1
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
Affiliation(s)
- Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Horenkamp
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Lindquist BE. Spreading depolarizations pose critical energy challenges in acute brain injury. J Neurochem 2024; 168:868-887. [PMID: 37787065 PMCID: PMC10987398 DOI: 10.1111/jnc.15966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Spreading depolarization (SD) is an electrochemical wave of neuronal depolarization mediated by extracellular K+ and glutamate, interacting with voltage-gated and ligand-gated ion channels. SD is increasingly recognized as a major cause of injury progression in stroke and brain trauma, where the mechanisms of SD-induced neuronal injury are intimately linked to energetic status and metabolic impairment. Here, I review the established working model of SD initiation and propagation. Then, I summarize the historical and recent evidence for the metabolic impact of SD, transitioning from a descriptive to a mechanistic working model of metabolic signaling and its potential to promote neuronal survival and resilience. I quantify the energetic cost of restoring ionic gradients eroded during SD, and the extent to which ion pumping impacts high-energy phosphate pools and the energy charge of affected tissue. I link energy deficits to adaptive increases in the utilization of glucose and O2, and the resulting accumulation of lactic acid and CO2 downstream of catabolic metabolic activity. Finally, I discuss the neuromodulatory and vasoactive paracrine signaling mediated by adenosine and acidosis, highlighting these metabolites' potential to protect vulnerable tissue in the context of high-frequency SD clusters.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurology, University of California, San Francisco, California, USA
- Gladstone Institute of Neurological Diseases, San Francisco, California, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| |
Collapse
|
3
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
4
|
Fasham J, Huebner AK, Liebmann L, Khalaf-Nazzal R, Maroofian R, Kryeziu N, Wortmann SB, Leslie JS, Ubeyratna N, Mancini GMS, van Slegtenhorst M, Wilke M, Haack TB, Shamseldin HE, Gleeson JG, Almuhaizea M, Dweikat I, Abu-Libdeh B, Daana M, Zaki MS, Wakeling MN, McGavin L, Turnpenny PD, Alkuraya FS, Houlden H, Schlattmann P, Kaila K, Crosby AH, Baple EL, Hübner CA. SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission. Brain 2023; 146:4547-4561. [PMID: 37459438 PMCID: PMC10629776 DOI: 10.1093/brain/awad235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023] Open
Abstract
SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.
Collapse
Affiliation(s)
- James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Reham Khalaf-Nazzal
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Nderim Kryeziu
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Saskia B Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohamed Almuhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Imad Dweikat
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Makassed Hospital and Al-Quds University, East Jerusalem, 95908, Palestine
| | - Muhannad Daana
- Department of Pediatrics, Arab Women’s Union Hospital, Nablus, P400, Palestine
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Matthew N Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Peter D Turnpenny
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Henry Houlden
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Peter Schlattmann
- Institute for Medical Statistics, Computer Science and Data Science, Jena University Hospital, 07747 Jena, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| |
Collapse
|
5
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
6
|
Cheng K, Wang Y, He Y, Tian Y, Li J, Chen C, Xu X, Wu Z, Yu H, Chen X, Wu Y, Song W, Dong Z, Xu H, Xie P. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder. Acta Neuropathol Commun 2023; 11:59. [PMID: 37013604 PMCID: PMC10071615 DOI: 10.1186/s40478-023-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus. Ablation of the CAR1 gene increased the activity of granule cells via decreasing their miniature inhibitory postsynaptic currents (mIPSC), and caused depression-like behaviors in CAR1-knockout mice. Astrocytic CAR1 expression rescued the deficits in mIPSCs of granule cells and reduced depression-like behaviors in CAR1 deficient mice. Furthermore, pharmacological activation of CAR1 and overexpression of CAR1 in the ventral hippocampus of mice improved depressive behaviors. These findings uncover a critical role of CAR1 in the MDD pathogenesis and its therapeutic potential.
Collapse
Affiliation(s)
- Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingzhe Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Huatai Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Li Y, Fan C, Wang C, Wang L, Yi Y, Mao X, Chen X, Lan T, Wang W, Yu SY. Stress-induced reduction of Na +/H + exchanger isoform 1 promotes maladaptation of neuroplasticity and exacerbates depressive behaviors. SCIENCE ADVANCES 2022; 8:eadd7063. [PMID: 36367929 PMCID: PMC9651740 DOI: 10.1126/sciadv.add7063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 05/29/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder characterized by abnormal neuronal activity in specific brain regions. A factor that is crucial in maintaining normal neuronal functioning is intracellular pH (pHi) homeostasis. In this study, we show that chronic stress, which induces depression-like behaviors in animal models, down-regulates the expression of the hippocampal Na+/H+ exchanger isoform 1, NHE1, a major determinant of pHi in neurons. Knockdown of NHE1 in CA1 hippocampal pyramidal neurons leads to intracellular acidification, promotes dendritic spine loss, lowers excitatory synaptic transmission, and enhances the susceptibility to stress exposure in rats. Moreover, E3 ubiquitin ligase cullin4A may promote ubiquitination and degradation of NHE1 to induce these effects of an unbalanced pHi on synaptic processes. Electrophysiological data further suggest that the abnormal excitability of hippocampal neurons caused by maladaptation of neuroplasticity may be involved in the pathogenesis of this disease. These findings elucidate a mechanism for pHi homeostasis alteration as related to MDD.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Changmin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Liyan Wang
- Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong 250012, PR China
| | - Yuhang Yi
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xueqin Mao
- Department of Psychology, Qilu Hospital of Shandong University, 107 Wenhuaxilu Road, Jinan, Shandong 250012, PR China
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
- Shandong Provincial Key Laboratory of Mental Disorders, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
8
|
Fatoki T, Chukwuejim S, Ibraheem O, Oke C, Ejimadu B, Olaoye I, Oyegbenro O, Salami T, Basorun R, Oluwadare O, Salawudeen Y. Harmine and 7,8-dihydroxyflavone synergistically suitable for amyotrophic lateral sclerosis management: An in silico study. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.83332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by progressive degeneration of both upper and lower motor neurons, resulting in paralysis and eventually leads to death from respiratory failure typically within 3 to 5 years of symptom onset. The aim of this work was to predict the pharmacokinetics and identify unique protein targets that are associated with potential anti-ALS phytochemicals and FDA-approved drugs, by in silico approaches.
Materials and methods: Standard computational tools (webserver and software) were used, and the methods used are clustering analysis, pharmacokinetics and molecular target predictions, and molecular docking simulation.
