1
|
Macedo-Lima M, Hamlette LS, Caras ML. Orbitofrontal cortex modulates auditory cortical sensitivity and sound perception in Mongolian gerbils. Curr Biol 2024; 34:3354-3366.e6. [PMID: 38996534 PMCID: PMC11303099 DOI: 10.1016/j.cub.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Although decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remain uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervates the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.
Collapse
Affiliation(s)
| | | | - Melissa L Caras
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
3
|
Macedo-Lima M, Hamlette LS, Caras ML. Orbitofrontal Cortex Modulates Auditory Cortical Sensitivity and Sound Perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.570797. [PMID: 38187685 PMCID: PMC10769262 DOI: 10.1101/2023.12.18.570797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Though decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remains uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving animals under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervate the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing, and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds. Significance Statement Sensory perception depends on the context in which stimuli are presented. For example, perception is enhanced when stimuli are informative, such as when they are important to solve a task. Perceptual enhancements result from an increase in the sensitivity of sensory cortical neurons; however, we do not fully understand how such changes are initiated in the brain. Here, we tested the role of the orbitofrontal cortex (OFC) in controlling auditory cortical sensitivity and sound perception. We found that OFC neurons change their activity when animals perform a sound detection task. Inactivating OFC impairs sound detection and prevents task-dependent increases in auditory cortical sensitivity. Our findings suggest that the OFC controls contextual modulations of the auditory cortex and sound perception.
Collapse
|
4
|
Ying R, Hamlette L, Nikoobakht L, Balaji R, Miko N, Caras ML. Organization of orbitofrontal-auditory pathways in the Mongolian gerbil. J Comp Neurol 2023; 531:1459-1481. [PMID: 37477903 PMCID: PMC10529810 DOI: 10.1002/cne.25525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| | - Lashaka Hamlette
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Laudan Nikoobakht
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Rakshita Balaji
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Nicole Miko
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Melissa L. Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
5
|
Masri S, Fair R, Mowery TM, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by cortical expression of GABA B receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523440. [PMID: 36711464 PMCID: PMC9882079 DOI: 10.1101/2023.01.10.523440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even transient periods of developmental hearing loss during the developmental critical period have been linked to long-lasting deficits in auditory perception, including temporal and spectral processing, which correlate with speech perception and educational attainment. In gerbils, hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. We developed viral vectors to express both endogenous GABAA or GABAB receptor subunits in auditory cortex and tested their capacity to restore perception of temporal and spectral auditory cues following critical period hearing loss in the Mongolian gerbil. HL significantly impaired perception of both temporal and spectral auditory cues. While both vectors similarly increased IPSCs in auditory cortex, only overexpression of GABAB receptors improved perceptual thresholds after HL to be similar to those of animals without developmental hearing loss. These findings identify the GABAB receptor as an important regulator of sensory perception in cortex and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Regan Fair
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Todd M. Mowery
- Brain Health Institute & Department of Otolaryngology, Rutgers University
| | - Dan H. Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
- Department of Psychology, New York University
- Department of Biology, New York University
- Neuroscience Institute, New York University Langone Medical Center
| |
Collapse
|
6
|
Anbuhl KL, Yao JD, Hotz RA, Mowery TM, Sanes DH. Auditory processing remains sensitive to environmental experience during adolescence in a rodent model. Nat Commun 2022; 13:2872. [PMID: 35610222 PMCID: PMC9130260 DOI: 10.1038/s41467-022-30455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated neural plasticity during development contributes to dramatic improvements in perceptual, motor, and cognitive skills. However, malleable neural circuits are vulnerable to environmental influences that may disrupt behavioral maturation. While these risks are well-established prior to sexual maturity (i.e., critical periods), the degree of neural vulnerability during adolescence remains uncertain. Here, we induce transient hearing loss (HL) spanning adolescence in gerbils, and ask whether behavioral and neural maturation are disrupted. We find that adolescent HL causes a significant perceptual deficit that can be attributed to degraded auditory cortex processing, as assessed with wireless single neuron recordings and within-session population-level analyses. Finally, auditory cortex brain slices from adolescent HL animals reveal synaptic deficits that are distinct from those typically observed after critical period deprivation. Taken together, these results show that diminished adolescent sensory experience can cause long-lasting behavioral deficits that originate, in part, from a dysfunctional cortical circuit.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| | - Justin D Yao
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Robert A Hotz
