1
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi MR, Mudd M, Jia J, Duque T, Javed R, Phinney BS, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. eLife 2025; 13:RP100928. [PMID: 39773872 PMCID: PMC11706607 DOI: 10.7554/elife.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer's core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New MexicoAlbuquerqueUnited States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, DavisDavisUnited States
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
2
|
Paddar MA, Wang F, Trosdal ES, Hendrix E, He Y, Salemi M, Mudd M, Jia J, Duque TLA, Javed R, Phinney B, Deretic V. Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602886. [PMID: 39026874 PMCID: PMC11257513 DOI: 10.1101/2024.07.10.602886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here we show that ATG5 associates with retromer's core components VPS26, VPS29 and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.
Collapse
Affiliation(s)
- Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Emily Hendrix
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
- Lead Contact
| |
Collapse
|
3
|
Deretic V, Duque T, Trosdal E, Paddar M, Javed R, Akepati P. Membrane atg8ylation in Canonical and Noncanonical Autophagy. J Mol Biol 2024; 436:168532. [PMID: 38479594 PMCID: PMC11260254 DOI: 10.1016/j.jmb.2024.168532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Membrane atg8ylation is a homeostatic process responding to membrane remodeling and stress signals. Membranes are atg8ylated by mammalian ATG8 ubiquitin-like proteins through a ubiquitylation-like cascade. A model has recently been put forward which posits that atg8ylation of membranes is conceptually equivalent to ubiquitylation of proteins. Like ubiquitylation, membrane atg8ylation involves E1, E2 and E3 enzymes. The E3 ligases catalyze the final step of atg8ylation of aminophospholipids in membranes. Until recently, the only known E3 ligase for membrane atg8ylation was ATG16L1 in a noncovalent complex with the ATG12-ATG5 conjugate. ATG16L1 was first identified as a factor in canonical autophagy. During canonical autophagy, the ATG16L1-based E3 ligase complex includes WIPI2, which in turn recognizes phosphatidylinositiol 3-phosphate and directs atg8ylation of autophagic phagophores. As an alternative to WIPIs, binding of ATG16L1 to the proton pump V-ATPase guides atg8ylation of endolysosomal and phagosomal membranes in response to lumenal pH changes. Recently, a new E3 complex containing TECPR1 instead of ATG16L1, has been identified that responds to sphingomyelin's presence on the cytofacial side of perturbed endolysosomal membranes. In present review, we cover the principles of membrane atg8ylation, catalog its various presentations, and provide a perspective on the growing repertoire of E3 ligase complexes directing membrane atg8ylation at diverse locations.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | - Thabata Duque
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar Trosdal
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor Paddar
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Prithvi Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Jian F, Wang S, Tian R, Wang Y, Li C, Li Y, Wang S, Fang C, Ma C, Rong Y. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome-lysosome fusion. Cell Res 2024; 34:151-168. [PMID: 38182888 PMCID: PMC10837459 DOI: 10.1038/s41422-023-00916-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Autophagosome-lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome-lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P2 via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome-lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.
Collapse
Affiliation(s)
- Fenglei Jian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Tian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufen Wang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuangpeng Li
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Fang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
6
|
Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T, Johansen T. Atg8 family proteins, LIR/AIM motifs and other interaction modes. AUTOPHAGY REPORTS 2023; 2:27694127.2023.2188523. [PMID: 38214012 PMCID: PMC7615515 DOI: 10.1080/27694127.2023.2188523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.
Collapse
Affiliation(s)
- Vladimir V. Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, am Main, and Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Christian Behrends
- Munich Cluster of Systems Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM and Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Emslander Q, Krey K, Hamad S, Maidl S, Oubraham L, Hesse J, Henrici A, Austen K, Mergner J, Grass V, Pichlmair A. MDM2 Influences ACE2 Stability and SARS-CoV-2 Uptake. Viruses 2023; 15:1763. [PMID: 37632105 PMCID: PMC10459000 DOI: 10.3390/v15081763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the central entry receptor for SARS-CoV-2. However, surprisingly little is known about the effects of host regulators on ACE2 localization, expression, and the associated influence on SARS-CoV-2 infection. Here we identify that ACE2 expression levels are regulated by the E3 ligase MDM2 and that MDM2 levels indirectly influence infection with SARS-CoV-2. Genetic depletion of MDM2 elevated ACE2 expression levels, which strongly promoted infection with all SARS-CoV-2 isolates tested. SARS-CoV-2 spike-pseudotyped viruses and the uptake of non-replication-competent virus-like particles showed that MDM2 affects the viral uptake process. MDM2 ubiquitinates Lysine 788 of ACE2 to induce proteasomal degradation, and degradation of this residue led to higher ACE2 expression levels and superior virus particle uptake. Our study illustrates that cellular regulators of ACE2 stability, such as MDM2, play an important role in defining the infection capabilities of SARS-CoV-2.
