observations suggest that, during time reproduction, an interval is measured prospectively in relation to the desired motor plan to reproduce that interval.
Collapse
Affiliation(s)
- Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Michael N Shadlen
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, and Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Arcizet F, Mirpour K, Foster DJ, Charpentier CJ, Bisley JW. LIP activity in the interstimulus interval of a change detection task biases the behavioral response. J Neurophysiol 2015; 114:2637-48. [PMID: 26334012 DOI: 10.1152/jn.00604.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
When looking around at the world, we can only attend to a limited number of locations. The lateral intraparietal area (LIP) is thought to play a role in guiding both covert attention and eye movements. In this study, we tested the involvement of LIP in both mechanisms with a change detection task. In the task, animals had to indicate whether an element changed during a blank in the trial by making a saccade to it. If no element changed, they had to maintain fixation. We examine how the animal's behavior is biased based on LIP activity prior to the presentation of the stimulus the animal must respond to. When the activity was high, the animal was more likely to make an eye movement toward the stimulus, even if there was no change; when the activity was low, the animal either had a slower reaction time or maintained fixation, even if a change occurred. We conclude that LIP activity is involved in both covert and overt attention, but when decisions about eye movements are to be made, this role takes precedence over guiding covert attention.
Collapse
Affiliation(s)
- Fabrice Arcizet
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel J Foster
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Caroline J Charpentier
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Ecole Normale Superieure (ENS), Lyon, France
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California; and Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
27
|
Luo TZ, Maunsell JHR. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron 2015; 86:1182-8. [PMID: 26050038 DOI: 10.1016/j.neuron.2015.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/24/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
Abstract
Neuronal signals related to visual attention are found in widespread brain regions, and these signals are generally assumed to participate in a common mechanism of attention. However, the behavioral effects of attention in detection can be separated into two distinct components: spatially selective shifts in either the criterion or sensitivity of the subject. Here we show that a paradigm used by many single-neuron studies of attention conflates behavioral changes in the subject's criterion and sensitivity. Then, using a task designed to dissociate these two components, we found that multiple aspects of attention-related neuronal modulations in area V4 of monkey visual cortex corresponded to behavioral shifts in sensitivity, but not criterion. This result suggests that separate components of attention are associated with signals in different brain regions and that attention is not a unitary process in the brain, but instead consists of distinct neurobiological mechanisms.
Collapse
Affiliation(s)
- Thomas Zhihao Luo
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - John H R Maunsell
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Mirpour K, Bisley JW. Remapping, Spatial Stability, and Temporal Continuity: From the Pre-Saccadic to Postsaccadic Representation of Visual Space in LIP. Cereb Cortex 2015; 26:3183-95. [PMID: 26142462 DOI: 10.1093/cercor/bhv153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As our eyes move, we have a strong percept that the world is stable in space and time; however, the signals in cortex coming from the retina change with each eye movement. It is not known how this changing input produces the visual percept we experience, although the predictive remapping of receptive fields has been described as a likely candidate. To explain how remapping accounts for perceptual stability, we examined responses of neurons in the lateral intraparietal area while animals performed a visual foraging task. When a stimulus was brought into the response field of a neuron that exhibited remapping, the onset of the postsaccadic representation occurred shortly after the saccade ends. Whenever a stimulus was taken out of the response field, the presaccadic representation abruptly ended shortly after the eyes stopped moving. In the 38% (20/52) of neurons that exhibited remapping, there was no more than 30 ms between the end of the presaccadic representation and the start of the postsaccadic representation and, in some neurons, and the population as a whole, it was continuous. We conclude by describing how this seamless shift from a presaccadic to postsaccadic representation could contribute to spatial stability and temporal continuity.