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Todd M Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Neuroscience Institute at NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Long-term training reduces the responses to the sound-induced flash illusion. Atten Percept Psychophys 2021; 84:529-539. [PMID: 34518970 DOI: 10.3758/s13414-021-02363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/08/2022]
Abstract
The sound-induced flash illusion (SiFI) is a robust auditory-dominated multisensory integration phenomenon that is used as a reliable indicator to assess multisensory integration. Previous studies have indicated that the SiFI effect is correlated with perceptual sensitivity. However, to date, there is no consensus regarding how it corresponds to sensitivity with long-term training. The present study adopted the classic SiFI paradigm with feedback training to investigate the effect of a week of long-term training on the SiFI effect. Both the training group and control group completed a pretest and a posttest before and after the perceptual training; however, only the training group was required to complete 7-day behavioral training. The results showed that (1) long-term training could reduce the response of fission and fusion illusions by improving perceptual sensitivity and that (2) there was a "plateau effect" that emerged during the training stage, which tended to stabilize by the fifth day. These findings demonstrated that the SiFI effect could be modified with long-term training by ameliorating perceptual sensitivity, especially in terms of the fission illusion. Therefore, the present study supplements perceptual training in SiFI domains and provides evidence that the SiFI could be used as an assessment intervention to improve the efficiency of multisensory integration.
Collapse
|
8
|
Moore JM, Woolley SMN. Emergent tuning for learned vocalizations in auditory cortex. Nat Neurosci 2019; 22:1469-1476. [PMID: 31406364 PMCID: PMC6713594 DOI: 10.1038/s41593-019-0458-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Vocal learners use early social experience to develop auditory skills specialized for communication. However, it is unknown where in the auditory pathway neural responses become selective for vocalizations or how the underlying encoding mechanisms change with experience. We used a vocal tutoring manipulation in two species of songbird to reveal that tuning for conspecific song arises within the primary auditory cortical circuit. Neurons in the deep region of primary auditory cortex responded more to conspecific songs than to other species' songs and more to species-typical spectrotemporal modulations, but neurons in the intermediate (thalamorecipient) region did not. Moreover, birds that learned song from another species exhibited parallel shifts in selectivity and tuning toward the tutor species' songs in the deep but not the intermediate region. Our results locate a region in the auditory processing hierarchy where an experience-dependent coding mechanism aligns auditory responses with the output of a learned vocal motor behavior.
Collapse
Affiliation(s)
- Jordan M Moore
- Department of Psychology, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
- Center for Integrative Animal Behavior, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception. J Neurosci 2019; 39:8347-8361. [PMID: 31451577 DOI: 10.1523/jneurosci.0749-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.
Collapse
|
10
|
Neural Variability Limits Adolescent Skill Learning. J Neurosci 2019; 39:2889-2902. [PMID: 30755494 DOI: 10.1523/jneurosci.2878-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skill learning is fundamental to the acquisition of many complex behaviors that emerge during development. For example, years of practice give rise to perceptual improvements that contribute to mature speech and language skills. While fully honed learning skills might be thought to offer an advantage during the juvenile period, the ability to learn actually continues to develop through childhood and adolescence, suggesting that the neural mechanisms that support skill learning are slow to mature. To address this issue, we asked whether the rate and magnitude of perceptual learning varies as a function of age as male and female gerbils trained on an auditory task. Adolescents displayed a slower rate of perceptual learning compared with their young and mature counterparts. We recorded auditory cortical neuron activity from a subset of adolescent and adult gerbils as they underwent perceptual training. While training enhanced the sensitivity of most adult units, the sensitivity of many adolescent units remained unchanged, or even declined across training days. Therefore, the average rate of cortical improvement was significantly slower in adolescents compared with adults. Both smaller differences between sound-evoked response magnitudes and greater trial-to-trial response fluctuations contributed to the poorer sensitivity of individual adolescent neurons. Together, these findings suggest that elevated sensory neural variability limits adolescent skill learning.SIGNIFICANCE STATEMENT The ability to learn new skills emerges gradually as children age. This prolonged development, often lasting well into adolescence, suggests that children, teens, and adults may rely on distinct neural strategies to improve their sensory and motor capabilities. Here, we found that practice-based improvement on a sound detection task is slower in adolescent gerbils than in younger or older animals. Neural recordings made during training revealed that practice enhanced the sound sensitivity of adult cortical neurons, but had a weaker effect in adolescents. This latter finding was partially explained by the fact that adolescent neural responses were more variable than in adults. Our results suggest that one mechanistic basis of adult-like skill learning is a reduction in neural response variability.