Collapse
Affiliation(s)
- Quirin Emslander
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Karsten Krey
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Sabri Hamad
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Susanne Maidl
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Lila Oubraham
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Joshua Hesse
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Alexander Henrici
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Katharina Austen
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Julia Mergner
- BayBioMS@MRI—Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
- German Centre for Infection Research (DZIF), Partner site Munich, 81675 Munich, Germany
- Center of Immunology of Viral Infection (CiViA), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Javed R, Jain A, Duque T, Hendrix E, Paddar MA, Khan S, Claude‐Taupin A, Jia J, Allers L, Wang F, Mudd M, Timmins G, Lidke K, Rusten TE, Akepati PR, He Y, Reggiori F, Eskelinen E, Deretic V. Mammalian ATG8 proteins maintain autophagosomal membrane integrity through ESCRTs. EMBO J 2023; 42:e112845. [PMID: 37272163 PMCID: PMC10350836 DOI: 10.15252/embj.2022112845] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.
Collapse
Affiliation(s)
- Ruheena Javed
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ashish Jain
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Thabata Duque
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Emily Hendrix
- Department of Chemistry & Chemical BiologyThe University of New MexicoAlbuquerqueNMUSA
| | - Masroor Ahmad Paddar
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Sajjad Khan
- Department of Physics and AstronomyThe University of New MexicoAlbuquerqueNMUSA
| | - Aurore Claude‐Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jingyue Jia
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Lee Allers
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Fulong Wang
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Michal Mudd
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Graham Timmins
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Keith Lidke
- Department of Physics and AstronomyThe University of New MexicoAlbuquerqueNMUSA
| | | | - Prithvi Reddy Akepati
- Division of Gastroenterology and Hepatology, Department of Internal MedicineUniversity of New MexicoAlbuquerqueNMUSA
| | - Yi He
- Department of Chemistry & Chemical BiologyThe University of New MexicoAlbuquerqueNMUSA
| | - Fulvio Reggiori
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Aarhus Institute for Advanced Studies (AIAS)Aarhus UniversityAarhusDenmark
| | | | - Vojo Deretic
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| |
Collapse
|
9
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
10
|
Reid SE, Kolapalli SP, Nielsen TM, Frankel LB. Canonical and non-canonical roles for ATG8 proteins in autophagy and beyond. Front Mol Biosci 2022; 9:1074701. [PMID: 36601581 PMCID: PMC9806848 DOI: 10.3389/fmolb.2022.1074701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
During autophagy, the ATG8 family proteins have several well-characterized roles in facilitating early, mid, and late steps of autophagy, including autophagosome expansion, cargo recruitment and autophagosome-lysosome fusion. Their discovery has importantly allowed for precise experimental monitoring of the pathway, bringing about a huge expansion of research in the field over the last decades. In this review, we discuss both canonical and non-canonical roles of the autophagic lipidation machinery, with particular focus on the ATG8 proteins, their post-translational modifications and their increasingly uncovered alternative roles mediated through their anchoring at different membranes. These include endosomes, macropinosomes, phagosomes and the plasma membrane, to which ATG8 proteins can bind through canonical or alternative lipidation. Beyond new ATG8 binding partners and cargo types, we also explore several open questions related to alternative outcomes of autophagic machinery engagement beyond degradation. These include their roles in plasma membrane repair and secretion of selected substrates as well as the physiological implications hereof in health and disease.
