1
|
Larsson I, Held F, Popova G, Koc A, Kundu S, Jörnsten R, Nelander S. Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers. Nat Commun 2024; 15:9699. [PMID: 39516198 PMCID: PMC11549355 DOI: 10.1038/s41467-024-53954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Nervous system cancers exhibit diverse transcriptional cell states influenced by normal development, injury response, and growth. However, the understanding of these states' regulation and pharmacological relevance remains limited. Here we present "single-cell regulatory-driven clustering" (scregclust), a method that reconstructs cellular regulatory programs from extensive collections of single-cell RNA sequencing (scRNA-seq) data from both tumors and developing tissues. The algorithm efficiently divides target genes into modules, predicting key transcription factors and kinases with minimal computational time. Applying this method to adult and childhood brain cancers, we identify critical regulators and suggest interventions that could improve temozolomide treatment in glioblastoma. Additionally, our integrative analysis reveals a meta-module regulated by SPI1 and IRF8 linked to an immune-mediated mesenchymal-like state. Finally, scregclust's flexibility is demonstrated across 15 tumor types, uncovering both pan-cancer and specific regulators. The algorithm is provided as an easy-to-use R package that facilitates the exploration of regulatory programs underlying cell plasticity.
Collapse
Affiliation(s)
- Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix Held
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gergana Popova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Alper Koc
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
2
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
3
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Malik SC, Lin JD, Ziegler-Waldkirch S, Tholen S, Deshpande SS, Schwabenland M, Schilling O, Vlachos A, Meyer-Luehmann M, Schachtrup C. Tpr Misregulation in Hippocampal Neural Stem Cells in Mouse Models of Alzheimer's Disease. Cells 2023; 12:2757. [PMID: 38067185 PMCID: PMC10706632 DOI: 10.3390/cells12232757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-β plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.
Collapse
Affiliation(s)
- Subash C. Malik
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Sachin S. Deshpande
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Qiu JJ, Liu YN, Wei H, Zeng F, Yan JB. Single-cell RNA sequencing of neural stem cells derived from human trisomic iPSCs reveals the abnormalities during neural differentiation of Down syndrome. Front Mol Neurosci 2023; 16:1137123. [PMID: 37396785 PMCID: PMC10311021 DOI: 10.3389/fnmol.2023.1137123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Down syndrome (DS) is the most common genetic condition that causes intellectual disability in humans. The molecular mechanisms behind the DS phenotype remain unclear. Therefore, in this study, we present new findings on its molecular mechanisms through single-cell RNA sequencing. Methods Induced pluripotent stem cells (iPSCs) from the patients with DS and the normal control (NC) patients were differentiated into iPSCs-derived neural stem cells (NSCs). Single-cell RNA sequencing was performed to achieve a comprehensive single-cell level differentiation roadmap for DS-iPSCs. Biological experiments were also performed to validate the findings. Results and Discussion The results demonstrated that iPSCs can differentiate into NSCs in both DS and NC samples. Furthermore, 19,422 cells were obtained from iPSC samples (8,500 cells for DS and 10,922 cells for the NC) and 16,506 cells from NSC samples (7,182 cells for DS and 9,324 cells for the NC), which had differentiated from the iPSCs. A cluster of DS-iPSCs, named DS-iPSCs-not differentiated (DSi-PSCs-ND), which had abnormal expression patterns compared with NC-iPSCs, were demonstrated to be unable to differentiate into DS-NSCs. Further analysis of the differentially expressed genes revealed that inhibitor of differentiation family (ID family) members, which exhibited abnormal expression patterns throughout the differentiation process from DS-iPSCs to DS-NSCs, may potentially have contributed to the neural differentiation of DS-iPSCs. Moreover, abnormal differentiation fate was observed in DS-NSCs, which resulted in the increased differentiation of glial cells, such as astrocytes, but decreased differentiation into neuronal cells. Furthermore, functional analysis demonstrated that DS-NSCs and DS-NPCs had disorders in axon and visual system development. The present study provided a new insight into the pathogenesis of DS.
Collapse
Affiliation(s)
- Jia-jun Qiu
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-na Liu
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wei
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanyi Zeng
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hiso-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jing-bin Yan
- Shanghai Children’s Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| |
Collapse
|
6
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
7
|
Luo J, Wang Y, Chang HM, Zhu H, Yang J, Leung PCK. ID3 mediates BMP2-induced downregulation of ICAM1 expression in human endometiral stromal cells and decidual cells. Front Cell Dev Biol 2023; 11:1090593. [PMID: 36910152 PMCID: PMC9998904 DOI: 10.3389/fcell.2023.1090593] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Recurrent pregnancy loss (RPL) remains an unsolved problem in obstetrics and gynecology, and up to 50% of RPL cases are unexplained. Unexplained RPL (uRPL) is widely considered to be related to an aberrant endometrial microenvironment. BMP2 is an important factor involved in endometrial decidualization and embryo implantation, and intercellular adhesion molecule 1 (ICAM1) is a critical inflammatory regulator in the endometrium. In this study, we found that endometrial samples obtained from Unexplained RPL patients have significantly lower BMP2 and higher ICAM1 levels than fertile controls. For further research on the relationship between BMP2 and ICAM1 and the potential molecular mechanisms in Unexplained RPL, immortalized human endometrial stromal cells (HESCs) and primary human decidual stromal cells (HDSCs) were used as study models. Our results showed that BMP2 significantly decreased ICAM1 expression by upregulating DNA-binding protein inhibitor 3 (ID3) in both HESCs and HDSCs. Using kinase receptor inhibitors (dorsomorphin homolog 1 (DMH-1) and dorsomorphin) and siRNA transfection, it has been found that the upregulation of ID3 and the following downregulation of ICAM1 induced by BMP2 is regulated through the ALK3-SMAD4 signaling pathway. This research gives a hint of a novel mechanism by which BMP2 regulates ICAM1 in the human endometrium, which provides insights into potential therapeutics for unexplained RPL.