Collapse
|
11
|
Huyck JJ, Rosen MJ. Development of perception and perceptual learning for multi-timescale filtered speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:667. [PMID: 30180675 DOI: 10.1121/1.5049369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The perception of temporally changing auditory signals has a gradual developmental trajectory. Speech is a time-varying signal, and slow changes in speech (filtered at 0-4 Hz) are preferentially processed by the right hemisphere, while the left extracts faster changes (filtered at 22-40 Hz). This work examined the ability of 8- to 19-year-olds to both perceive and learn to perceive filtered speech presented diotically for each filter type (low vs high) and dichotically for preferred or non-preferred laterality. Across conditions, performance improved with increasing age, indicating that the ability to perceive filtered speech continues to develop into adolescence. Across age, performance was best when both bands were presented dichotically, but with no benefit for presentation to the preferred hemisphere. Listeners thus integrated slow and fast transitions between the two ears, benefitting from more signal information, but not in a hemisphere-specific manner. After accounting for potential ceiling effects, learning was greatest when both bands were presented dichotically. These results do not support the idea that cochlear implants could be improved by providing differentially filtered information to each ear. Listeners who started with poorer performance learned more, a factor which could contribute to the positive cochlear implant outcomes typically seen in younger children.
Collapse
Affiliation(s)
- Julia Jones Huyck
- Speech Pathology and Audiology Program, Kent State University, 1325 Theatre Drive, Kent, Ohio 44242, USA
| | - Merri J Rosen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| |
Collapse
|
12
|
Gröger N, Mannewitz A, Bock J, Becker S, Guttmann K, Poeggel G, Braun K. Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: II. Cellular imaging of neurons expressing the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1). Brain Struct Funct 2017; 223:713-725. [PMID: 28918435 DOI: 10.1007/s00429-017-1517-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/09/2017] [Indexed: 12/24/2022]
Abstract
Positive and negative feedback learning is essential to optimize behavioral performance. We used the two-way active avoidance (TWA) task as an experimental paradigm for negative feedback learning with the aim to test the hypothesis that neuronal ensembles activate the activity-regulated cytoskeletal (Arc/Arg3.1) protein during different phases of avoidance learning and during retrieval. A variety of studies in humans and other animals revealed that the ability of aversive feedback learning emerges postnatally. Our previous findings demonstrated that rats, which as infants are not capable to learn an active avoidance strategy, show improved avoidance learning as adults. Based on these findings, we further tested the hypothesis that specific neuronal ensembles are "tagged" during infant TWA training and then reactivated during adult re-exposure to the same learning task. Using cellular imaging by immunocytochemical detection of Arc/Arg3.1, we observed that, compared to the untrained control group, (1) only in the dentate gyrus the density of Arc/Arg3.1-expressing neurons was elevated during the acquisition phase of TWA learning, and (2) this increase in Arc/Arg3.1-expressing neurons was not specific for the TWA learning task. With respect to the effects of infant TWA training we found that compared to the naïve non-pretrained group (a) the infant pretraining group displayed a higher density of Arc/Arg3.1-expressing neurons in the anterior cingulate cortex during acquisition on training day 1, and (b) the infant pretraining group displayed elevated density of Arc/Arg3.1-expressing neurons in the dentate gyrus during retrieval on test day 5. Correlation analysis for the acquisition phase revealed for the ACd that the animals which showed the highest number of avoidances and the fastest escape latencies displayed the highest density of Arc/Arg3.1-expressing neurons. Taken together, we are the first to use the synaptic plasticity protein Arc/Arg3.1 to label neuronal ensembles which are involved in different phases of active avoidance learning and whose activity patterns are changing in response to previous learning experience during infancy. Our results indicate (1) that, despite the inability to learn an active avoidance response in infancy, lasting memory traces are formed encoding the subtasks that are learned in infancy (e.g., the association of the CS and UCS, escape strategy), which are encoded in the infant brain by neuronal ensembles, which alter their synaptic connectivity via activation of specific synaptic plasticity proteins such as Arc/Arg3.1 and Egr1, and (2) that during adult training these memories can be retrieved by reactivating these neuronal ensembles and their synaptic circuits and thereby accelerate learning.