Results and discussion: The results show that riluzole, β-asarone, cryptotanshinone, harmine and 7,8-dihydroxyflavone have similar pharmacokinetics properties. Riluzole and harmine show 95% probability of target on norepinephrine transporter. Huperzine-A and cryptotanshinone show 100% probability of target on acetylcholinesterase. 7,8-dihydroxyflavone shows 35% probability of target on several carbonic anhydrases, 40% probability of target on CYP19A1, and 100% probability of target on inhibitor of nuclear factor kappa B kinase beta subunit and neurotrophic tyrosine kinase receptor type 2, respectively. Harmine also shows 95% probability of target on dual specificity tyrosine-phosphorylation-regulated kinases, threonine-protein kinases (haspin and PIM3), adrenergic receptors, cyclin-dependent kinases (CDK5 and CDK9), monoamine oxidase A, casein kinase I delta, serotonin receptors, dual specificity protein kinases (CLK1, CLK2, and CLK4), and nischarin, respectively. Also, the results of gene expression network show possible involvement of CDK1, CDK2, CDK4, ERK1, ERK2 and MAPK14 signaling pathways. This study shows that riluzole and harmine have closely similar physicochemical and pharmacokinetics properties as well as molecular targets, such as norepinephrine transporter (SLC6A2). Harmine, huperzine-A and cryptotanshinone could modulate acetylcholinesterase (AChE), which is involved in ALS-pathogenesis. The impact of 7,8-dihydroxyflavone on several carbonic anhydrases (CA) I, II, VII, IX, XII, and XIV, as well as CYP19A1, could help in remediating the respiratory failure associated with ALS.
Conclusion: Overall, harmine is found to be superior to riluzole, and the combination of harmine with 7,8-dihydroxyflavone can provide more effective treatment for ALS than the current regime. Further work is needed to validate the predicted therapeutic targets of harmine identified in this study on ALS model or clinical trials, using in silico, in vitro and in vivo techniques.
Graphical abstract:
Collapse
|
9
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021; 15:730641. [PMID: 34690702 PMCID: PMC8531221 DOI: 10.3389/fncel.2021.730641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
11
|
The β 2 subunit E155 residue as a proton sensor at the binding site on GABA type A receptors. Eur J Pharmacol 2021; 906:174293. [PMID: 34214584 DOI: 10.1016/j.ejphar.2021.174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
GABA type A receptor plays a key role in inhibitory signaling in the adult central nervous system. This receptor can be modulated by protons but the underlying molecular mechanisms have not been fully explored. To find possible pH-sensor residues, a comparative study for proton-activated GLIC channel and α1β2γ2 GABA receptor was performed and pK 's of respective residues were estimated by numerical algorithms which consider local interactions. β E155, located at the GABA binding site, showed pKa values close to physiological values and dependence on the receptor state and ligation, suggesting a role in modulation by pH. To validate this prediction, pH sensitivity of current responses to GABA was investigated using patch-clamp technique for WT and mutated (β2E155[C, S, Q, L]) GABA receptors. Cysteine mutation preserved pH sensitivity. However, for remaining mutants, the sensitivity to acidification (pH = 6.0) was reduced becoming not statistically significant. The effect of alkaline pH (8.0) was maintained for all mutants with exception for β2E155L for which it was nearly abolished. To further explore the impact of considered mutations, molecular docking was performed which indicated that pH modulation is probably affected by interplay between binding site residues, zwitterion GABA and protons. These data, altogether, indicate that mutation of β2E155 to hydrophobic residue (L) maximally impaired pH modulation while for polar substitutions the effect was smaller. In conclusion, our data provide evidence that a key binding site residue β2E155 plays an important role in proton sensitivity of GABA receptor.
Collapse
|
12
|
Amundarain MJ, Caffarena ER, Costabel MD. How does α 1Histidine102 affect the binding of modulators to α 1β 2γ 2 GABA A receptors? molecular insights from in silico experiments. Phys Chem Chem Phys 2021; 23:3993-4006. [PMID: 33554986 DOI: 10.1039/d0cp05081d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The activation of GABAA receptors by the neurotransmitter gamma-aminobutyric acid mediates the rapid inhibition response in the central nervous system of mammals. Many neurological and mental health disorders arise from alterations in the structure or function of these pentameric ion channels. GABAA receptors are targets for numerous drugs, including benzodiazepines, which bind to α1β2γ2 GABAA receptors with high affinity to a site in the extracellular domain, between subunits α1 and γ2. It has been established experimentally that the binding of these drugs depends on the presence of one particular amino acid in the α1 subunit: histidine 102. However, the specific role it plays in the intermolecular interaction has not been elucidated. In this work, we applied in silico methods to understand whether certain protonation and rotamer states of α1His102 facilitate the binding of modulators. We analysed diazepam binding, a benzodiazepine, and the antagonist flumazenil to the GABAA receptor using molecular dynamics simulations and adaptive biasing force simulations. The binding free energy follows changes in the protonation state for both ligands, and rotameric states of α1His102 were specific for the different compounds, suggesting distinct preferences for positive allosteric modulators and antagonists. Moreover, in the presence of diazepam and favoured by a neutral tautomer, we identified a water molecule that links loops A, B, and C and may be relevant to the modulation mechanism.
Collapse
Affiliation(s)
- María Julia Amundarain
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| | - Ernesto Raúl Caffarena
- Programa de Computação Científica - PROCC, Fundação Oswaldo Cruz, Manguinhos, CEP 21040-360, Av. Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Marcelo Daniel Costabel
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| |
Collapse
|
13
|
Kaczor PT, Wolska AD, Mozrzymas JW. α 1 Subunit Histidine 55 at the Interface between Extracellular and Transmembrane Domains Affects Preactivation and Desensitization of the GABA A Receptor. ACS Chem Neurosci 2021; 12:562-572. [PMID: 33471498 PMCID: PMC7875458 DOI: 10.1021/acschemneuro.0c00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
![]()
The
GABAA receptor is a member of the Cys-loop family
and plays a crucial role in the adult mammalian brain inhibition.
Although the static structure of this receptor is emerging, the molecular
mechanisms underlying its conformational transitions remain elusive.
It is known that in the Cys-loop receptors, the interface between
extracellular and transmembrane domains plays a key role in transmitting
the “activation wave” down to the channel gate in the
pore. It has been previously reported that histidine 55 (H55), located
centrally at the interfacial β1−β2 loop of the
α1 subunit, is important in the receptor activation,
but it is unknown which specific gating steps it is affecting. In
the present study, we addressed this issue by taking advantage of
the state-of-the-art macroscopic and single-channel recordings together
with extensive modeling. Considering that H55 is known to affect the
local electrostatic landscape and because it is neighbored by two
negatively charged aspartates, a well conserved feature in the α
subunits, we considered substitution with negative (E) and positive
(K) residues. We found that these mutations markedly affected the
receptor gating, altering primarily preactivation and desensitization
transitions. Importantly, opposite effects were observed for these
two mutations strongly suggesting involvement of electrostatic interactions.