Collapse
Affiliation(s)
| | | | | | - Lisa B. Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Lisa B. Frankel,
| |
Collapse
|
11
|
Jia J, Wang F, Bhujabal Z, Peters R, Mudd M, Duque T, Allers L, Javed R, Salemi M, Behrends C, Phinney B, Johansen T, Deretic V. Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage. J Cell Biol 2022; 221:e202207091. [PMID: 36179369 PMCID: PMC9533235 DOI: 10.1083/jcb.202207091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 01/22/2023] Open
Abstract
We report that lysosomal damage is a hitherto unknown inducer of stress granule (SG) formation and that the process termed membrane atg8ylation coordinates SG formation with mTOR inactivation during lysosomal stress. SGs were induced by lysosome-damaging agents including SARS-CoV-2ORF3a, Mycobacterium tuberculosis, and proteopathic tau. During damage, mammalian ATG8s directly interacted with the core SG proteins NUFIP2 and G3BP1. Atg8ylation was needed for their recruitment to damaged lysosomes independently of SG condensates whereupon NUFIP2 contributed to mTOR inactivation via the Ragulator-RagA/B complex. Thus, cells employ membrane atg8ylation to control and coordinate SG and mTOR responses to lysosomal damage.
Collapse
Affiliation(s)
- Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zambarlal Bhujabal
- Autophagy Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ryan Peters
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, Davis, CA
| | - Christian Behrends
- Munich Cluster of Systems Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, Davis, CA
| | - Terje Johansen
- Autophagy Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
12
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
13
|
A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nat Commun 2022; 13:3720. [PMID: 35764633 PMCID: PMC9240011 DOI: 10.1038/s41467-022-31213-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
PINK1-Parkin mediated mitophagy, a selective form of autophagy, represents one of the most important mechanisms in mitochondrial quality control (MQC) via the clearance of damaged mitochondria. Although it is well known that the conjugation of mammalian ATG8s (mATG8s) to phosphatidylethanolamine (PE) is a key step in autophagy, its role in mitophagy remains controversial. In this study, we clarify the role of the mATG8-conjugation system in mitophagy by generating knockouts of the mATG8-conjugation machinery. Unexpectedly, we show that mitochondria could still be cleared in the absence of the mATG8-conjugation system, in a process independent of lysosomal degradation. Instead, mitochondria are cleared via extracellular release through a secretory autophagy pathway, in a process we define as Autophagic Secretion of Mitochondria (ASM). Functionally, increased ASM promotes the activation of the innate immune cGAS-STING pathway in recipient cells. Overall, this study reveals ASM as a mechanism in MQC when the cellular mATG8-conjugation machinery is dysfunctional and highlights the critical role of mATG8 lipidation in suppressing inflammatory responses. The mechanisms underlying mitochondrial quality control are not fully understood. Here the authors identify a switch from degradative to secretory autophagy in the absence of the mATG8-conjugation system, termed Autophagic Secretion of Mitochondria.
Collapse
|
14
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
15
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
16
|
The Landscape of Autophagy-Related (ATG) Genes and Functional Characterization of TaVAMP727 to Autophagy in Wheat. Int J Mol Sci 2022; 23:ijms23020891. [PMID: 35055085 PMCID: PMC8776105 DOI: 10.3390/ijms23020891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is an indispensable biological process and plays crucial roles in plant growth and plant responses to both biotic and abiotic stresses. This study systematically identified autophagy-related proteins (ATGs) in wheat and its diploid and tetraploid progenitors and investigated their genomic organization, structure characteristics, expression patterns, genetic variation, and regulation network. We identified a total of 77, 51, 29, and 30 ATGs in wheat, wild emmer, T. urartu and A. tauschii, respectively, and grouped them into 19 subfamilies. We found that these autophagy-related genes (ATGs) suffered various degrees of selection during the wheat’s domestication and breeding processes. The genetic variations in the promoter region of Ta2A_ATG8a were associated with differences in seed size, which might be artificially selected for during the domestication process of tetraploid wheat. Overexpression of TaVAMP727 improved the cold, drought, and salt stresses resistance of the transgenic Arabidopsis and wheat. It also promoted wheat heading by regulating the expression of most ATGs. Our findings demonstrate how ATGs regulate wheat plant development and improve abiotic stress resistance. The results presented here provide the basis for wheat breeding programs for selecting varieties of higher yield which are capable of growing in colder, drier, and saltier areas.