Collapse
Affiliation(s)
- Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - Anja Mannewitz
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - Jörg Bock
- FG Epigenetics and Structural Plasticity, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Susann Becker
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - Katja Guttmann
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - Gerd Poeggel
- Institute for Biology, Human Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Science (CBBS), Magdeburg, Germany.
| |
Collapse
|
13
|
Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss. J Neurosci 2017; 37:7759-7771. [PMID: 28706081 DOI: 10.1523/jneurosci.0916-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/24/2017] [Accepted: 07/08/2017] [Indexed: 12/30/2022] Open
Abstract
In childhood, partial hearing loss can produce prolonged deficits in speech perception and temporal processing. However, early therapeutic interventions targeting temporal processing may improve later speech-related outcomes. Gap detection is a measure of auditory temporal resolution that relies on the auditory cortex (ACx), and early auditory deprivation alters intrinsic and synaptic properties in the ACx. Thus, early deprivation should induce deficits in gap detection, which should be reflected in ACx gap sensitivity. We tested whether earplugging-induced, early transient auditory deprivation in male and female Mongolian gerbils caused correlated deficits in behavioral and cortical gap detection, and whether these could be rescued by a novel therapeutic approach: brief exposure to gaps in background noise. Two weeks after earplug removal, animals that had been earplugged from hearing onset throughout auditory critical periods displayed impaired behavioral gap detection thresholds (GDTs), but this deficit was fully reversed by three 1 h sessions of exposure to gaps in noise. In parallel, after earplugging, cortical GDTs increased because fewer cells were sensitive to short gaps, and gap exposure normalized this pattern. Furthermore, in deprived animals, both first-spike latency and first-spike latency jitter increased, while spontaneous and evoked firing rates decreased, suggesting that deprivation causes a wider range of perceptual problems than measured here. These cortical changes all returned to control levels after gap exposure. Thus, brief stimulus exposure, perhaps in a salient context such as the unfamiliar placement into a testing apparatus, rescued impaired gap detection and may have potential as a remediation tool for general auditory processing deficits.SIGNIFICANCE STATEMENT Hearing loss in early childhood leads to impairments in auditory perception and language processing that can last well beyond the restoration of hearing sensitivity. Perceptual deficits can be improved by training, or by acoustic enrichment in animal models, but both approaches involve extended time and effort. Here, we used a novel remediation technique, brief periods of auditory stimulus exposure, to fully remediate cortical and perceptual deficits in gap detection induced by early transient hearing loss. This technique also improved multiple cortical response properties. Rescue by this efficient exposure regime may have potential as a therapeutic tool to remediate general auditory processing deficits in children with perceptual challenges arising from early hearing loss.
Collapse
|
14
|
Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A 2017; 114:6364-6369. [PMID: 28559351 DOI: 10.1073/pnas.1707086114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive negative behavioral changes in normal aging are paralleled by a complex series of physical and functional declines expressed in the cerebral cortex. In studies conducted in the auditory domain, these degrading physical and functional cortical changes have been shown to be broadly reversed by intensive progressive training that improves the spectral and temporal resolution of acoustic inputs and suppresses behavioral distractors. Here we found older rats that were intensively trained on an attentionally demanding modulation-rate recognition task in young adulthood substantially retained training-driven improvements in temporal rate discrimination abilities over a subsequent 18-mo epoch-that is, forward into their older age. In parallel, this young-adult auditory training enduringly enhanced temporal and spectral information processing in their primary auditory cortices (A1). Substantially greater numbers of parvalbumin- and somatostatin-labeled inhibitory neurons (closer to the numbers recorded in young vigorous adults) were recorded in the A1 and hippocampus in old trained versus untrained age-matched rats. These results show that a simple form of training in young adulthood in this rat model enduringly delays the otherwise expected deterioration of the physical status and functional operations of the auditory nervous system, with evident training impacts generalized to the hippocampus.