Single-channel recordings suggested also a minor effect on opening/closing
transitions which did not depend on the electric charge of the substituting
amino acid. Altogether, we demonstrate that H55 mutations affect primarily
preactivation and desensitization most likely by influencing local
electrostatic interactions at the receptor interface.
Collapse
Affiliation(s)
- Przemyslaw T. Kaczor
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Aleksandra D. Wolska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| |
Collapse
|
14
|
Bocker HT, Heinrich T, Liebmann L, Hennings JC, Seemann E, Gerth M, Jakovčevski I, Preobraschenski J, Kessels MM, Westermann M, Isbrandt D, Jahn R, Qualmann B, Hübner CA. The Na+/H+ Exchanger Nhe1 Modulates Network Excitability via GABA Release. Cereb Cortex 2020; 29:4263-4276. [PMID: 30541023 DOI: 10.1093/cercor/bhy308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023] Open
Abstract
Brain functions are extremely sensitive to pH changes because of the pH-dependence of proteins involved in neuronal excitability and synaptic transmission. Here, we show that the Na+/H+ exchanger Nhe1, which uses the Na+ gradient to extrude H+, is expressed at both inhibitory and excitatory presynapses. We disrupted Nhe1 specifically in mice either in Emx1-positive glutamatergic neurons or in parvalbumin-positive cells, mainly GABAergic interneurons. While Nhe1 disruption in excitatory neurons had no effect on overall network excitability, mice with disruption of Nhe1 in parvalbumin-positive neurons displayed epileptic activity. From our electrophysiological analyses in the CA1 of the hippocampus, we conclude that the disruption in parvalbumin-positive neurons impairs the release of GABA-loaded vesicles, but increases the size of GABA quanta. The latter is most likely an indirect pH-dependent effect, as Nhe1 was not expressed in purified synaptic vesicles itself. Conclusively, our data provide first evidence that Nhe1 affects network excitability via modulation of inhibitory interneurons.
Collapse
Affiliation(s)
- Hartmut T Bocker
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Theresa Heinrich
- Department GMP Cell and Gene Therapy, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | | | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Melanie Gerth
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Igor Jakovčevski
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50937 Cologne, Germany, and German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, 07747 Jena, Germany
| | - Dirk Isbrandt
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50937 Cologne, Germany, and German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
15
|
Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Varfolomeev SD, Bykov VI, Tsybenova SB. Kinetic modeling of dynamic processes in the cholinergic synapse. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
18
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Kisiel M, Jatczak-Śliwa M, Mozrzymas JW. Protons modulate gating of recombinant α 1β 2γ 2 GABA A receptor by affecting desensitization and opening transitions. Neuropharmacology 2018; 146:300-315. [PMID: 30326242 DOI: 10.1016/j.neuropharm.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
Abstract
Protons are potent modulators of GABAA receptors (GABAARs) and α1Phe64 residue was implicated in their pH sensitivity. Recently, we have demonstrated that this residue is involved in flipping transitions which precede channel opening. We thus re-addressed the mechanism of GABAAR modulation by protons by considering the gating scheme extended by flipping. The impact of pH changes was examined on currents mediated by wild-type α1β2γ2 receptors or by their α1Phe64Leu or α1Phe64Cys mutants and elicited by saturating concentrations of full (GABA) or partial (piperidine-4-sulfonic acid) agonists. To describe the impact of extracellular pH on receptor gating, we combined macroscopic analysis of currents elicited by rapid agonist applications with single-channel studies. Acidification (pH 6.0) increased current amplitudes (in the case of leucine mutants effect was stronger when P4S was used) and decreased the rate and the extent of desensitization whereas alkalization (pH 8.0) had the opposite but weaker effect. Deactivation kinetics for wild-type receptors was slowed down by acidification while in the case of mutants this effect was observed upon alkalization. Moreover, α1Phe64 mutations enhanced GABAAR sensitivity to alkaline pH. Single-channel analysis revealed that acidification prolonged burst durations and affected shut but not open time distributions. Model simulations for macroscopic and single-channel activity indicated a novel mechanism in which protons primarily affected opening and desensitization rates but not flipping/unflipping. This evidence for the impact of protons on the receptor gating together with previously demonstrated effect on the agonist binding, point to a complex effect of extracellular pH on GABAAR macromolecule.
Collapse
Affiliation(s)
- Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| | - Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland; Department of Molecular Physiology and Neurobiology, Wrocław University, Wrocław 50-335, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
21
|
Soto E, Ortega-Ramírez A, Vega R. Protons as Messengers of Intercellular Communication in the Nervous System. Front Cell Neurosci 2018; 12:342. [PMID: 30364044 PMCID: PMC6191491 DOI: 10.3389/fncel.2018.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this review, evidence demonstrating that protons (H+) constitute a complex, regulated intercellular signaling mechanisms are presented. Given that pH is a strictly regulated variable in multicellular organisms, localized extracellular pH changes may constitute significant signals of cellular processes that occur in a cell or a group of cells. Several studies have demonstrated that the low pH of synaptic vesicles implies that neurotransmitter release is always accompanied by the co-release of H+ into the synaptic cleft, leading to transient extracellular pH shifts. Also, evidence has accumulated indicating that extracellular H+ concentration regulation is complex and implies a source of protons in a network of transporters, ion exchangers, and buffer capacity of the media that may finally establish the extracellular proton concentration. The activation of membrane transporters, increased production of CO2 and of metabolites, such as lactate, produce significant extracellular pH shifts in nano- and micro-domains in the central nervous system (CNS), constituting a reliable signal for intercellular communication. The acid sensing ion channels (ASIC) function as specific signal sensors of proton signaling mechanism, detecting subtle variations of extracellular H+ in a range varying from pH 5 to 8. The main question in relation to this signaling system is whether it is only synaptically restricted, or a volume modulator of neuron excitability. This signaling system may have evolved from a metabolic activity detection mechanism to a highly localized extracellular proton dependent communication mechanism. In this study, evidence showing the mechanisms of regulation of extracellular pH shifts and of the ASICs and its function in modulating the excitability in various systems is reviewed, including data and its role in synaptic neurotransmission, volume transmission and even segregated neurotransmission, leading to a reliable extracellular signaling mechanism.