Collapse
Affiliation(s)
- Jin Luo
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yaqin Wang
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jing Yang
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features. Nat Neurosci 2022; 25:1626-1638. [PMID: 36443610 DOI: 10.1038/s41593-022-01192-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease.
Collapse
|
9
|
IRES-mediated Wnt2 translation in apoptotic neurons triggers astrocyte dedifferentiation. NPJ Regen Med 2022; 7:42. [PMID: 36056026 PMCID: PMC9440034 DOI: 10.1038/s41536-022-00248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human. Local delivery of Wnt2 shRNA abolished the dedifferentiation of astrocytes while over-expressing Wnt2 promoted progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and dedifferentiation of astrocytes was compromised in ischemic caspase-3−/− cortex. Over-expressing stabilized β-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic caspase-3−/− mice. Further analysis showed that apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-mediated translation. Knocking down death associated protein 5 (DAP5), a key protein in IRES-mediated protein translation, significantly diminished Wnt activation and astrocyte dedifferentiation. Our data demonstrated an apoptosis-initiated Wnt-activating mechanism which triggers astrocytic dedifferentiation and facilitates neuronal regeneration.
Collapse
|
10
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
11
|
Conforti P, Mezey S, Nath S, Chu YH, Malik SC, Martínez Santamaría JC, Deshpande SS, Pous L, Zieger B, Schachtrup C. Fibrinogen regulates lesion border-forming reactive astrocyte properties after vascular damage. Glia 2022; 70:1251-1266. [PMID: 35244976 DOI: 10.1002/glia.24166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/07/2022]
Abstract
Reactive astrocytes at the border of damaged neuronal tissue organize into a barrier surrounding the fibrotic lesion core, separating this central region of inflammation and fibrosis from healthy tissue. Astrocytes are essential to form the border and for wound repair but interfere with neuronal regeneration. However, the mechanisms driving these astrocytes during central nervous system (CNS) disease are unknown. Here we show that blood-derived fibrinogen is enriched at the interface of lesion border-forming elongated astrocytes after cortical brain injury. Anticoagulant treatment depleting fibrinogen reduces astrocyte reactivity, extracellular matrix deposition and inflammation with no change in the spread of inflammation, whereas inhibiting fibrinogen conversion into fibrin did not significantly alter astrocyte reactivity, but changed the deposition of astrocyte extracellular matrix. RNA sequencing of fluorescence-activated cell sorting-isolated astrocytes of fibrinogen-depleted mice after cortical injury revealed repressed gene expression signatures associated with astrocyte reactivity, extracellular matrix deposition and immune-response regulation, as well as increased gene expression signatures associated with astrocyte metabolism and astrocyte-neuron communication. Systemic pharmacologic depletion of fibrinogen resulted in the absence of elongated, border-forming astrocytes and increased the survival of neurons in the lesion core after cortical injury. These results identify fibrinogen as a critical trigger for lesion border-forming astrocyte properties in CNS disease.
Collapse
Affiliation(s)
- Pasquale Conforti
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Szilvia Mezey
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Subash C Malik
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lauriane Pous
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
David-Bercholz J, Kuo CT, Deneen B. Astrocyte and Oligodendrocyte Responses From the Subventricular Zone After Injury. Front Cell Neurosci 2022; 15:797553. [PMID: 35002630 PMCID: PMC8740317 DOI: 10.3389/fncel.2021.797553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Under normal conditions, neural stem cells (NSCs or B cells) in the adult subventricular zone (SVZ) give rise to amplifying neural progenitor cells (NPCs or C cells), which can produce neuroblasts (or A cells) that migrate to the olfactory bulb and differentiate into new neurons. However, following brain injury, these cells migrate toward the injury site where they differentiate into astrocytes and oligodendrocytes. In this review, we will focus on recent findings that chronicle how astrocytes and oligodendrocytes derived from SVZ-NSCs respond to different types of injury. We will also discuss molecular regulators of SVZ-NSC proliferation and their differentiation into astrocytes and oligodendrocytes. Overall, the goal of this review is to highlight how SVZ-NSCs respond to injury and to summarize the regulatory mechanisms that oversee their glial response. These molecular and cellular processes will provide critical insights needed to develop strategies to promote brain repair following injury using SVZ-NSCs.
Collapse
Affiliation(s)
- Jennifer David-Bercholz
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States.,Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Malik S, Chu YH, Schachtrup C. Pointing fingers at blood contact: mechanisms of subventricular zone neural stem cell differentiation. Neural Regen Res 2022; 18:137-138. [PMID: 35799532 PMCID: PMC9241427 DOI: 10.4103/1673-5374.338998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
P75 neurotrophin receptor controls subventricular zone neural stem cell migration after stroke. Cell Tissue Res 2021; 387:415-431. [PMID: 34698916 PMCID: PMC8975773 DOI: 10.1007/s00441-021-03539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR−/−) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR−/− NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR−/− NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR−/− NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.