Collapse
Affiliation(s)
| | - James W Bisley
- Department of Neurobiology Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA Center for Interdisciplinary Research (ZiF), Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
29
|
Nishida S, Tanaka T, Ogawa T. Transition of target-location signaling in activity of macaque lateral intraparietal neurons during delayed-response visual search. J Neurophysiol 2014; 112:1516-27. [PMID: 24966299 DOI: 10.1152/jn.00262.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral intraparietal area (LIP) are involved in signaling the location of behaviorally relevant objects during visual discrimination and working memory maintenance. Although previous studies have examined these cognitive processes separately, they often appear as inseparable sequential processes in real-life situations. Little is known about how the neural representation of the target location is altered when both cognitive processes are continuously required for executing a task. We investigated this issue by recording single-unit activity from LIP of monkeys performing a delayed-response visual search task in which they were required to discriminate the target from distractors in the stimulus period, remember the location at which the extinguished target had been presented in the delay period, and make a saccade to that location in the response period. Target-location signaling was assessed using response modulations contingent on whether the target location was inside or opposite the receptive field. Although the population-averaged response modulation was consistent and changed only slightly during a trial, the across-neuron pattern of response modulations showed a marked and abrupt change around 170 ms after stimulus offset due to concurrent changes in the response modulations of a subset of LIP neurons, which manifested heterogeneous patterns of activity changes during the task. Our findings suggest that target-location signaling by the across-neuron pattern of LIP activity discretely changes after the stimulus disappearance under conditions that continuously require visual discrimination and working memory to perform a single behavioral task.
Collapse
Affiliation(s)
- Satoshi Nishida
- Kokoro Research Center, Kyoto University, Kyoto, Japan; and Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Tanaka
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Ogawa
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Simultaneous selection by object-based attention in visual and frontal cortex. Proc Natl Acad Sci U S A 2014; 111:6467-72. [PMID: 24711379 DOI: 10.1073/pnas.1316181111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF.
Collapse
|
31
|
Aghdaee SM, Battelli L, Assad JA. Relative timing: from behaviour to neurons. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120472. [PMID: 24446505 DOI: 10.1098/rstb.2012.0472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Processing of temporal information is critical to behaviour. Here, we review the phenomenology and mechanism of relative timing, ordinal comparisons between the timing of occurrence of events. Relative timing can be an implicit component of particular brain computations or can be an explicit, conscious judgement. Psychophysical measurements of explicit relative timing have revealed clues about the interaction of sensory signals in the brain as well as in the influence of internal states, such as attention, on those interactions. Evidence from human neurophysiological and functional imaging studies, neuropsychological examination in brain-lesioned patients, and temporary disruptive interventions such as transcranial magnetic stimulation (TMS), point to a role of the parietal cortex in relative timing. Relative timing has traditionally been modelled as a 'race' between competing neural signals. We propose an updated race process based on the integration of sensory evidence towards a decision threshold rather than simple signal propagation. The model suggests a general approach for identifying brain regions involved in relative timing, based on looking for trial-by-trial correlations between neural activity and temporal order judgements (TOJs). Finally, we show how the paradigm can be used to reveal signals related to TOJs in parietal cortex of monkeys trained in a TOJ task.
Collapse
Affiliation(s)
- S Mehdi Aghdaee
- Department of Neurobiology, Harvard Medical School, , Boston, MA 02115, USA
| | | | | |
Collapse
|
32
|
Perceptual modulation of motor--but not visual--responses in the frontal eye field during an urgent-decision task. J Neurosci 2013; 33:16394-408. [PMID: 24107969 DOI: 10.1523/jneurosci.1899-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity in the frontal eye field (FEF) ranges from purely motor (related to saccade production) to purely visual (related to stimulus presence). According to numerous studies, visual responses correlate strongly with early perceptual analysis of the visual scene, including the deployment of spatial attention, whereas motor responses do not. Thus, functionally, the consensus is that visually responsive FEF neurons select a target among visible objects, whereas motor-related neurons plan specific eye movements based on such earlier target selection. However, these conclusions are based on behavioral tasks that themselves promote a serial arrangement of perceptual analysis followed by motor planning. So, is the presumed functional hierarchy in FEF an intrinsic property of its circuitry or does it reflect just one possible mode of operation? We investigate this in monkeys performing a rapid-choice task in which, crucially, motor planning always starts ahead of task-critical perceptual analysis, and the two relevant spatial locations are equally informative and equally likely to be target or distracter. We find that the choice is instantiated in FEF as a competition between oculomotor plans, in agreement with model predictions. Notably, although perception strongly influences the motor neurons, it has little if any measurable impact on the visual cells; more generally, the more dominant the visual response, the weaker the perceptual modulation. The results indicate that, contrary to expectations, during rapid saccadic choices perceptual information may directly modulate ongoing saccadic plans, and this process is not contingent on prior selection of the saccadic goal by visually driven FEF responses.