Collapse
Affiliation(s)
- Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
22
|
Intracellular pH Regulation in iPSCs-derived Astrocytes from Subjects with Chronic Mountain Sickness. Neuroscience 2018; 375:25-33. [PMID: 29438800 DOI: 10.1016/j.neuroscience.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
Chronic Mountain Sickness (CMS) occurs in high-altitude residents with major neurological symptoms such as migraine headaches, dizziness and cognitive deficits. Recent work demonstrated that highlanders have increased intracellular pH (pHi) in their brain cells, perhaps for the sake of adaptation to hypoxemia and help to facilitate glycolysis, DNA synthesis, and cell cycle progression. Since there are well adapted (non-CMS) and maladapted (CMS) high-altitude dwellers, it is not clear whether pHi is differently regulated in these two high-altitude populations. In this work, we obtained induced pluripotent stem cell (iPSC)-derived astrocytes from both CMS and non-CMS highlanders who live in the Peruvian Andes (>14,000 ft) and studied pHi regulation in these astrocytes using pH-sensitive dye BCECF. Our results show that the steady-state pHi (ss pHi) is lower in CMS astrocytes compared with non-CMS astrocytes. In addition, the acid extrusion following an acid loading is faster and the pHi dependence of H+ flux rate becomes steeper in CMS astrocytes. Furthermore, the Na+ dependency of ss pHi is stronger in CMS astrocytes and the Na+/H+ exchanger (NHE) inhibitors blunted the acid extrusion in both CMS and non-CMS astrocytes. We conclude that (a) NHE contributes to the ss pHi stabilization and mediates active acid extrusion during the cytosolic acidosis in highlanders; (b) acid extrusion becomes less pHi sensitive in non-CMS (versus CMS) astrocytes which may prevent NHE from over-activated in the hypoxia-induced intracellular acidosis and render the non-CMS astrocytes more resistant to hypoxemia challenges.
Collapse
|
23
|
Chen X, Wang X, Tang L, Wang J, Shen C, Liu J, Lu S, Zhang H, Kuang Y, Fei J, Wang Z. Nhe5 deficiency enhances learning and memory via upregulating Bdnf/TrkB signaling in mice. Am J Med Genet B Neuropsychiatr Genet 2017; 174:828-838. [PMID: 28981195 DOI: 10.1002/ajmg.b.32600] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/10/2017] [Accepted: 09/05/2017] [Indexed: 11/11/2022]
Abstract
Nhe5, a Na+ /H+ exchanger, is predominantly expressed in brain tissue and is proposed to act as a negative regulator of dendritic spine growth. Up to now, its physiological function in vivo remains unclear. Here we show that Nhe5-deficient mice exhibit markedly enhanced learning and memory in Morris water maze, novel object recognition, and passive avoidance task. Meanwhile, the pre- and post-synaptic components, synaptophysin (Syn) and post-synaptic density 95 (PSD95) expression levels were found increased in hippocampal regions lacking of Nhe5, suggesting a possible alterations in neuronal synaptic structure and function in Nhe5-/- mice. Further study reveals that Nhe5 deficiency leads to higher Bdnf expression levels, followed by increased phosphorylated TrkB and PLCγ levels, indicating that Bdnf/TrkB signaling is activated due to Nhe5 deficiency. Moreover, the corresponding brain regions of Nhe5-/- mice display elevated ERK/CaMKII/CREB phosphorylation levels. Taken together, these findings uncover a novel physiological function of Nhe5 in regulating learning and memory, further implying Nhe5 as a potential therapeutic target for improving cognition.
Collapse
Affiliation(s)
- Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiyi Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jianbing Liu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Research Center for Model Organisms, Shanghai, China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, China
| |
Collapse
|
24
|
Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. Proc Natl Acad Sci U S A 2017; 114:E2504-E2513. [PMID: 28265090 DOI: 10.1073/pnas.1620508114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H+] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.
Collapse
|
25
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
26
|
Tyrtyshnaia AA, Lysenko LV, Madamba F, Manzhulo IV, Khotimchenko MY, Kleschevnikov AM. Acute neuroinflammation provokes intracellular acidification in mouse hippocampus. J Neuroinflammation 2016; 13:283. [PMID: 27809864 PMCID: PMC5094044 DOI: 10.1186/s12974-016-0747-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022] Open
Abstract
Background Maintaining pH levels within the physiological norm is an important component of brain homeostasis. However, in some pathological or physiological conditions, the capacity of the pH regulatory system could be overpowered by various factors resulting in a transient or permanent alteration in pH levels. Such changes are often observed in pathological conditions associated with neuroinflammation. We hypothesized that neuroinflammation itself is a factor affecting pH levels in neural tissue. To assess this hypothesis, we examined the effects of acute LPS-induced neuroinflammation on intra- and extracellular pH (pHi and pHo) levels in the CA1 region of mouse hippocampus. Methods Acute neuroinflammation was induced using two approaches: (1) in vivo by i.p. injections of LPS (5 mg/kg) and (2) in vitro by incubating hippocampal slices of naïve animals in the LPS-containing media (1 μg/mL, 1 h at 35 °C). Standard techniques were used to prepare hippocampal slices. pHi was measured using ratiometric pH-sensitive fluorescent dye BCECF-AM. pHo was assessed using calibrated pH-sensitive micropipettes. The presence of neuroinflammation was verified with immunohistochemistry (IL-1β and Iba1) and ELISA (IL-1β and TNF-α). Results A significant reduction of pHi was observed in the slices of the LPS-injected 3-month-old (LPS 7.13 ± 0.03; Sal 7.22 ± 0.03; p = 0.043, r = 0.43) and 19-month-old (LPS 6.78 ± 0.08; Sal 7.13 ± 0.03; p = 0.0001, r = 0.32) mice. In contrast, the levels of pHo within the slice, measured in 19-month-old animals, were not affected (LPS 7.27 ± 0.02; Sal 7.26 ± 0.02; p = 0.6, r = 0.13). A reduction of pHi was also observed in the LPS-treated slices during the interval 3.5–7 h after the LPS exposure (LPS 6.92 ± 0.07; Veh 7.28 ± 0.05; p = 0.0001, r = 0.46). Conclusions Acute LPS-induced neuroinflammation results in a significant intracellular acidification of the CA1 neurons in mouse hippocampus, while the pHo remains largely unchanged. Such changes may represent a specific protective reaction of neural tissue in unfavorable external conditions or be a part of the pathological process. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0747-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna A Tyrtyshnaia
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russian Federation
| | - Larisa V Lysenko
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Academy of Biology and Biotechnology of Southern Federal University, 194/1 Stachki Str, Rostov-na-Donu, 344090, Russian Federation
| | - Francisco Madamba
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Igor V Manzhulo
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russian Federation
| | - Maxim Y Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russian Federation
| | - Alexander M Kleschevnikov
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russian Federation.