Collapse
|
15
|
Chen Z, Shen G, Tan X, Qu L, Zhang C, Ma L, Luo P, Cao X, Yang F, Liu Y, Wang Y, Shi C. ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl Med 2021; 10:1637-1649. [PMID: 34520124 PMCID: PMC8641086 DOI: 10.1002/sctm.21-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing requires intricate synchronization of several key processes. Among them, local nerve regeneration is known to be vitally important for proper repair. However, the underlying mechanisms of local nerve regeneration are still unclear. Fibroblasts are one of the key cell types within the skin whose role in local nerve regeneration has not been extensively studied. In our study, we found skin fibroblasts were in tight contact with regenerated nerves during wound healing, while rare interactions were shown under normal circumstances. Moreover, skin fibroblasts surrounding the nerves were shown to be activated and reprogrammed to exhibit neural cell‐like properties by upregulated expressing inhibitor of DNA binding 1 (ID1) and ID3. Furthermore, we identified the regulation of integrin α6 (Itga6) by ID1/ID3 in fibroblasts as the mechanism for axon guidance. Accordingly, transplantation of the ID1/ID3‐overexpressing fibroblasts or topical injection of ID1/ID3 lentivirus significantly promoted local nerve regeneration and wound healing following skin excision or sciatic nerve injury. Therefore, we demonstrated a new role for skin fibroblasts in nerve regeneration following local injury by directly contacting and guiding axon regrowth, which might hold therapeutic potential in peripheral nerve disorders and peripheral neuropathies in relatively chronic refractory wounds.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Gufang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Zhou D, Fan J, Liu Z, Tang R, Wang X, Bo H, Zhu F, Zhao X, Huang Z, Xing L, Tao K, Zhang H, Nie H, Zhang H, Zhu W, He Z, Fan L. TCF3 Regulates the Proliferation and Apoptosis of Human Spermatogonial Stem Cells by Targeting PODXL. Front Cell Dev Biol 2021; 9:695545. [PMID: 34422820 PMCID: PMC8377737 DOI: 10.3389/fcell.2021.695545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the initial cells for the spermatogenesis. Although much progress has been made on uncovering a number of modulators for the SSC fate decisions in rodents, the genes mediating human SSCs remain largely unclear. Here we report, for the first time, that TCF3, a member of the basic helix-loop-helix family of transcriptional modulator proteins, can stimulate proliferation and suppress the apoptosis of human SSCs through targeting podocalyxin-like protein (PODXL). TCF3 was expressed primarily in GFRA1-positive spermatogonia, and EGF (epidermal growth factor) elevated TCF3 expression level. Notably, TCF3 enhanced the growth and DNA synthesis of human SSCs, whereas it repressed the apoptosis of human SSCs. RNA sequencing and chromatin immunoprecipitation (ChIP) assays revealed that TCF3 protein regulated the transcription of several genes, including WNT2B, TGFB3, CCN4, MEGF6, and PODXL, while PODXL silencing compromised the stem cell activity of SSCs. Moreover, the level of TCF3 protein was remarkably lower in patients with spermatogenesis failure when compared to individuals with obstructive azoospermia with normal spermatogenesis. Collectively, these results implicate that TCF3 modulates human SSC proliferation and apoptosis through PODXL. This study is of great significance since it would provide a novel molecular mechanism underlying the fate determinations of human SSCs and it could offer new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Dai Zhou
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Zhizhong Liu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Department of Urology, Hunan Cancer Hospital, Changsha, China
| | - Ruiling Tang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xingming Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hao Bo
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fang Zhu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xueheng Zhao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Zenghui Huang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liu Xing
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ke Tao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China.,The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Han Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Huan Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wenbing Zhu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Liqing Fan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| |
Collapse
|
18
|
Chu YH, Lin JD, Nath S, Schachtrup C. Id proteins: emerging roles in CNS disease and targets for modifying neural stemcell behavior. Cell Tissue Res 2021; 387:433-449. [PMID: 34302526 PMCID: PMC8975794 DOI: 10.1007/s00441-021-03490-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Neural stem/progenitor cells (NSPCs) are found in the adult brain and spinal cord, and endogenous or transplanted NSPCs contribute to repair processes and regulate immune responses in the CNS. However, the molecular mechanisms of NSPC survival and integration as well as their fate determination and functionality are still poorly understood. Inhibitor of DNA binding (Id) proteins are increasingly recognized as key determinants of NSPC fate specification. Id proteins act by antagonizing the DNA-binding activity of basic helix-loop-helix (bHLH) transcription factors, and the balance of Id and bHLH proteins determines cell fate decisions in numerous cell types and developmental stages. Id proteins are central in responses to environmental changes, as they occur in CNS injury and disease, and cellular responses in adult NSPCs implicate Id proteins as prime candidates for manipulating stemcell behavior. Here, we outline recent advances in understanding Id protein pleiotropic functions in CNS diseases and propose an integrated view of Id proteins and their promise as potential targets in modifying stemcell behavior to ameliorate CNS disease.
Collapse
Affiliation(s)
- Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Abstract
Mouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.5, neocortical RGCs start to generate ASCL1+EGFR+ apical multipotent intermediate progenitors (MIPCs), which then differentiate into basal MIPCs that express ASCL1, EGFR, OLIG2, and MKI67. These basal MIPCs undergo several rounds of divisions to generate most of the cortical oligodendrocytes and astrocytes and a subpopulation of OB interneurons. Finally, single-cell ATAC-Seq supported our model for the genetic logic underlying the specification and differentiation of cortical glial cells and OB interneurons. Taken together, this work reveals the process of cortical radial glial cell lineage progression and the developmental origins of cortical astrocytes and oligodendrocytes.
Collapse
|
20
|
Sedlmeier G, Al‐Rawi V, Buchert J, Yserentant K, Rothley M, Steshina A, Gräßle S, Wu R, Hurrle T, Richer W, Decraene C, Thiele W, Utikal J, Abuillan W, Tanaka M, Herten D, Hill CS, Garvalov BK, Jung N, Bräse S, Sleeman JP. Id1 and Id3 Are Regulated Through Matrix‐Assisted Autocrine BMP Signaling and Represent Therapeutic Targets in Melanoma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Georg Sedlmeier
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Vanessa Al‐Rawi
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Justyna Buchert
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Klaus Yserentant
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | - Melanie Rothley
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Anastasia Steshina
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Simone Gräßle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Ruo‐Lin Wu
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Thomas Hurrle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Wilfrid Richer
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Charles Decraene
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Wilko Thiele
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Jochen Utikal
- Skin Cancer Unit German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Dermatology, Venereology and Allergology University Medical Center Mannheim Ruprecht‐Karl University of Heidelberg Theodor‐Kutzer‐Ufer 1–3 68167 Mannheim Germany
| | - Wasim Abuillan
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- Center for Integrative Medicine and Physics Institute for Advanced Study Kyoto University Yoshida Ushinomiya‐cho Sakyo‐Ku Kyoto 606‐8501 Japan
- Center for Integrative Medicine and Physics Institute for Advanced Study, Kyoto University Kyoto 606‐8501 Japan
| | - Dirk‐Peter Herten
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | | | - Boyan K. Garvalov
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
21
|
Jia Y, Wang G, Ye Y, Kang E, Chen H, Guo Z, He X. Niche Cells Crosstalk In Neuroinflammation After Traumatic Brain Injury. Int J Biol Sci 2021; 17:368-378. [PMID: 33390856 PMCID: PMC7757042 DOI: 10.7150/ijbs.52169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as the disease with high morbidity and disability around world in spite of the work ongoing in neural protection. Due to heterogeneity among the patients, it's still hard to acquire satisfying achievements in clinic. Neuroinflammation, which exists since primary injury occurs, with elusive duality, appear to be of significance from recovery of injury to neurogenesis. In recent years, studied have revealed that communication in neurogenic niche is more than “cell to cell” communication, and study on NSCs represent it as central role in the progress of neural regeneration. Hence, the neuroinflammation-affecting crosstalk after TBI, and clarifying definitive role of NSCs in the course of regeneration is a promising subject for researchers, for its great potential in overcoming the frustrating status quo in clinic, promoting welfare of TBI patient.