Collapse
|
33
|
Nishida S, Tanaka T, Ogawa T. Separate evaluation of target facilitation and distractor suppression in the activity of macaque lateral intraparietal neurons during visual search. J Neurophysiol 2013; 110:2773-91. [PMID: 24068752 DOI: 10.1152/jn.00360.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During visual search, neurons in the lateral intraparietal area (LIP) discriminate the target from distractors by exhibiting stronger activation when the target appears within the receptive field than when it appears outside the receptive field. It is generally thought that such target-discriminative activity is produced by the combination of target-related facilitation and distractor-related suppression. However, little is known about how the target-discriminative activity is constituted by these two types of neural modulation. To address this issue, we recorded activity from LIP of monkeys performing a visual search task that consisted of target-present and target-absent trials. Monkeys had to make a saccade to a target in the target-present trials, whereas they had to maintain fixation in the target-absent trials, in which only distractors were presented. By introducing the activity from the latter trials as neutral activity, we were able to separate the target-discriminative activity into target-related elevation and distractor-related reduction components. We found that the target-discriminative activity of most LIP neurons consisted of the combination of target-related elevation and distractor-related reduction or only target-related elevation. In contrast, target-discriminative activity composed of only distractor-related reduction was observed for very few neurons. We also found that, on average, target-related elevation was stronger and occurred earlier compared with distractor-related reduction. Finally, we consider possible underlying mechanisms, including lateral inhibitory interactions, responsible for target-discriminative activity in visual search. The present findings provide insight into how neuronal modulations shape target-discriminative activity during visual search.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
34
|
Kashiwase Y, Matsumiya K, Kuriki I, Shioiri S. Temporal dynamics of visual attention measured with event-related potentials. PLoS One 2013; 8:e70922. [PMID: 23976966 PMCID: PMC3747140 DOI: 10.1371/journal.pone.0070922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/26/2013] [Indexed: 11/29/2022] Open
Abstract
How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP) and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs) with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance.
Collapse
Affiliation(s)
- Yoshiyuki Kashiwase
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Kazumichi Matsumiya
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Ichiro Kuriki
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Satoshi Shioiri
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making. PLoS Comput Biol 2013; 9:e1003099. [PMID: 23825935 PMCID: PMC3694816 DOI: 10.1371/journal.pcbi.1003099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. Perceptual decision-making involves not only simple transformation of sensory information to a motor decision, but can also be modulated by high-level cognition. For example, the latter may include strategic allocation of limited attentional resources over time in a decision task to improve performance. At the neurophysiological level, there is evidence supporting attention-induced neuronal gain modulation of both excitatory and inhibitory cortical neurons. In the context of perceptual discrimination tasks performed by animals, we make use of a biologically inspired computational model of decision-making to understand the computational capabilities of such co-modulation of neuronal gains. We find that dynamic co-modulation of both excitatory and inhibitory neurons is important for flexible, and cognitively demanding decision-making while also enhancing robustness in the decision circuit's functions. Our model captures the neuronal activity and behavioural data in the animal experiments remarkably well. Decision performance in a reaction time task can be optimized, maximizing the rate of receiving reward by using fast gain recruitment. Our experimentally fitted timescale is near the optimal one, suggesting that the animals performed almost optimally. By providing both computational simulations and theoretical analyses, our computational model sheds light into the multiple functions of rapid co-modulation of neuronal gains during decision-making.
Collapse
|
36
|
Chang SWC, Brent LJN, Adams GK, Klein JT, Pearson JM, Watson KK, Platt ML. Neuroethology of primate social behavior. Proc Natl Acad Sci U S A 2013; 110 Suppl 2:10387-94. [PMID: 23754410 PMCID: PMC3690617 DOI: 10.1073/pnas.1301213110] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A neuroethological approach to human and nonhuman primate behavior and cognition predicts biological specializations for social life. Evidence reviewed here indicates that ancestral mechanisms are often duplicated, repurposed, and differentially regulated to support social behavior. Focusing on recent research from nonhuman primates, we describe how the primate brain might implement social functions by coopting and extending preexisting mechanisms that previously supported nonsocial functions. This approach reveals that highly specialized mechanisms have evolved to decipher the immediate social context, and parallel circuits have evolved to translate social perceptual signals and nonsocial perceptual signals into partially integrated social and nonsocial motivational signals, which together inform general-purpose mechanisms that command behavior. Differences in social behavior between species, as well as between individuals within a species, result in part from neuromodulatory regulation of these neural circuits, which itself appears to be under partial genetic control. Ultimately, intraspecific variation in social behavior has differential fitness consequences, providing fundamental building blocks of natural selection. Our review suggests that the neuroethological approach to primate behavior may provide unique insights into human psychopathology.