| |
Collapse
|
27
|
Storozhuk M, Kondratskaya E, Nikolaenko L, Krishtal O. A modulatory role of ASICs on GABAergic synapses in rat hippocampal cell cultures. Mol Brain 2016; 9:90. [PMID: 27760555 PMCID: PMC5070181 DOI: 10.1186/s13041-016-0269-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022] Open
Abstract
Rapid acidification occurring during synaptic vesicle release can activate acid-sensing ion channels (ASICs) both on pre- and postsynaptic neurons. In the latter case, a fraction of postsynaptic current would be mediated by cation-selective acid-sensing ion channels. Additionally, in both cases, activation of acid-sensing ion channels could modulate synaptic strength by affecting transmitter release and/or sensitivity of postsynaptic receptors. To address potential involvement of acid-sensing ion channels in mediation/modulation of synaptic transmission at hippocampal GABAergic synapses, we studied effects of three structurally different blockers of acid-sensing ion channels on evoked postsynaptic currents using the patch-clamp technique. We found that GABAergic postsynaptic currents, recorded below their reversal potential as inward currents, are suppressed by all the employed blockers of acid-sensing ion channels. These currents were suppressed by ~ 20 % in the presence of a novel blocker 5b (1 μM) and by ~30 % in the presence of either amiloride (25 μM) or diminazene (20 μM). In the same cells the suppression of postsynaptic currents, recorded above their reversal potential as outward currents was statistically insignificant. These results imply that the effects of blockers in our experiments are at least partially postsynaptic. On the other hand, in the case of mediation of a fraction of postsynaptic current by acid-sensing ion channels, an increase of outward currents would be expected under our experimental conditions. Our analysis of a bicuculline-resistant fraction of postsynaptic currents also suggests that effects of the blockers are predominantly modulatory. In this work we present evidence for the first time that acid-sensing ion channels play a functional role at hippocampal GABAergic synapses. The suppressing effect of the blockers of acid-sensing ion channels on GABAergic transmission is due, at least partially, to a postsynaptic but (predominantly) modulatory mechanism. We hypothesize that the modulatory effect is due to functional crosstalk between ASICs and GABAA-receptors recently reported in isolated neurons, however, verification of this hypothesis is necessary.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine. .,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine.
| | - Elena Kondratskaya
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine.,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine
| | | | - Oleg Krishtal
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine.,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine
| |
Collapse
|
28
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Shafaroodi H, Barati S, Ghasemi M, Almasirad A, Moezi L. A role for ATP-sensitive potassium channels in the anticonvulsant effects of triamterene in mice. Epilepsy Res 2016; 121:8-13. [PMID: 26855365 DOI: 10.1016/j.eplepsyres.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
There are reports indicating that diuretics including chlorothiazide, furosemide, ethacrynic acid, amiloride and bumetanide can have anticonvulsant properties. Intracellular acidification appears to be a mechanism for the anticonvulsant action of some diuretics. This study was conducted to investigate whether or not triamterene, a K(+)-sparing diuretic, can generate protection against seizures induced by intravenous or intraperitoneal pentylenetetrazole (PTZ) models. And to see if, triamterene can withstand maximal electroshock seizure (MES) in mice. We also investigated to see if there is any connection between triamterene's anti-seizure effect and ATP-sensitive K(+) (KATP) channels. Five days triamterene oral administration (10, 20 and 40 mg/kg), significantly increased clonic seizure threshold which was induced by intravenous pentylenetetrazole. Triamterene (10, 20 and 40 mg/kg) treatment also increased the latency of clonic seizure and decreased its frequency in intraperitoneal PTZ model. Administration of triamterene (20 mg/kg) also decreased the incidence of tonic seizure in MES-induced seizure. Co-administration of a KATP sensitive channel blocker, glibenclamide, in the 6th day, 60 min before intravenous PTZ blocked triamterene's anticonvulsant effect. A KATP sensitive channel opener, diazoxide, enhanced triamterene's anti-seizure effect in both intravenous PTZ or MES seizure models. At the end, triamterene exerts anticonvulsant effect in 3 seizure models of mice including intravenous PTZ, intraperitoneal PTZ and MES. The anti-seizure effect of triamterene probably is induced through KATP channels.
Collapse
Affiliation(s)
- Hamed Shafaroodi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Branch and Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran, Iran
| | - Saghar Barati
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Branch and Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ali Almasirad
- Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Ganay T, Asraf H, Aizenman E, Bogdanovic M, Sekler I, Hershfinkel M. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39. J Neurochem 2015; 135:897-907. [PMID: 26375174 DOI: 10.1111/jnc.13367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Synaptically released Zn(2+) acts as a neurotransmitter, in part, by activating the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39). In previous work using epithelial cells, we described crosstalk between Zn(2+) signaling and changes in intracellular pH and/or extracellular pH (pHe). As pH changes accompany neuronal activity under physiological and pathological conditions, we tested whether Zn(2+) signaling is involved in regulation of neuronal pH. Here, we report that up-regulation of a major H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), is induced by mZnR/GPR39 activation in an extracellular-regulated kinase 1/2-dependent manner in hippocampal neurons in vitro. We also observed that changes in pHe can modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. Similarly, Zn(2+)-dependent extracellular-regulated kinase 1/2 phosphorylation and up-regulation of NHE activity were absent at acidic pHe. Thus, our results suggest that when pHe is maintained within the physiological range, mZnR/GPR39 activation can up-regulate NHE-dependent recovery from intracellular acidification. During acidosis, as pHe drops, mZnR/GPR39-dependent NHE activation is inhibited, thereby attenuating further H(+) extrusion. This mechanism may serve to protect neurons from excessive decreases in pHe. Thus, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain. We show that the postsynaptic metabotropic Zn(2+)-sensing Gq protein-coupled receptor (mZnR/GPR39) activation induces up-regulation of a major neuronal H(+) extrusion pathway, the Na(+)/H(+) exchanger (NHE), thereby enhancing neuronal recovery from intracellular acidification. Changes in extracellular pH (pHe), however, modulate neuronal mZnR/GPR39-dependent signaling, resulting in reduced activity at pHe 8 or 6.5. This mechanism may serve to protect neurons from excessive decreases in pHe during acidosis. Hence, mZnR/GPR39 signaling provides a homeostatic adaptive process for regulation of intracellular and extracellular pH changes in the brain.