Collapse
Affiliation(s)
- Yibin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Guanyi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yuqing Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha 410000, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| |
Collapse
|
22
|
Lin JD, Chu YH, Nath S, Schachtrup C. Fibrinogen triggered signaling pathways modify stem cell behavior in central nervous system disease. Neural Regen Res 2021; 16:1196-1197. [PMID: 33269773 PMCID: PMC8224109 DOI: 10.4103/1673-5374.300436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jia-Di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf 2021; 20:20-32. [PMID: 33388438 DOI: 10.1016/j.jtos.2020.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. METHODS Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. RESULTS Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. CONCLUSIONS This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.
Collapse
|
24
|
Leggieri A, Palladino A, Attanasio C, Avallone L, de Girolamo P, D'Angelo L, Lucini C. Id(entifying) the inhibitor of DNA binding 3 in the brain of Nothobranchius furzeri upon aging. J Anat 2020; 238:1106-1115. [PMID: 33314133 PMCID: PMC8053586 DOI: 10.1111/joa.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023] Open
Abstract
Inhibitors of DNA (Id) are key transcription factors (TFs) regulating neurogenic processes. They belong to the helix-loop-helix (HLH) TF family and are dominant negative regulators of basic HLH proteins (bHLHs). Specifically, they inhibit cell differentiation and enhance cell proliferation and motility. The Id family includes four members, Id1, Id2, Id3, and Id4, which have been identified in nearly all vertebrates. The transcript catalog of the African turquoise killifish, Nothobranchius furzeri, contains all four TFs and has evolved showing positive selection for Id3. N. furzeri, a teleost, is the short-lived vertebrate and is gaining increasing scientific interest as a new model organism in aging research. It is characterized by embryonic diapause, explosive sexual maturation, and rapid aging. In this study, we investigated both the expression and the role of Id3 in the brain of this model organism. Interestingly, Id3 was upregulated age-dependently along with a distribution pattern resembling that of other vertebrates. Additionally, the gene has undergone positive selection during evolution and shows a high degree of conservation relative to that of other vertebrates. These features make N. furzeri a valid tool for aging studies and a potential model in translational research.
Collapse
Affiliation(s)
- Adele Leggieri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Antonio Palladino
- CESMA-Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Diotel N, Lübke L, Strähle U, Rastegar S. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Front Neurosci 2020; 14:568930. [PMID: 33071740 PMCID: PMC7538694 DOI: 10.3389/fnins.2020.568930] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to mammals, the adult zebrafish brain shows neurogenic activity in a multitude of niches present in almost all brain subdivisions. Irrespectively, constitutive neurogenesis in the adult zebrafish and mouse telencephalon share many similarities at the cellular and molecular level. However, upon injury during tissue repair, the situation is entirely different. In zebrafish, inflammation caused by traumatic brain injury or by induced neurodegeneration initiates specific and distinct neurogenic programs that, in combination with signaling pathways implicated in constitutive neurogenesis, quickly, and efficiently overcome the loss of neurons. In the mouse brain, injury-induced inflammation promotes gliosis leading to glial scar formation and inhibition of regeneration. A better understanding of the regenerative mechanisms occurring in the zebrafish brain could help to develop new therapies to combat the debilitating consequences of brain injury, stroke, and neurodegeneration. The aim of this review is to compare the properties of neural progenitors and the signaling pathways, which control adult neurogenesis and regeneration in the zebrafish and mammalian telencephalon.
Collapse
Affiliation(s)
- Nicolas Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
26
|
Cytokines Induce Monkey Neural Stem Cell Differentiation through Notch Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308526. [PMID: 32509845 PMCID: PMC7244951 DOI: 10.1155/2020/1308526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/01/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
The mammalian central nervous system (CNS) has a limited ability to renew the damaged cells after a brain or spinal cord injury whether it is nonhuman primates like monkeys or humans. Transplantation of neural stem cells (NSCs) is a potential therapy for CNS injuries due to their pluripotency and differentiation abilities. Cytokines play an important role in CNS development and repair of CNS injuries. However, the detailed cytokine signaling response in monkey neural stem cells is rarely studied. In our previous research, we isolated NSCs from the adult monkey brain and found the effects of cytokines on monkey NSCs. Now, we further analyzed the regulation mechanisms of cytokines to the proliferation of monkey NSCs such as bone morphogenic protein 4 (BMP4), BMP4/leukaemia inhibitory factor (LIF), or retinoic acid (RA)/Forskolin. The data showed that BMP4 inhibited cell proliferation to arrest, but it did not affect the stemness of NSCs. BMP4/LIF promoted the astrocyte-like differentiation of monkey NSCs, and RA/forskolin induced the neuronal differentiation of monkey NSCs. BMP4/LIF and RA/forskolin induced monkey NSC differentiation by regulating Notch signaling. These results provide some theoretical evidence for NSC therapy to brain or spinal cord injury in regenerative medicine.