Collapse
Affiliation(s)
- Steve W. C. Chang
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Lauren J. N. Brent
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Geoffrey K. Adams
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Jeffrey T. Klein
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - John M. Pearson
- Departments of Neurobiology and
- Neurosurgery, Duke University School of Medicine, Durham, NC 27710
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Karli K. Watson
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
| | - Michael L. Platt
- Departments of Neurobiology and
- Duke Institute for Brain Sciences, Center for Cognitive Neuroscience and
- Departments of Psychology and Neurosciences and
- Evolutionary Anthropology, Duke University, Durham, NC 27708; and
| |
Collapse
|
37
|
Rishel CA, Huang G, Freedman DJ. Independent category and spatial encoding in parietal cortex. Neuron 2013; 77:969-79. [PMID: 23473325 DOI: 10.1016/j.neuron.2013.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/17/2022]
Abstract
The posterior parietal cortex plays a central role in spatial functions, such as spatial attention and saccadic eye movements. However, recent work has increasingly focused on the role of parietal cortex in encoding nonspatial cognitive factors such as visual categories, learned stimulus associations, and task rules. The relationship between spatial encoding and nonspatial cognitive signals in parietal cortex, and whether cognitive signals are robustly encoded in the presence of strong spatial neuronal responses, is unknown. We directly compared nonspatial cognitive and spatial encoding in the lateral intraparietal (LIP) area by training monkeys to perform a visual categorization task during which they made saccades toward or away from LIP response fields (RFs). Here we show that strong saccade-related responses minimally influence robustly encoded category signals in LIP. This suggests that cognitive and spatial signals are encoded independently in LIP and underscores the role of parietal cortex in nonspatial cognitive functions.
Collapse
Affiliation(s)
- Chris A Rishel
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Casile A. Mirror neurons (and beyond) in the macaque brain: an overview of 20 years of research. Neurosci Lett 2012; 540:3-14. [PMID: 23153827 DOI: 10.1016/j.neulet.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mirror neurons are a class of neurons in the ventral pre-motor cortex (area F5) and inferior parietal lobule (area PFG) that respond during the execution as well as the observation of goal-directed motor acts. These intriguing response properties stirred an intense debate in the scientific community with respect to the possible cognitive role of mirror neurons. The aim of the present review is to contribute to this debate by providing, in a single paper, an extended summary of 20 years of neurophysiological research on mirror neurons in the macaque. To this end, I provide a comprehensive description of the methodology and the main results of each paper about mirror neurons published since their first report in 1992. Particular care was devoted in reporting the different response characteristics and the percentages of neurons exhibiting them in relation to the total number of studied neurons. Furthermore, I also discuss recent results indicating that mirror neurons might not be confined to areas F5 and PFG and that "mirroring" might not be limited to action observation. Finally, I offer a unifying framework for many of the results discussed here by speculating that a potential functional role of mirror neurons might be, during action observation, to generalize from the particular grasping movement being observed to the "concept" of grasping.
Collapse
Affiliation(s)
- Antonino Casile
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto 38068, Italy.
| |
Collapse
|
39
|
Huk AC, Meister MLR. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making. Front Integr Neurosci 2012; 6:86. [PMID: 23087623 PMCID: PMC3467999 DOI: 10.3389/fnint.2012.00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/11/2012] [Indexed: 11/13/2022] Open
Abstract
A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP). In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1) empirical questions not yet answered by existing data; (2) implementation issues related to how neural circuits could actually implement the mechanisms suggested by both extracellular neurophysiology and psychophysics; and (3) ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general "encoding-decoding framework" that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.