Collapse
Affiliation(s)
- Thibault Ganay
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elias Aizenman
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos Bogdanovic
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center of Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Verma V, Bali A, Singh N, Jaggi AS. Implications of sodium hydrogen exchangers in various brain diseases. J Basic Clin Physiol Pharmacol 2015; 26:417-426. [PMID: 26020555 DOI: 10.1515/jbcpp-2014-0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
Collapse
|
32
|
Cuomo O, Vinciguerra A, Cerullo P, Anzilotti S, Brancaccio P, Bilo L, Scorziello A, Molinaro P, Di Renzo G, Pignataro G. Ionic homeostasis in brain conditioning. Front Neurosci 2015; 9:277. [PMID: 26321902 PMCID: PMC4530315 DOI: 10.3389/fnins.2015.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1–3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+-ATPase (PMCA), the Na+/H+ exchange (NHE), the Na+/K+/2Cl− cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading cause of death and disability. Up until now, all clinical trials testing potential stroke neuroprotectants failed. For this reason attention of researchers has been focusing on the identification of brain endogenous neuroprotective mechanisms activated after cerebral ischemia. In this context, ischemic preconditioning and ischemic post-conditioning represent two neuroprotecive strategies to investigate in order to identify new molecular target to reduce the ischemic damage.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pierpaolo Cerullo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Leonilda Bilo
- Division of Neurology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| |
Collapse
|
33
|
Abstract
During synaptic vesicle (SV) recycling, the vacuolar-type H(+) ATPase creates a proton electrochemical gradient (ΔμH(+)) that drives neurotransmitter loading into SVs. Given the low estimates of free luminal protons, it has been envisioned that the influx of a limited number of protons suffices to establish ΔμH(+). Consistent with this, the time constant of SV re-acidification was reported to be <5 s, much faster than glutamate loading (τ of ∼ 15 s) and thus unlikely to be rate limiting for neurotransmitter loading. However, such estimates have relied on pHluorin-based probes that lack sensitivity in the lower luminal pH range. Here, we reexamined re-acidification kinetics using the mOrange2-based probe that should report the SV pH more accurately. In recordings from cultured mouse hippocampal neurons, we found that re-acidification took substantially longer (τ of ∼ 15 s) than estimated previously. In addition, we found that the SV lumen exhibited a large buffering capacity (∼ 57 mm/pH), corresponding to an accumulation of ∼ 1200 protons during re-acidification. Together, our results uncover hitherto unrecognized robust proton influx and storage in SVs that can restrict the rate of neurotransmitter refilling.
Collapse
|
34
|
Ivanova SY, Nikolayenko LM, Storozhuk MV. Suppression of GABAergic Synaptic Transmission by Azidin: Probable Mechanism of a Seizure-Inducing Side Effect. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Jinadasa T, Szabó EZ, Numat M, Orlowski J. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface. J Biol Chem 2015; 289:20879-97. [PMID: 24936055 DOI: 10.1074/jbc.m114.555284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.
Collapse
|
36
|
Gründer S, Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology 2015; 94:9-18. [PMID: 25585135 DOI: 10.1016/j.neuropharm.2014.12.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
Acid-sensing ion channels (ASICs) are ligand-gated ion channels that are exquisitely sensitive to extracellular protons and can sense transient as well as sustained acidification. In this review, we will discuss activation and desensitization of ASICs by protons. We show that a linear reaction scheme can reproduce the basic electrophysiological properties of ASICs, including steady-state desensitization. Moreover, we will discuss how a desensitizing receptor can sense sustained acidosis and what we know about the putative proton sensor. We will briefly discuss modulation of proton gating by neuropeptides and small positively charged ligands. Finally, we will review the pore properties of ASICs and their relation to the recently reported crystal structure of the open ASIC pore. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Via De Marini 6, Genoa, Italy
| |
Collapse
|
37
|
Boido D, Gnatkovsky V, Uva L, Francione S, de Curtis M. Simultaneous enhancement of excitation and postburst inhibition at the end of focal seizures. Ann Neurol 2014; 76:826-36. [PMID: 24916758 DOI: 10.1002/ana.24193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Comprehension of the events that lead to seizure termination contributes to the development of strategies to confine propagation of ictal discharges. It is commonly assumed that the inhibitory control fails during seizures and recovers after the end of the ictal event. We examine the possibility that a progressive increase of inhibition that counters an increase in the strength of excitation contributes to terminating a focal seizure. METHODS We analyzed seizures acutely induced by pharmacological manipulations (bicuculline and 4-aminopyridine) in the entorhinal cortex and in the hippocampus of the in vitro isolated guinea pig brain. RESULTS As seizures ended, extracellular and intracellular recordings showed periodic bursting that progressively decreased in frequency. During the late bursting phase, the duration, number, and rate of occurrence of spikes within single bursts remained constant, whereas cumulative spike amplitude (index of excitation during a burst) and interburst interval (index of inhibition between bursts) progressively increased. The increment of average/cumulative burst excitation and interburst interval toward seizure end was confirmed in human focal seizures recorded with intracerebral electrodes in patients with drug-resistant partial epilepsies. A postburst refractory period of circa 2 seconds that increases with time toward the end of the seizure was confirmed in the experimental model by probing interburst epochs in the CA1 region with local dentate gyrus stimulation just suprathreshold for burst generation. INTERPRETATION Our findings support the concept that focal seizures are terminated by the simultaneous and opposing enhancement of excitation (burst activity) in addition to postburst inhibition. We hypothesize that a seizure stops when postburst inhibition becomes large enough to prevent reactivation of excitation.
Collapse
Affiliation(s)
- Davide Boido
- Unit of Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | | | | | | | | |
Collapse
|
38
|
Zhao D, Ning N, Lei Z, Sun H, Wei C, Chen D, Li J. Identification of a novel protein complex containing ASIC1a and GABAA receptors and their interregulation. PLoS One 2014; 9:e99735. [PMID: 24923912 PMCID: PMC4055689 DOI: 10.1371/journal.pone.0099735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) belong to the family of the epithelial sodium channel/degenerin (ENaC/DEG) and are activated by extracellular protons. They are widely distributed within both the central and peripheral nervous systems. ASICs were modified by the activation of γ-aminobutyric acid receptors (GABAA), a ligand-gated chloride channels, in hippocampal neurons. In contrast, the activity of GABAA receptors were also modulated by extracellular pH. However so far, the mechanisms underlying this intermodulation remain obscure. We hypothesized that these two receptors-GABAA receptors and ASICs channels might form a novel protein complex and functionally interact with each other. In the study reported here, we found that ASICs were modified by the activation of GABAA receptors either in HEK293 cells following transient co-transfection of GABAA and ASIC1a or in primary cultured dorsal root ganglia (DRG) neurons. Conversely, activation of ASIC1a also modifies the GABAA receptor-channel kinetics. Immunoassays showed that both GABAA and ASIC1a proteins were co-immunoprecipitated mutually either in HEK293 cells co-transfected with GABAA and ASIC1a or in primary cultured DRG neurons. Our results indicate that putative GABAA and ASIC1a channels functionally interact with each other, possibly via an inter-molecular association by forming a novel protein complex.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Jinan, China
| | - Nannan Ning
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hua Sun
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Jinan, China
| | - Chuanfei Wei
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Dawei Chen
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A 2014; 111:8961-6. [PMID: 24889629 DOI: 10.1073/pnas.1407018111] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.