Collapse
|
17
|
Kumar S, Javed R, Mudd M, Pallikkuth S, Lidke KA, Jain A, Tangavelou K, Gudmundsson SR, Ye C, Rusten TE, Anonsen JH, Lystad AH, Claude-Taupin A, Simonsen A, Salemi M, Phinney B, Li J, Guo LW, Bradfute SB, Timmins GS, Eskelinen EL, Deretic V. Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell 2021; 184:5950-5969.e22. [PMID: 34741801 PMCID: PMC8616855 DOI: 10.1016/j.cell.2021.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Michal Mudd
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sandeep Pallikkuth
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Ashish Jain
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karthikeyan Tangavelou
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Chunyan Ye
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | | | | - Aurore Claude-Taupin
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Anne Simonsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michelle Salemi
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Jing Li
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Steven B Bradfute
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Graham S Timmins
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
19
|
Kumar S, Jia J, Deretic V. Atg8ylation as a general membrane stress and remodeling response. Cell Stress 2021; 5:128-142. [PMID: 34527862 PMCID: PMC8404385 DOI: 10.15698/cst2021.09.255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
20
|
Saikia R, Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med (Berl) 2021; 99:1539-1551. [PMID: 34398293 DOI: 10.1007/s00109-021-02125-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a well-known cell-survival strategy orchestrated by a conserved set of proteins. It equips the cells with mechanisms to attain homeostasis during unfavorable conditions such as stress by breaking down the cellular components and reusing them for energy as well as for building new components required for survival. A basal level of autophagy is required for achieving homeostasis under normal conditions through regular turnover of macromolecules and organelles. Initiation of autophagy is regulated by two key components of the nutrient/energy sensor pathways; mammalian target of rapamycin 1 (mTORC1) and AMP-activated kinase (AMPK). Under energy-deprived conditions, AMPK is activated triggering autophagy, whereas, in nutrient-rich conditions, the growth-promoting kinase mTORC1 is activated inhibiting autophagy. Thus, the reciprocal regulation of autophagy by AMPK and mTORC1 defines a fundamental mechanism by which cells respond to nutrient availability. Interestingly, cytoplasmic calcium is also found to be an activator of AMPK and autophagy through a calmodulin/CaMKKβ pathway. However, the physiological significance of the regulation of autophagy by cytoplasmic calcium is currently unclear. This review focuses on the current understanding of the mechanism of autophagy and its regulation by AMPK.
Collapse
Affiliation(s)
- Rimpi Saikia
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411007, Maharashtra State, India
| | - Jomon Joseph
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411007, Maharashtra State, India.
| |
Collapse
|
21
|
Wirth M, Mouilleron S, Zhang W, Sjøttem E, Princely Abudu Y, Jain A, Lauritz Olsvik H, Bruun JA, Razi M, Jefferies HB, Lee R, Joshi D, O'Reilly N, Johansen T, Tooze SA. Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [DOI: https:/doi.org/10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
|
22
|
Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [PMID: 33845085 PMCID: PMC8202330 DOI: 10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood. We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic. Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.
Collapse
|
23
|
Jacquet M, Guittaut M, Fraichard A, Despouy G. The functions of Atg8-family proteins in autophagy and cancer: linked or unrelated? Autophagy 2021; 17:599-611. [PMID: 32255730 PMCID: PMC8032235 DOI: 10.1080/15548627.2020.1749367] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023] Open
Abstract
The Atg8-family proteins are subdivided into two subfamilies: the GABARAP and LC3 subfamilies. These proteins, which are major players of the autophagy pathway, present a conserved glycine in their C-terminus necessary for their association to the autophagosome membrane. This family of proteins present multiple roles from autophagy induction to autophagosome-lysosome fusion and have been described to play a role during cancer progression. Indeed, GABARAPs are described to be downregulated in cancers, and high expression has been linked to a good prognosis. Regarding LC3 s, their expression does not correlate to a particular tumor type or stage. The involvement of Atg8-family proteins during cancer, therefore, remains unclear, and it appears that their anti-tumor role may be