Collapse
|
27
|
Remesal L, Roger-Baynat I, Chirivella L, Maicas M, Brocal-Ruiz R, Pérez-Villalba A, Cucarella C, Casado M, Flames N. PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 2020; 147:dev.186841. [PMID: 32156753 DOI: 10.1242/dev.186841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 02/03/2023]
Abstract
Neuronal specification is a protracted process that begins with the commitment of progenitor cells and culminates with the generation of mature neurons. Many transcription factors are continuously expressed during this process but it is presently unclear how these factors modify their targets as cells transition through different stages of specification. In olfactory bulb adult neurogenesis, the transcription factor PBX1 controls neurogenesis in progenitor cells and the survival of migrating neuroblasts. Here, we show that, at later differentiation stages, PBX1 also acts as a terminal selector for the dopaminergic neuron fate. PBX1 is also required for the morphological maturation of dopaminergic neurons and to repress alternative interneuron fates, findings that expand the known repertoire of terminal-selector actions. Finally, we reveal that the temporal diversification of PBX1 functions in neuronal specification is achieved, at least in part, through the dynamic regulation of alternative splicing. In Caenorhabditis elegans, PBX/CEH-20 also acts as a dopaminergic neuron terminal selector, which suggests an ancient role for PBX factors in the regulation of terminal differentiation of dopaminergic neurons.
Collapse
Affiliation(s)
- Laura Remesal
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Isabel Roger-Baynat
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Laura Chirivella
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Ana Pérez-Villalba
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), and Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carme Cucarella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| |
Collapse
|
28
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
29
|
Pous L, Deshpande SS, Nath S, Mezey S, Malik SC, Schildge S, Bohrer C, Topp K, Pfeifer D, Fernández-Klett F, Doostkam S, Galanakis DK, Taylor V, Akassoglou K, Schachtrup C. Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat Commun 2020; 11:630. [PMID: 32005867 PMCID: PMC6994610 DOI: 10.1038/s41467-020-14466-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.
Collapse
Affiliation(s)
- Lauriane Pous
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Szilvia Mezey
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Subash C Malik
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Schildge
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Bohrer
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Könül Topp
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Francisco Fernández-Klett
- Department of Neuropsychiatry & Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, University Medical Center Freiburg, University of Freiburg, 79104, Freiburg, Germany
| | - Dennis K Galanakis
- Department of Pathology, State University of New York, Stony Brook, NY, 11794, USA
| | - Verdon Taylor
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Yamazaki T, Liu L, Manley JL. TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1. RNA (NEW YORK, N.Y.) 2019; 25:1497-1508. [PMID: 31391218 PMCID: PMC6795145 DOI: 10.1261/rna.072298.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 05/22/2023]
Abstract
TCF3, also known as E2A, is a well-studied transcription factor that plays an important role in stem cell maintenance and hematopoietic development. The TCF3 gene encodes two related proteins, E12 and E47, which arise from mutually exclusive alternative splicing (MEAS). Since these two proteins have different DNA binding and dimerization domains, this AS event must be strictly regulated to ensure proper isoform ratios. Previously, we found that heterogeneous nuclear ribonucleoprotein (hnRNP) H1/F regulates TCF3 AS by binding to exonic splicing silencers (ESSs) in exon 18b. Here, we identify conserved intronic splicing silencers (ISSs) located between, and far from, the two mutually exclusive exons, and show that they are essential for MEAS. Further, we demonstrate that the hnRNP PTBP1 binds the ISS and is a regulator of TCF3 AS. We also demonstrate that hnRNP H1 and PTBP1 regulate TCF3 AS reciprocally, and that position-dependent interactions between these factors are essential for proper TCF3 MEAS. Our study provides a new model in which MEAS is regulated by cooperative actions of distinct hnRNPs bound to ISSs and ESSs.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
31
|
α2-Chimaerin is essential for neural stem cell homeostasis in mouse adult neurogenesis. Proc Natl Acad Sci U S A 2019; 116:13651-13660. [PMID: 31209021 PMCID: PMC6613132 DOI: 10.1073/pnas.1903891116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult hippocampal neurogenesis, the lifelong generation of neurons in the dentate gyrus, is important for brain functioning, including learning, memory, and mood regulation. Its dysregulation is associated with cognitive decline and mood disorders. We discovered that the Rho GTPase-activating protein, α2-chimaerin, is essential for adult hippocampal neurogenesis, as it precisely regulates the transition of neural stem cells (NSCs) into intermediate progenitor cells (IPCs). Conditional knockout of α2-chimaerin in adult NSCs in the mouse hippocampus resulted in a loss of the Klotho-expressing NSC population and the premature differentiation of NSCs into IPCs, which impaired neuron production. These mice also exhibited compromised hippocampal synaptic plasticity and anxiety/depression-like behaviors. Thus, our findings revealed that α2-chimaerin is important in adult hippocampal neurogenesis. Adult hippocampal neurogenesis involves the lifelong generation of neurons. The process depends on the homeostasis of the production of neurons and maintenance of the adult neural stem cell (NSC) pool. Here, we report that α2-chimaerin, a Rho GTPase-activating protein, is essential for NSC homeostasis in adult hippocampal neurogenesis. Conditional deletion of α2-chimaerin in adult NSCs resulted in the premature differentiation of NSCs into intermediate progenitor cells (IPCs), which ultimately depleted the NSC pool and impaired neuron generation. Single-cell RNA sequencing and pseudotime analyses revealed that α2-chimaerin–conditional knockout (α2-CKO) mice lacked a unique NSC subpopulation, termed Klotho-expressing NSCs, during the transition of NSCs to IPCs. Furthermore, α2-CKO led to defects in hippocampal synaptic plasticity and anxiety/depression-like behaviors in mice. Our findings collectively demonstrate that α2-chimaerin plays an essential role in adult hippocampal NSC homeostasis to maintain proper brain function.