Collapse
|
40
|
Intracellular bicarbonate regulates action potential generation via KCNQ channel modulation. J Neurosci 2014; 34:4409-17. [PMID: 24647960 DOI: 10.1523/jneurosci.3836-13.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bicarbonate (HCO3(-)) is an abundant anion that regulates extracellular and intracellular pH. Here, we use patch-clamp techniques to assess regulation of hippocampal CA3 pyramidal cell excitability by HCO3(-) in acute brain slices from C57BL/6 mice. We found that increasing HCO3(-) levels enhances action potential (AP) generation in both the soma and axon initial segment (AIS) by reducing Kv7/KCNQ channel activity, independent of pH (i.e., at a constant pH of 7.3). Conversely, decreasing intracellular HCO3(-) leads to attenuation of AP firing. We show that HCO3(-) interferes with Kv7/KCNQ channel activation by phosphatidylinositol-4,5-biphosphate. Consequently, we propose that, even in the presence of a local depolarizing Cl(-) gradient, HCO3(-) efflux through GABAA receptors may ensure the inhibitory effect of axoaxonic cells at the AIS due to activation of Kv7/KCNQ channels.
Collapse
|
41
|
Chen ZL, Huang RQ. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus. Neuroscience 2014; 271:64-76. [PMID: 24780768 DOI: 10.1016/j.neuroscience.2014.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Z L Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - R Q Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States.
| |
Collapse
|
42
|
Diering GH, Numata M. Endosomal pH in neuronal signaling and synaptic transmission: role of Na(+)/H(+) exchanger NHE5. Front Physiol 2014; 4:412. [PMID: 24454292 PMCID: PMC3888932 DOI: 10.3389/fphys.2013.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022] Open
Abstract
Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
43
|
|
44
|
Abstract
H(+) ions are remarkably efficient modulators of neuronal excitability. This renders brain functions highly sensitive to small changes in pH which are generated "extrinsically" via mechanisms that regulate the acid-base status of the whole organism; and "intrinsically", by activity-induced transmembrane fluxes and de novo generation of acid-base equivalents. The effects of pH changes on neuronal excitability are mediated by diverse, largely synergistically-acting mechanisms operating at the level of voltage- and ligand-gated ion channels and gap junctions. In general, alkaline shifts induce an increase in excitability which is often intense enough to trigger epileptiform activity, while acidosis has the opposite effect. Brain pH changes show a wide variability in their spatiotemporal properties, ranging from long-lasting global shifts to fast and highly localized transients that take place in subcellular microdomains. Thirteen catalytically-active mammalian carbonic anhydrase isoforms have been identified, whereof 11 are expressed in the brain. Distinct CA isoforms which have their catalytic sites within brain cells and the interstitial fluid exert a remarkably strong influence on the dynamics of pH shifts and, consequently, on neuronal functions. In this review, we will discuss the various roles of H(+) as an intra- and extracellular signaling factor in the brain, focusing on the effects mediated by CAs. Special attention is paid on the developmental expression patterns and actions of the neuronal isoform, CA VII. Studies on the various functions of CAs will shed light on fundamental mechanisms underlying neuronal development, signaling and plasticity; on pathophysiological mechanisms associated with epilepsy and related diseases; and on the modes of action of CA inhibitors used as CNS-targeting drugs.
Collapse
Affiliation(s)
- Eva Ruusuvuori
- Department of Biosciences, University of Helsinki, Helsinki, Finland,
| | | |
Collapse
|
45
|
CHP1-mediated NHE1 biosynthetic maturation is required for Purkinje cell axon homeostasis. J Neurosci 2013; 33:12656-69. [PMID: 23904602 DOI: 10.1523/jneurosci.0406-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon degeneration is a critical pathological feature of many neurodegenerative diseases. Misregulation of local axonal ion homeostasis has been recognized as an important yet understudied mechanism for axon degeneration. Here we report a chemically induced, recessive mouse mutation, vacillator (vac), which causes ataxia and concomitant axon degeneration of cerebellar Purkinje cells. By positional cloning, we identified vac as a point mutation in the calcineurin-like EF hand protein 1 (Chp1) gene that resulted in the production of mutant CHP1 isoforms with an amino acid substitution in a functional EF-hand domain or a truncation of this motif by aberrant splicing and significantly reduced protein levels. CHP1 has been previously shown to interact with the sodium hydrogen exchanger 1 (NHE1), a major regulator of intracellular pH. We demonstrated that CHP1 assists in the full glycosylation of NHE1 that is necessary for the membrane localization of this transporter and that truncated isoforms of CHP1 were defective in stimulating NHE1 biosynthetic maturation. Consistent with this, membrane localization of NHE1 at axon terminals was greatly reduced in Chp1-deficient Purkinje cells before axon degeneration. Furthermore, genetic ablation of Nhe1 also resulted in Purkinje cell axon degeneration, pinpointing the functional convergence of the two proteins. Our findings clearly demonstrate that the polarized presynaptic localization of NHE/CHP1 is an important feature of neuronal axons and that selective disruption of NHE1-mediated proton homeostasis in axons can lead to degeneration, suggesting that local regulation of pH is pivotal for axon survival.
Collapse
|
46
|
Caldwell L, Harries P, Sydlik S, Schwiening CJ. Presynaptic pH and vesicle fusion in Drosophila larvae neurones. Synapse 2013; 67:729-40. [PMID: 23649934 PMCID: PMC4282566 DOI: 10.1002/syn.21678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/22/2013] [Indexed: 11/11/2022]
Abstract
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca2+-sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca2+i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca2+i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca2+-free solution. Acidification by propionate superfusion, NH4+ withdrawal, or the inhibition of acid extrusion on the Na+/H+ exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH4+ removal. In the presence of NH4+, 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca2+-dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Synapse 67:729–740, 2013.