Collapse
|
15
|
Green DB, Ohlemacher J, Rosen MJ. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance. Front Neurosci 2016; 10:263. [PMID: 27378837 PMCID: PMC4911416 DOI: 10.3389/fnins.2016.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing.
Collapse
Affiliation(s)
| | | | - Merri J. Rosen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical UniversityRootstown, OH, USA
| |
Collapse
|
16
|
Kraus N, White-Schwoch T. Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework. Trends Cogn Sci 2015; 19:642-654. [PMID: 26454481 PMCID: PMC4754986 DOI: 10.1016/j.tics.2015.08.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
The auditory system is stunning in its capacity for change: a single neuron can modulate its tuning in minutes. Here we articulate a conceptual framework to understand the biology of auditory learning where an animal must engage cognitive, sensorimotor, and reward systems to spark neural remodeling. Central to our framework is a consideration of the auditory system as an integrated whole that interacts with other circuits to guide and refine life in sound. Despite our emphasis on the auditory system, these principles may apply across the nervous system. Understanding neuroplastic changes in both normal and impaired sensory systems guides strategies to improve everyday communication.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA; Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA; Department of Otolaryngology, Northwestern University, Chicago, IL, USA.
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
Abstract
UNLABELLED Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms.
Collapse
|
18
|
Abstract
Auditory learning is associated with an enhanced representation of acoustic cues in primary auditory cortex, and modulation of inhibitory strength is causally involved in learning. If this inhibitory plasticity is associated with task learning and improvement, its expression should emerge and persist until task proficiency is achieved. We tested this idea by measuring changes to cortical inhibitory synaptic transmission as adult gerbils progressed through the process of associative learning and perceptual improvement. Using either of two procedures, aversive or appetitive conditioning, animals were trained to detect amplitude-modulated noise and then tested daily. Following each training session, a thalamocortical brain slice was generated, and inhibitory synaptic properties were recorded from layer 2/3 pyramidal neurons. Initial associative learning was accompanied by a profound reduction in the amplitude of spontaneous IPSCs (sIPSCs). However, sIPSC amplitude returned to control levels when animals reached asymptotic behavioral performance. In contrast, paired-pulse ratios decreased in trained animals as well as in control animals that experienced unpaired conditioned and unconditioned stimuli. This latter observation suggests that inhibitory release properties are modified during behavioral conditioning, even when an association between the sound and reinforcement cannot occur. These results suggest that associative learning is accompanied by a reduction of postsynaptic inhibitory strength that persists for several days during learning and perceptual improvement.
Collapse
|
19
|
Sound localization in a changing world. Curr Opin Neurobiol 2015; 35:35-43. [PMID: 26126152 DOI: 10.1016/j.conb.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
In natural environments, neural systems must be continuously updated to reflect changes in sensory inputs and behavioral goals. Recent studies of sound localization have shown that adaptation and learning involve multiple mechanisms that operate at different timescales and stages of processing, with other sensory and motor-related inputs playing a key role. We are only just beginning to understand, however, how these processes interact with one another to produce adaptive changes at the level of neuronal populations and behavior. Because there is no explicit map of auditory space in the cortex, studies of sound localization may also provide much broader insight into the plasticity of complex neural representations that are not topographically organized.
Collapse
|
20
|
Skoe E, Kraus N. Auditory reserve and the legacy of auditory experience. Brain Sci 2014; 4:575-93. [PMID: 25405381 PMCID: PMC4279143 DOI: 10.3390/brainsci4040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Science Program Affiliate, University of Connecticut, 850 Bolton Street, Storrs, CT 06105, USA.