Collapse
|
32
|
Stratton JA, Shah P, Sinha S, Crowther E, Biernaskie J. A tale of two cousins: Ependymal cells, quiescent neural stem cells and potential mechanisms driving their functional divergence. FEBS J 2019; 286:3110-3116. [PMID: 31111999 DOI: 10.1111/febs.14930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Recent work has suggested that stem cells exhibit far greater heterogeneity than initially thought. Indeed, their dynamic nature and shared traits with surrounding niche cells have made prospective identification of adult neural stem cells (NSCs) challenging. Refined fate mapping strategies and single-cell omics techniques have begun to clarify functionally distinct states within the adult NSC pool, the molecular signatures that govern these states, and the functional contributions/interactions with neighboring cells within the subventricular niche. Ependymal cells are the epithelial cells which line the ventricular system and reside in the same niche as NSCs. Our own work has revealed that, despite sharing similar embryonic origins with NSCs and close geographic proximity, ependymal cells are transcriptionally distinct and fail to exhibit stem cell function in vivo, even following injury. Intriguingly, comparison of ependymal cells with qNSCs revealed transcriptional signatures that are largely overlapping, suggesting that post-transcriptional regulation might underlie their divergent phenotypes. Additional analysis of ependymal versus qNSC gene regulatory network activation supports this notion. This Viewpoint summarizes the historical confusion regarding the identity of NSCs within the lateral ventricle niche and describes recent work that provides greater appreciation for the diverse functional states within the NSC niche.
Collapse
Affiliation(s)
- Jo Anne Stratton
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Emilie Crowther
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
33
|
Huang L, Cai J, Guo H, Gu J, Tong Y, Qiu B, Wang C, Li M, Xia L, Zhang J, Wu H, Kong X, Xia Q. ID3 Promotes Stem Cell Features and Predicts Chemotherapeutic Response of Intrahepatic Cholangiocarcinoma. Hepatology 2019; 69:1995-2012. [PMID: 30520117 DOI: 10.1002/hep.30404] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/25/2018] [Indexed: 12/15/2022]
Abstract
Cancer stem cells contribute to a high rate of recurrence and chemotherapeutic resistance in many types of cancer, including intrahepatic cholangiocarcinoma (ICC). Inhibitor of differentiation 3 (ID3) has been reported to promote cancer stem cells, but its role in ICC is obscure. In this study, we identified that ID3 is highly expressed in human ICC tissues compared with matched normal tissues and correlates with poor prognosis. Functional studies demonstrate that ID3 is required for stemness maintenance in cholangiocarcinoma both in vitro and in vivo. Consistent with the regulation of cancer stem cell features by ID3, transgenic expression of ID3 enhances chemoresistance of cholangiocarcinoma cells. Moreover, we found that ICC patients with low ID3 levels benefited from postoperative transarterial chemoembolization, whereas patients with high ID3 levels did not, indicating the significance of ID3 in individualized ICC therapy. Mechanistically, ID3 could interact with E47 and block E47 recruitment to the promoter of β-catenin, which leads to activation of Wnt/β-catenin signaling. Conclusion: Our results show that ID3 could promote the stemness of ICC by increasing the transcriptional activity of β-catenin and could serve as a biomarker in predicting ICC patients' response to adjuvant chemotherapeutics.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Cai
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Guo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyang Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Manzo G. Similarities Between Embryo Development and Cancer Process Suggest New Strategies for Research and Therapy of Tumors: A New Point of View. Front Cell Dev Biol 2019; 7:20. [PMID: 30899759 PMCID: PMC6416183 DOI: 10.3389/fcell.2019.00020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Here, I propose that cancer stem cells (CSCs) would be equivalent to para-embryonic stem cells (p-ESCs), derived from adult cells de-re-programmed to a ground state. p-ESCs would differ from ESCs by the absence of genomic homeostasis. A p-ESC would constitute the cancer cell of origin (i-CSC or CSC0), capable of generating an initial tumor, corresponding to a pre-implantation blastocyst. In a niche with proper signals, it would engraft as a primary tumor, corresponding to a post-implantation blastocyst. i-CSC progeny would form primary pluripotent and slow self-renewing CSCs (CSC1s), blocked in an undifferentiated state, corresponding to epiblast cells; CSC1s would be tumor-initiating cells (TICs). CSC1s would generate secondary CSCs (CSC2s), corresponding to hypoblast cells; CSC2s would be tumor growth cells (TGCs). CSC1s/CSC2s would generate tertiary CSCs (CSC3s), with a mesenchymal phenotype; CSC3s would be tumor migrating cells (TMCs), corresponding to mesodermal precursors at primitive streak. CSC3s with more favorable conditions (normoxia), by asymmetrical division, would differentiate into cancer progenitor cells (CPCs), and these into cancer differentiated cells (CDCs), thus generating a defined cell hierarchy and tumor progression, mimicking somito-histo-organogenesis. CSC3s with less favorable conditions (hypoxia) would delaminate and migrate as quiescent circulating micro-metastases, mimicking mesenchymal cells in gastrula morphogenetic movements. In metastatic niches, these CSC3s would install and remain dormant in the presence of epithelial/mesenchymal transition (EMT) signals and hypoxia. But, in the presence of mesenchymal/epithelial transition (MET) signals and normoxia, they would revert to self-renewing CSC1s, reproducing the same cell hierarchy of the primary tumor as macro-metastases. Further similarities between ontogenesis and oncogenesis involving crucial factors, such as ID, HSP70, HLA-G, CD44, LIF, and STAT3, are strongly evident at molecular, physiological and immunological levels. Much experimental data about these factors led to considering the cancer process as ectopic rudimentary ontogenesis, where CSCs have privileged immunological conditions. These would consent to CSC development in an adverse environment, just like an embryo, which is tolerated, accepted and favored by the maternal organism in spite of its paternal semi-allogeneicity. From all these considerations, novel research directions, potential innovative tumor therapy and prophylaxis strategies might, theoretically, result.