Collapse
Affiliation(s)
- Alexander C. Huk
- Center for Perceptual Systems, Institute for Neuroscience, Neurobiology, and Psychology, The University of Texas at AustinAustin, TX, USA
| | | |
Collapse
|
40
|
Giersch A, van Assche M, Capa RL, Marrer C, Gounot D. Patients with schizophrenia do not preserve automatic grouping when mentally re-grouping figures: shedding light on an ignored difficulty. Front Psychol 2012; 3:274. [PMID: 22912621 PMCID: PMC3421431 DOI: 10.3389/fpsyg.2012.00274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/17/2012] [Indexed: 11/16/2022] Open
Abstract
Looking at a pair of objects is easy when automatic grouping mechanisms bind these objects together, but visual exploration can also be more flexible. It is possible to mentally “re-group” two objects that are not only separate but belong to different pairs of objects. “Re-grouping” is in conflict with automatic grouping, since it entails a separation of each item from the set it belongs to. This ability appears to be impaired in patients with schizophrenia. Here we check if this impairment is selective, which would suggest a dissociation between grouping and “re-grouping,” or if it impacts on usual, automatic grouping, which would call for a better understanding of the interactions between automatic grouping and “re-grouping.” Sixteen outpatients with schizophrenia and healthy controls had to identify two identical and contiguous target figures within a display of circles and squares alternating around a fixation point. Eye-tracking was used to check central fixation. The target pair could be located in the same or separate hemifields. Identical figures were grouped by a connector (grouped automatically) or not (to be re-grouped). Attention modulation of automatic grouping was tested by manipulating the proportion of connected and unconnected targets, thus prompting subjects to focalize on either connected or unconnected pairs. Both groups were sensitive to automatic grouping in most conditions, but patients were unusually slowed down for connected targets while focalizing on unconnected pairs. In addition, this unusual effect occurred only when targets were presented within the same hemifield. Patients and controls differed on this asymmetry between within- and across-hemifield presentation, suggesting that patients with schizophrenia do not re-group figures in the same way as controls do. We discuss possible implications on how “re-grouping” ties in with ongoing, automatic perception in healthy volunteers.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U666, Department of Psychiatry I, Centre Hospitalier Régional de Strasbourg Strasbourg, France
| | | | | | | | | |
Collapse
|
41
|
Masse NY, Herrington TM, Cook EP. Spatial attention enhances the selective integration of activity from area MT. J Neurophysiol 2012; 108:1594-606. [PMID: 22696540 DOI: 10.1152/jn.00949.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.
Collapse
Affiliation(s)
- Nicolas Y Masse
- 1Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
42
|
Shomstein S, Kravitz DJ, Behrmann M. Attentional control: temporal relationships within the fronto-parietal network. Neuropsychologia 2012; 50:1202-10. [PMID: 22386880 DOI: 10.1016/j.neuropsychologia.2012.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Selective attention to particular aspects of incoming sensory information is enabled by a network of neural areas that includes frontal cortex, posterior parietal cortex, and, in the visual domain, visual sensory regions. Although progress has been made in understanding the relative contribution of these different regions to the process of visual attentional selection, primarily through studies using neuroimaging, rather little is known about the temporal relationships between these disparate regions. To examine this, participants viewed two rapid serial visual presentation (RSVP) streams of letters positioned to the left and right of fixation point. Before each run, attention was directed to either the left or the right stream. Occasionally, a digit appeared within the attended stream indicating whether attention was to be maintained within the same stream ('hold' condition) or to be shifted to the previously ignored stream ('shift' condition). By titrating the temporal parameters of the time taken to shift attention for each participant using a fine-grained psychophysics paradigm, we measured event-related potentials time-locked to the initiation of spatial shifts of attention. The results revealed that shifts of attention were evident earlier in the response recorded over frontal than over parietal electrodes and, importantly, that the early activity over frontal electrodes was associated with a successful shift of attention. We conclude that frontal areas are engaged early for the purpose of executing an attentional shift, likely triggering a cascade through the fronto-parietal network ultimately, resulting in the attentional modulation of sensory events in posterior cortices.