Collapse
Affiliation(s)
- Lesley Caldwell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | | | | | | |
Collapse
|
47
|
Sinning A, Hübner CA. Minireview: pH and synaptic transmission. FEBS Lett 2013; 587:1923-8. [PMID: 23669358 DOI: 10.1016/j.febslet.2013.04.045] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
Abstract
As a general rule a rise in pH increases neuronal activity, whereas it is dampened by a fall of pH. Neuronal activity per se also challenges pH homeostasis by the increase of metabolic acid equivalents. Moreover, the negative membrane potential of neurons promotes the intracellular accumulation of protons. Synaptic key players such as glutamate receptors or voltage-gated calcium channels show strong pH dependence and effects of pH gradients on synaptic processes are well known. However, the processes and mechanisms that allow controlling the pH in synaptic structures and how these mechanisms contribute to normal synaptic function are only beginning to be resolved.
Collapse
Affiliation(s)
- Anne Sinning
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, Kollegiengasse 10, D-07743 Jena, Germany
| | | |
Collapse
|
48
|
NMDA receptor-dependent afterdepolarizations are curtailed by carbonic anhydrase 14: regulation of a short-term postsynaptic potentiation. J Neurosci 2013; 32:16754-62. [PMID: 23175829 DOI: 10.1523/jneurosci.1467-12.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the hippocampus, extracellular carbonic anhydrase (Car) speeds the buffering of an activity-generated rise in extracellular pH that impacts H(+)-sensitive NMDA receptors (NMDARs). We studied the role of Car14 in this brain structure, in which it is expressed solely on neurons. Current-clamp responses were recorded from CA1 pyramidal neurons in wild-type (WT) versus Car14 knock-out (KO) mice 2 s before (control) and after (test) a 10 pulse, 100 Hz afferent train. In both WT and KO, the half-width (HW) of the test response, and its number of spikes, were augmented relative to the control. An increase in presynaptic release was not involved, because AMPAR-mediated EPSCs were depressed after a train. The increases in HW and spike number were both greater in the Car14 KO. In 0 Mg(2+) saline with picrotoxin (using a 20 Hz train), the HW measures were still greater in the KO. The Car inhibitor benzolamide (BZ) enhanced the test response HW in the WT but had no effect on the already-prolonged HW in the KO. With intracellular MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d]-cyclohepten-5,10-imine maleate], the curtailed WT and KO responses were indistinguishable, and BZ caused no change. In contrast, the extracellular alkaline changes evoked by the train were not different between WT and KO, and BZ amplified these alkalinizations similarly. These data suggest that Car14 regulates pH transients in the perisynaptic microenvironment and govern their impact on NMDARs but plays little role in buffering pH shifts in the broader, macroscopic, extracellular space.
Collapse
|
49
|
Allman E, Waters K, Ackroyd S, Nehrke K. Analysis of Ca2+ signaling motifs that regulate proton signaling through the Na+/H+ exchanger NHX-7 during a rhythmic behavior in Caenorhabditis elegans. J Biol Chem 2013; 288:5886-95. [PMID: 23319594 DOI: 10.1074/jbc.m112.434852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane proton transporters contribute to pH homeostasis but have also been shown to transmit information between cells in close proximity through regulated proton secretion. For example, the nematode intestinal Na(+)/H(+) exchanger NHX-7 causes adjacent muscle cells to contract by transiently acidifying the extracellular space between the intestine and muscle. NHX-7 operates during a Ca(2+)-dependent rhythmic behavior and contains several conserved motifs for regulation by Ca(2+) input, including motifs for calmodulin and phosphatidylinositol 4,5-bisphosphate binding, protein kinase C- and calmodulin-dependent protein kinase type II phosphorylation, and a binding site for calcineurin homologous protein. Here, we tested the idea that Ca(2+) input differentiates proton signaling from pH housekeeping activity. Each of these motifs was mutated, and their contribution to NHX-7 function was assessed. These functions included pH recovery from acidification in cells in culture expressing recombinant NHX-7, extracellular acidification measured during behavior in live moving worms, and muscle contraction strength as a result of this acidification. Our data suggest that multiple levels of Ca(2+) input regulate NHX-7, whose transport capacity normally exceeds the minimum necessary to cause muscle contraction. Furthermore, extracellular acidification limits NHX-7 proton transport through feedback inhibition, likely to prevent metabolic acidosis from occurring. Our findings are consistent with an integrated network whereby both Ca(2+) and pH contribute to proton signaling. Finally, our results obtained by expressing rat NHE1 in Caenorhabditis elegans suggest that a conserved mechanism of regulation may contribute to cell-cell communication or proton signaling by Na(+)/H(+) exchangers in mammals.
Collapse
Affiliation(s)
- Erik Allman
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
50
|
Hugel S, Kadiri N, Rodeau JL, Gaillard S, Schlichter R. pH-dependent inhibition of native GABA(A) receptors by HEPES. Br J Pharmacol 2012; 166:2402-16. [PMID: 22452286 DOI: 10.1111/j.1476-5381.2012.01956.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Artificial buffers such as HEPES are extensively used to control extracellular pH (pH(e) ) to investigate the effect of H(+) ions on GABA(A) receptor function. EXPERIMENTAL APPROACH In neurones cultured from spinal cord dorsal horn (DH), dorsal root ganglia (DRG) and cerebellar granule cells (GC) of neonatal rats, we studied the effect of pH(e) on currents induced by GABA(A) receptor agonists, controlling pH(e) with HCO(3) (-) or different concentrations of HEPES. KEY RESULTS Changing HEPES concentration from 1 to 20 mM at constant pH(e) strongly inhibited the currents induced by submaximal GABA applications, but not those induced by glycine or glutamate, on DH, DRG or GC neurones, increasing twofold the EC(50) for GABA in DH neurones and GC. Submaximal GABA(A) receptor-mediated currents were also inhibited by piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 3-(N-morpholino)propanesulfonic acid, tris(hydroxymethyl)aminomethane or imidazole. PIPES and HEPES, both piperazine derivatives, similarly inhibited GABA(A) receptors, whereas the other buffers had weaker effects and 2-(N-morpholino)ethanesulfonic acid had no effect. HEPES-induced inhibition of submaximal GABA(A) receptor-mediated currents was unaffected by diethylpyrocarbonate, a histidine-modifying reagent. HEPES-induced inhibition of GABA(A) receptors was independent of membrane potential, HCO(3) (-) and intracellular Cl(-) concentration and was not modified by flumazenil, which blocks the benzodiazepine binding site. However, it strongly depended on pH(e) . CONCLUSIONS AND IMPLICATIONS Inhibition of GABA(A) receptors by HEPES depended on pH(e) , leading to an apparent H(+) -induced inhibition of DH GABA(A) receptors, unrelated to the pH sensitivity of these receptors in both low and physiological buffering conditions, suggesting that protonated HEPES caused this inhibition.
Collapse
Affiliation(s)
- S Hugel
- Nociception et Douleur, INCI, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|