Collapse
Affiliation(s)
- Giovanni Manzo
- General Pathology, “La Sapienza” University of Rome, Retired, Botrugno, Italy
| |
Collapse
|
35
|
Abstract
In this review from Murre, the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed. Helix–loop–helix (HLH) proteins are dimeric transcription factors that control lineage- and developmental-specific gene programs. Genes encoding for HLH proteins arose in unicellular organisms >600 million years ago and then duplicated and diversified from ancestral genes across the metazoan and plant kingdoms to establish multicellularity. Hundreds of HLH proteins have been identified with diverse functions in a wide variety of cell types. HLH proteins orchestrate lineage specification, commitment, self-renewal, proliferation, differentiation, and homing. HLH proteins also regulate circadian clocks, protect against hypoxic stress, promote antigen receptor locus assembly, and program transdifferentiation. HLH proteins deposit or erase epigenetic marks, activate noncoding transcription, and sequester chromatin remodelers across the chromatin landscape to dictate enhancer–promoter communication and somatic recombination. Here the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92903, USA
| |
Collapse
|
36
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
37
|
Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nat Commun 2018. [PMID: 29535300 PMCID: PMC5849741 DOI: 10.1038/s41467-018-03476-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutational inactivation of the SWI/SNF chromatin regulator ATRX occurs frequently in gliomas, the most common primary brain tumors. Whether and how ATRX deficiency promotes oncogenesis by epigenomic dysregulation remains unclear, despite its recent implication in both genomic instability and telomere dysfunction. Here we report that Atrx loss recapitulates characteristic disease phenotypes and molecular features in putative glioma cells of origin, inducing cellular motility although also shifting differentiation state and potential toward an astrocytic rather than neuronal histiogenic profile. Moreover, Atrx deficiency drives widespread shifts in chromatin accessibility, histone composition, and transcription in a distribution almost entirely restricted to genomic sites normally bound by the protein. Finally, direct gene targets of Atrx that mediate specific Atrx-deficient phenotypes in vitro exhibit similarly selective misexpression in ATRX-mutant human gliomas. These findings demonstrate that ATRX deficiency and its epigenomic sequelae are sufficient to induce disease-defining oncogenic phenotypes in appropriate cellular and molecular contexts. ATRX inactivation frequently occurs in glioma. Here, the authors explore the role of ATRX inactivation in oncogenesis, highlighting ATRX deficiency driven epigenomic changes that influence the expression of genes crucial to the oncogenic phenotype.
Collapse
|
38
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
39
|
Cui Y, Han J, Xiao Z, Qi Y, Zhao Y, Chen B, Fang Y, Liu S, Wu X, Dai J. Systematic Analysis of mRNA and miRNA Expression of 3D-Cultured Neural Stem Cells (NSCs) in Spaceflight. Front Cell Neurosci 2018; 11:434. [PMID: 29375320 PMCID: PMC5768636 DOI: 10.3389/fncel.2017.00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, with the development of the space program there are growing concerns about the influence of spaceflight on tissue engineering. The purpose of this study was thus to determine the variations of neural stem cells (NSCs) during spaceflight. RNA-Sequencing (RNA-Seq) based transcriptomic profiling of NSCs identified many differentially expressed mRNAs and miRNAs between space and earth groups. Subsequently, those genes with differential expression were subjected to bioinformatic evaluation using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and miRNA-mRNA network analyses. The results showed that NSCs maintain greater stemness ability during spaceflight although the growth rate of NSCs was slowed down. Furthermore, the results indicated that NSCs tended to differentiate into neuron in outer space conditions. Detailed genomic analyses of NSCs during spaceflight will help us to elucidate the molecular mechanisms behind their differentiation and proliferation when they are in outer space.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | - Jin Han
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiduo Qi
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sumei Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Wu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Sachindra, Larribère L, Novak D, Wu H, Hüser L, Granados K, Orouji E, Utikal J. New role of ID3 in melanoma adaptive drug-resistance. Oncotarget 2017; 8:110166-110175. [PMID: 29299138 PMCID: PMC5746373 DOI: 10.18632/oncotarget.22698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/27/2017] [Indexed: 01/28/2023] Open
Abstract
Adaptive resistance to targeted therapy such as BRAF inhibitors represents in melanoma a major drawback to this otherwise powerful treatment. Some of the underlying molecular mechanisms have recently been described: hyperactivation of the BRAF-MAPK pathway, of the AKT pathway, of the TGFβ/EGFR/PDGFRB pathway, or the low MITF/AXL ratio. Nevertheless, the phenomenon of early resistance is still not clearly understood. In this report, we show that knockdown of neural crest-associated gene ID3 increases the melanoma sensitivity to vemurafenib short-term treatment. In addition, we observe an ID3-mediated regulation of cell migration and of the expression of resistance-associated genes such as SOX10 and MITF. In sum, these data suggest ID3 as a new key actor of melanoma adaptive resistance to vemurafenib and as a potential drug target.
Collapse
Affiliation(s)
- Sachindra
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Huizi Wu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Elias Orouji
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
41
|
Boareto M, Iber D, Taylor V. Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development 2017; 144:3465-3474. [PMID: 28974640 PMCID: PMC5665482 DOI: 10.1242/dev.152520] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
During embryonic and adult neurogenesis, neural stem cells (NSCs) generate the correct number and types of neurons in a temporospatial fashion. Control of NSC activity and fate is crucial for brain formation and homeostasis. Neurogenesis in the embryonic and adult brain differ considerably, but Notch signaling and inhibitor of DNA-binding (ID) factors are pivotal in both. Notch and ID factors regulate NSC maintenance; however, it has been difficult to evaluate how these pathways potentially interact. Here, we combined mathematical modeling with analysis of single-cell transcriptomic data to elucidate unforeseen interactions between the Notch and ID factor pathways. During brain development, Notch signaling dominates and directly regulates Id4 expression, preventing other ID factors from inducing NSC quiescence. Conversely, during adult neurogenesis, Notch signaling and Id2/3 regulate neurogenesis in a complementary manner and ID factors can induce NSC maintenance and quiescence in the absence of Notch. Our analyses unveil key molecular interactions underlying NSC maintenance and mechanistic differences between embryonic and adult neurogenesis. Similar Notch and ID factor interactions may be crucial in other stem cell systems. Summary: Computational analysis of transcriptome data from neural stem cells reveals key differences in the synergistic interactions between Notch and inhibitor of DNA-binding factors during embryonic and adult neurogenesis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
42
|
Pfurr S, Chu YH, Bohrer C, Greulich F, Beattie R, Mammadzada K, Hils M, Arnold SJ, Taylor V, Schachtrup K, Uhlenhaut NH, Schachtrup C. The E2A splice variant E47 regulates the differentiation of projection neurons via p57(KIP2) during cortical development. Development 2017; 144:3917-3931. [PMID: 28939666 DOI: 10.1242/dev.145698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).