Collapse
Affiliation(s)
- Sarah Shomstein
- Department of Psychology, George Washington University, Washington, DC 20015, United States.
| | | | | |
Collapse
|
43
|
Dessing JC, Rey FP, Beek PJ. Gaze fixation improves the stability of expert juggling. Exp Brain Res 2011; 216:635-44. [PMID: 22143871 PMCID: PMC3268979 DOI: 10.1007/s00221-011-2967-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/20/2011] [Indexed: 11/25/2022]
Abstract
Novice and expert jugglers employ different visuomotor strategies: whereas novices look at the balls around their zeniths, experts tend to fixate their gaze at a central location within the pattern (so-called gaze-through). A gaze-through strategy may reflect visuomotor parsimony, i.e., the use of simpler visuomotor (oculomotor and/or attentional) strategies as afforded by superior tossing accuracy and error corrections. In addition, the more stable gaze during a gaze-through strategy may result in more accurate movement planning by providing a stable base for gaze-centered neural coding of ball motion and movement plans or for shifts in attention. To determine whether a stable gaze might indeed have such beneficial effects on juggling, we examined juggling variability during 3-ball cascade juggling with and without constrained gaze fixation (at various depths) in expert performers (n = 5). Novice jugglers were included (n = 5) for comparison, even though our predictions pertained specifically to expert juggling. We indeed observed that experts, but not novices, juggled significantly less variable when fixating, compared to unconstrained viewing. Thus, while visuomotor parsimony might still contribute to the emergence of a gaze-through strategy, this study highlights an additional role for improved movement planning. This role may be engendered by gaze-centered coding and/or attentional control mechanisms in the brain.
Collapse
Affiliation(s)
- Joost C Dessing
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Alkan Y, Biswal BB, Alvarez TL. Differentiation between vergence and saccadic functional activity within the human frontal eye fields and midbrain revealed through fMRI. PLoS One 2011; 6:e25866. [PMID: 22073141 PMCID: PMC3206796 DOI: 10.1371/journal.pone.0025866] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/12/2011] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems. METHODOLOGY The stimulus was presented in a block design where the 'off' stimulus was a sustained fixation and the 'on' stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates. RESULTS Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2). CONCLUSION Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain.
Collapse
Affiliation(s)
- Yelda Alkan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Bharat B. Biswal
- Department of Radiology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Tara L. Alvarez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| |
Collapse
|
45
|
Modulation of visual physiology by behavioral state in monkeys, mice, and flies. Curr Opin Neurobiol 2011; 21:559-64. [PMID: 21628097 DOI: 10.1016/j.conb.2011.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities.
Collapse
|
46
|
Galletti C, Breveglieri R, Lappe M, Bosco A, Ciavarro M, Fattori P. Covert shift of attention modulates the ongoing neural activity in a reaching area of the macaque dorsomedial visual stream. PLoS One 2010; 5:e15078. [PMID: 21124734 PMCID: PMC2993960 DOI: 10.1371/journal.pone.0015078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with—and perhaps directly derived from—motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements.
Collapse
Affiliation(s)
- Claudio Galletti
- Dipartimento di Fisiologia Umana e Generale, Universita' di Bologna, Bologna, Italy
| | - Rossella Breveglieri
- Dipartimento di Fisiologia Umana e Generale, Universita' di Bologna, Bologna, Italy
| | - Markus Lappe
- Department of Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-University, Münster, Germany
| | - Annalisa Bosco
- Dipartimento di Fisiologia Umana e Generale, Universita' di Bologna, Bologna, Italy
| | - Marco Ciavarro
- Dipartimento di Fisiologia Umana e Generale, Universita' di Bologna, Bologna, Italy
| | - Patrizia Fattori
- Dipartimento di Fisiologia Umana e Generale, Universita' di Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
47
|
Abstract
Visual attention is the mechanism the nervous system uses to highlight specific locations, objects or features within the visual field. This can be accomplished by making an eye movement to bring the object onto the fovea (overt attention) or by increased processing of visual information in neurons representing more peripheral regions of the visual field (covert attention). This review will examine two aspects of visual attention: the changes in neural responses within visual cortices due to the allocation of covert attention; and the neural activity in higher cortical areas involved in guiding the allocation of attention. The first section will highlight processes that occur during visual spatial attention and feature-based attention in cortical visual areas and several related models that have recently been proposed to explain this activity. The second section will focus on the parietofrontal network thought to be involved in targeting eye movements and allocating covert attention. It will describe evidence that the lateral intraparietal area, frontal eye field and superior colliculus are involved in the guidance of visual attention, and describe the priority map model, which is thought to operate in at least several of these areas.
Collapse
Affiliation(s)
- James W Bisley
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|