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Institute for Neuroscience, Department of Neurobiology and Physiology, Department of Otolaryngology, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
21
|
Abstract
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function.
Collapse
|
22
|
Kang R, Sarro EC, Sanes DH. Auditory training during development mitigates a hearing loss-induced perceptual deficit. Front Syst Neurosci 2014; 8:49. [PMID: 24772071 PMCID: PMC3983518 DOI: 10.3389/fnsys.2014.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/17/2014] [Indexed: 12/25/2022] Open
Abstract
Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood. Here, we asked whether a brief period of training during development could compensate for the perceptual deficits displayed by adult animals reared with CHL. Juvenile gerbils with CHL, and age-matched controls, were trained on a frequency modulation (FM) detection task for 4 or 10 days. The performance of each group was subsequently assessed in adulthood, and compared to adults with normal hearing (NH) or adults raised with CHL that did not receive juvenile training. We show that as juveniles, both CHL and NH animals display similar FM detection thresholds that are not immediately impacted by the perceptual training. However, as adults, detection thresholds and psychometric function slopes of these animals were significantly improved. Importantly, CHL adults with juvenile training displayed thresholds that approached NH adults. Additionally, we found that hearing impaired animals trained for 10 days displayed adult thresholds closer to untrained adults than those trained for 4 days. Thus, a relatively brief period of auditory training may compensate for the deleterious impact of hearing deprivation on auditory perception on the trained task.
Collapse
Affiliation(s)
- Ramanjot Kang
- Center for Neural Science, New York University New York, NY, USA
| | - Emma C Sarro
- Center for Neural Science, New York University New York, NY, USA
| | - Dan H Sanes
- Center for Neural Science, New York University New York, NY, USA ; Department of Biology, New York University New York, NY, USA
| |
Collapse
|
23
|
Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 2014; 308:109-21. [PMID: 23988583 PMCID: PMC3947192 DOI: 10.1016/j.heares.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 01/19/2023]
Abstract
Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.
Collapse
Affiliation(s)
- Dana L Strait
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology & Physiology, Northwestern University, Evanston, IL 60208, USA; Department of Otolaryngology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
24
|
The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hear Res 2014; 311:36-48. [PMID: 24445149 DOI: 10.1016/j.heares.2014.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023]
Abstract
In this review article, we focus on recent studies of experiential influences on brainstem function. Using these studies as scaffolding, we then lay the initial groundwork for the Layering Hypothesis, which explicates how experiences combine to shape subcortical auditory function. Our hypothesis builds on the idea that the subcortical auditory system reflects the collective auditory experiences of an individual, including interactions with sound that occurred in the distant past. Our goal for this article is to begin to shift the field away from examining the effect of single experiences to examining how different auditory experiences layer or superimpose on each other. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
25
|
Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J Neurosci 2013; 33:17667-74. [PMID: 24198359 DOI: 10.1523/jneurosci.2560-13.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4-14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age.
Collapse
|
26
|
Keating P, King AJ. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 2013; 7:123. [PMID: 24409125 PMCID: PMC3873525 DOI: 10.3389/fnsys.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022] Open
Abstract
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
27
|
Mylius J, Brosch M, Scheich H, Budinger E. Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture. J Comp Neurol 2013; 521:1289-321. [PMID: 23047461 DOI: 10.1002/cne.23232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/25/2012] [Accepted: 10/02/2012] [Indexed: 12/17/2022]
Abstract
By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.g., Budinger et al. [2000] Eur J Neurosci 12:2452-2474); 2) add substantially to the knowledge about the laminar and cellular organization of the gerbil's subcortical auditory structures, in particular about the orientation of their fibrodendritic laminae and about the morphology of their most distinctive neuron types; and 3) demonstrate that the cellular organization of these structures, as seen by the Golgi technique, corresponds generally to that of other mammalian species, in particular to that of rodents.