Collapse
Affiliation(s)
- Sabrina Pfurr
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Christian Bohrer
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Robert Beattie
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Basel 4058, Switzerland
| | - Könül Mammadzada
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Miriam Hils
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg 79104, Germany
| | - Verdon Taylor
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Basel 4058, Switzerland
| | - Kristina Schachtrup
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
43
|
Morphology-based non-invasive quantitative prediction of the differentiation status of neural stem cells. J Biosci Bioeng 2017; 124:351-358. [DOI: 10.1016/j.jbiosc.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/07/2017] [Indexed: 01/04/2023]
|
44
|
Masgrau R, Guaza C, Ransohoff RM, Galea E. Should We Stop Saying 'Glia' and 'Neuroinflammation'? Trends Mol Med 2017; 23:486-500. [PMID: 28499701 DOI: 10.1016/j.molmed.2017.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) therapeutics based on the theoretical framework of neuroinflammation have only barely succeeded. We argue that a problem may be the wrong use of the term 'neuroinflammation' as a distinct nosological entity when, based on recent evidence, it may not explain CNS disease pathology. Indeed, the terms 'neuroinflammation' and 'glia' could be obsolete. First, unbiased molecular profiling of CNS cell populations and individual cells reveals striking phenotypic heterogeneity in health and disease. Second, astrocytes, microglia, oligodendrocytes, and NG2 cells may contribute to higher-brain functions by performing actions beyond housekeeping. We propose that CNS diseases be viewed as failed circuits caused in part by disease-specific dysfunction of cells traditionally called 'glia', and hence, favor therapies promoting their functional recovery.
Collapse
Affiliation(s)
- Roser Masgrau
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, Agencia Estatal del Consejo Superior de Investigaciones Científicas, Madrid, España; Spanish Network of Multiple Sclerosis, RETICS, Instituto de Salud Carlos III, Madrid, España
| | | | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
45
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
46
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
47
|
Bohrer C, Schachtrup C. ID(ealizing) control of adult subventricular zone neural stem/precursor cell differentiation for CNS regeneration. NEUROGENESIS 2016; 3:e1223532. [PMID: 27882335 DOI: 10.1080/23262133.2016.1223532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 10/20/2022]
Abstract
The adult central nervous system (CNS) was considered a comparatively static tissue with little cell turnover. It is now well established that there is more plasticity than previously thought and that astrocytes act as neural stem/precursor cells (NSPCs) in the subventricular zone (SVZ). The discovery that these NSPCs can give rise to a limited number of new neurons, reactive astrocytes and oligodendrocytes contributing to brain repair in CNS disease, has raised hopes toward harnessing these cells for therapeutic interventions. Here, we will discuss the transcriptional control of adult NSPC differentiation into astrocytes in CNS disease focusing on the helix-loop-helix transcription factor protein family. In our recent study, we reported that elevated BMP-2 levels are translated into an increase in Id3 expression in adult NSPC subpopulations after cortical injury. Id3 then heterodimerizes with the basic helix-loop-helix transcription factor E47 and releases the E47-mediated repression of astrocyte-specific gene expression. Consequently, adult NSPCs preferentially differentiate into astrocytes. We believe that understanding the in vivo differentiation potential and the molecular underpinnings of NSPCs in the adult mammalian brain will help us to evaluate their contributions to brain repair and may lead to new concepts in treating human CNS diseases.
Collapse
Affiliation(s)
- Christian Bohrer
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg , Germany
| |
Collapse
|
48
|
Bohrer C, Pfurr S, Mammadzada K, Schildge S, Plappert L, Hils M, Pous L, Rauch KS, Dumit VI, Pfeifer D, Dengjel J, Kirsch M, Schachtrup K, Schachtrup C. The balance of Id3 and E47 determines neural stem/precursor cell differentiation into astrocytes. EMBO J 2015; 34:2804-19. [PMID: 26438726 DOI: 10.15252/embj.201591118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
Adult neural stem/precursor cells (NSPCs) of the subventricular zone (SVZ) are an endogenous source for neuronal replacement in CNS disease. However, adult neurogenesis is compromised after brain injury in favor of a glial cell fate, which is mainly attributed to changes in the NSPC environment. Yet, it is unknown how this unfavorable extracellular environment translates into a transcriptional program altering NSPC differentiation. Here, we show that genetic depletion of the transcriptional regulator Id3 decreased the number of astrocytes generated from SVZ-derived adult NSPCs in the cortical lesion area after traumatic brain injury. Cortical brain injury resulted in rapid BMP-2 and Id3 up-regulation in the SVZ stem cell niche. Id3(-/-) adult NSPCs failed to differentiate into BMP-2-induced astrocytes, while NSPCs deficient for the Id3-controlled transcription factor E47 readily differentiated into astrocytes in the absence of BMP-2. Mechanistically, E47 repressed the expression of several astrocyte-specific genes in adult NSPCs. These results identify Id3 as the BMP-2-induced transcriptional regulator, promoting adult NSPC differentiation into astrocytes upon CNS injury and reveal a molecular link between environmental changes and NSPC differentiation in the CNS after injury.
Collapse
Affiliation(s)
- Christian Bohrer
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabrina Pfurr
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Könül Mammadzada
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Schildge
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Leandra Plappert
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miriam Hils
- Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Lauriane Pous
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina S Rauch
- Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Verónica I Dumit
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, BIOSS Center for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, BIOSS Center for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|