Collapse
Affiliation(s)
- Judith Mylius
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
28
|
Barrett KC, Ashley R, Strait DL, Kraus N. Art and science: how musical training shapes the brain. Front Psychol 2013; 4:713. [PMID: 24137142 PMCID: PMC3797461 DOI: 10.3389/fpsyg.2013.00713] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/18/2013] [Indexed: 11/13/2022] Open
Abstract
What makes a musician? In this review, we discuss innate and experience-dependent factors that mold the musician brain in addition to presenting new data in children that indicate that some neural enhancements in musicians unfold with continued training over development. We begin by addressing effects of training on musical expertise, presenting neural, perceptual, and cognitive evidence to support the claim that musicians are shaped by their musical training regimes. For example, many musician-advantages in the neural encoding of sound, auditory perception, and auditory-cognitive skills correlate with their extent of musical training, are not observed in young children just initiating musical training, and differ based on the type of training pursued. Even amidst innate characteristics that contribute to the biological building blocks that make up the musician, musicians demonstrate further training-related enhancements through extensive education and practice. We conclude by reviewing evidence from neurobiological and epigenetic approaches to frame biological markers of musicianship in the context of interactions between genetic and experience-related factors.
Collapse
Affiliation(s)
- Karen Chan Barrett
- Auditory Neuroscience Laboratory, Department of Communication Science and Disorders, Northwestern University Evanston, IL, USA ; Program in Music Theory and Cognition, Bienen School of Music, Northwestern University Evanston, IL, USA ; Music Cognition Laboratory, Program in Music Theory and Cognition, Bienen School of Music, Northwestern University Evanston, IL USA
| | | | | | | |
Collapse
|
29
|
Bock J, Poeggel G, Gruss M, Wingenfeld K, Braun K. Infant Cognitive Training Preshapes Learning-Relevant Prefrontal Circuits for Adult Learning: Learning-Induced Tagging of Dendritic Spines. Cereb Cortex 2013; 24:2920-30. [DOI: 10.1093/cercor/bht148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Abstract
During an early epoch of development, the brain is highly adaptive to the stimulus environment. Exposing young animals to a particular tone, for example, leads to an enlarged representation of that tone in primary auditory cortex. While the neural effects of simple tonal environments are well characterized, the principles that guide plasticity in more complex acoustic environments remain unclear. In addition, very little is known about the perceptual consequences of early experience-induced plasticity. To address these questions, we reared juvenile rats in complex multitone environments that differed in terms of the higher-order conditional probabilities between sounds. We found that the development of primary cortical acoustic representations, as well as frequency discrimination ability in adult animals, were shaped by the higher-order stimulus statistics of the early acoustic environment. Our results suggest that early experience-dependent cortical reorganization may mediate perceptual changes through statistical learning of the sensory input.
Collapse
|
31
|
Yang S, Zhang LS, Gibboni R, Weiner B, Bao S. Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-α-deficient mice. Cereb Cortex 2013; 24:1956-65. [PMID: 23448874 DOI: 10.1093/cercor/bht053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Early experience shapes sensory representations in a critical period of heightened plasticity. This adaptive process is thought to involve both Hebbian and homeostatic synaptic plasticity. Although Hebbian plasticity has been investigated as a mechanism for cortical map reorganization, less is known about the contribution of homeostatic plasticity. We investigated the role of homeostatic synaptic plasticity in the development and refinement of frequency representations in the primary auditory cortex using the tumor necrosis factor-α (TNF-α) knockout (KO), a mutant mouse with impaired homeostatic but normal Hebbian plasticity. Our results indicate that these mice develop weaker tonal responses and incomplete frequency representations. Rearing in a single-frequency revealed a normal expansion of cortical representations in KO mice. However, TNF-α KOs lacked homeostatic adjustments of cortical responses following exposure to multiple frequencies. Specifically, while this sensory over-stimulation resulted in competitive refinement of frequency tuning in wild-type controls, it broadened frequency tuning in TNF-α KOs. Our results suggest that homeostatic plasticity plays an important role in gain control and competitive interaction in sensory cortical development.
Collapse
Affiliation(s)
- Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Li S Zhang
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Robert Gibboni
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Benjamin Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Shaowen Bao
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
32
|
|
33
|
A little goes a long way: how the adult brain is shaped by musical training in childhood. J Neurosci 2012; 32:11507-10. [PMID: 22915097 DOI: 10.1523/jneurosci.1949-12.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Playing a musical instrument changes the anatomy and function of the brain. But do these changes persist after music training stops? We probed this question by measuring auditory brainstem responses in a cohort of healthy young human adults with varying amounts of past musical training. We show that adults who received formal music instruction as children have more robust brainstem responses to sound than peers who never participated in music lessons and that the magnitude of the response correlates with how recently training ceased. Our results suggest that neural changes accompanying musical training during childhood are retained in adulthood. These findings advance our understanding of long-term neuroplasticity and have general implications for the development of effective auditory training programs.
Collapse
|
34
|
Woolley SMN. Early experience shapes vocal neural coding and perception in songbirds. Dev Psychobiol 2012; 54:612-31. [PMID: 22711657 PMCID: PMC3404257 DOI: 10.1002/dev.21014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/09/2012] [Indexed: 11/09/2022]
Abstract
Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production, and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception, and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals.
Collapse
Affiliation(s)
- Sarah M N Woolley
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave., New York, NY 10027, USA.
| |
Collapse
|
35
|
Gray L, Miller BS, Evans SW. Training children with ADHD to minimize impulsivity in auditory contralateral masking. Int J Pediatr Otorhinolaryngol 2012; 76:483-7. [PMID: 22297209 DOI: 10.1016/j.ijporl.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Impulsivity and distractibility are among the important symptoms of attention deficit hyperactivity disorder (ADHD). In this study, impulsivity is operationally measured using false-alarm rates in an auditory, contralateral-masking task. Intensive auditory training was attempted to decrease false alarm rates. METHODS In contralateral masking there is a distracting noise in one ear on every trial and a threshold-level tone in the other ear on half of those trials. Participants indicated whether the tone was present or not and received immediate feedback. The intensity of the masked tone was adaptively varied to track threshold. False alarms are the error of commission, saying that a stimulus is present when it is not. Seven school-aged children with ADHD (ages 10-16) and four adults without ADHD were trained on this task for 900 trials per day over four consecutive days. RESULTS False alarms from the children with ADHD decreased over the four days of training, beginning at the high level and ending at the low level expected from previous studies. There was no generalization to a different masking task. Results from the four adults were unexpected: soon after the training began they behaved no differently than the children with ADHD. CONCLUSION Children with ADHD can be trained to become less impulsive in an auditory detection task.
Collapse
Affiliation(s)
- Lincoln Gray
- Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, VA 22801, USA.
| | | | | |
Collapse
|
36
|
Sanes DH, Woolley SMN. A behavioral framework to guide research on central auditory development and plasticity. Neuron 2011; 72:912-29. [PMID: 22196328 PMCID: PMC3244881 DOI: 10.1016/j.neuron.2011.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 01/14/2023]
Abstract
The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception.
Collapse
Affiliation(s)
- Dan H Sanes
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
37
|
Sarro EC, Rosen MJ, Sanes DH. Taking advantage of behavioral changes during development and training to assess sensory coding mechanisms. Ann N Y Acad Sci 2011; 1225:142-54. [PMID: 21535001 DOI: 10.1111/j.1749-6632.2011.06023.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relationship between behavioral and neural performance has been explored in adult animals, but rarely during the developmental period when perceptual abilities emerge. We used these naturally occurring changes in auditory perception to evaluate underlying encoding mechanisms. Performance of juvenile and adult gerbils on an amplitude modulation (AM) detection task was compared with response properties from auditory cortex of age-matched animals. When tested with an identical behavioral procedure, juveniles display poorer AM detection thresholds than adults. Two neurometric analyses indicate that the most sensitive juvenile and adult neurons have equivalent AM thresholds. However, a pooling neurometric revealed that adult cortex encodes smaller AM depths. By each measure, neural sensitivity was superior to psychometric thresholds. However, juvenile training improved adult behavioral thresholds, such that they verged on the best sensitivity of adult neurons. Thus, periods of training may allow an animal to use the encoded information already present in cortex.
Collapse
Affiliation(s)
- Emma C Sarro
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | |
Collapse
|