associated with their implication in selective protein degradation by autophagy but might also be independent, in some cases, of their conjugation to autophagosomes. In this review, we will then focus on the involvement of GABARAP and LC3 subfamilies during autophagy and cancer and highlight the similarities but also the differences of action of each subfamily member.Abbreviations: AIM: Atg8-interacting motif; AMPK: adenosine monophosphate-associated protein kinase; ATG: autophagy-related; BECN1: beclin 1; BIRC6/BRUCE: baculoviral IAP repeat containing 6; BNIP3L/NIX: BCL2 interacting protein 3 like; GABARAP: GABA type A receptor-associated protein; GABARAPL1/2: GABA type A receptor associated protein like 1/2; GABRA/GABAA: gamma-aminobutyric acid type A receptor subunit; LAP: LC3-associated phagocytosis; LMNB1: lamin B1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI4K2A/PI4KIIα: phosphatidylinositol 4-kinase type 2 alpha; PLEKHM1: plecktrin homology and RUN domain containing M1; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex 1; SQSTM1: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Marine Jacquet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Michaël Guittaut
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- DImaCell Platform, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Annick Fraichard
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Gilles Despouy
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| |
Collapse
|
24
|
Wang X, Fu G, Wen J, Chen H, Zhang B, Zhu D. Membrane Location of Syntaxin-Binding Protein 1 Is Correlated with Poor Prognosis of Lung Adenocarcinoma. TOHOKU J EXP MED 2021; 250:263-270. [PMID: 32321873 DOI: 10.1620/tjem.250.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, and adenocarcinoma is the most common histological type of lung cancer. Syntaxin-binding protein 1 (STXBP1) is essential for exocytosis of secretory vesicles. Since exocytosis is the basic cellular process of cells, we investigated STXBP1 expression and clinical significance in lung adenocarcinoma. We performed quantitative real-time polymerase chain reaction in 20 pairs of lung adenocarcinoma and paired normal tissues, and demonstrated that the relative expression levels of STXBP1 mRNA in lung adenocarcinoma was significantly higher than those in normal lung tissues. We then carried out immunohistochemistry (IHC) to determine the expression profile of STXBP1 in 276 lung adenocarcinoma specimens, and categorized patients into subgroups with low or high STXBP1 expression, based on the IHC score. Moreover, STXBP1 expression phenotypes were categorized as membrane, cytoplasm, and mixed expression (both membrane and cytoplasm) expression. High STXBP1 protein accounted for 58.0% of all the 276 cases (160/276), and membrane, cytoplasm or mixed STXBP1 accounted for 28.75%, 25.63% and 45.63% in the 160 cases of high STXBP1 expression. The clinical significances of these phenotypes were evaluated by analyzing their correlation with clinicopathological factors, as well as their prognostic values. Consequently, the whole STXBP1 expression or membranal STXBP1 expression were correlated with poor prognosis and were independent prognostic factors of lung adenocarcinoma. The whole and membranal STXBP1 expression are independent prognostic factors of lung adenocarcinoma. STXBP1 detection is capable to help screen patients who may have poor prognosis and strengthen the adjuvant therapy more precisely.
Collapse
Affiliation(s)
| | - Gang Fu
- Department of Urology Surgery, YIDU Central Hospital
| | | | | | | | - Dongyuan Zhu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science
| |
Collapse
|
25
|
Sanwald JL, Dobner J, Simons IM, Poschmann G, Stühler K, Üffing A, Hoffmann S, Willbold D. Lack of GABARAP-Type Proteins Is Accompanied by Altered Golgi Morphology and Surfaceome Composition. Int J Mol Sci 2020; 22:E85. [PMID: 33374830 PMCID: PMC7795684 DOI: 10.3390/ijms22010085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
GABARAP (γ-aminobutyric acid type A receptor-associated protein) and its paralogues GABARAPL1 and GABARAPL2 comprise a subfamily of autophagy-related Atg8 proteins. They are studied extensively regarding their roles during autophagy. Originally, however, especially GABARAPL2 was discovered to be involved in intra-Golgi transport and homotypic fusion of post-mitotic Golgi fragments. Recently, a broader function of mammalian Atg8s on membrane trafficking through interaction with various soluble N-ethylmaleimide-sensitive factor-attachment protein receptors SNAREs was suggested. By immunostaining and microscopic analysis of the Golgi network, we demonstrate the importance of the presence of individual GABARAP-type proteins on Golgi morphology. Furthermore, triple knockout (TKO) cells lacking the whole GABARAP subfamily showed impaired Golgi-dependent vesicular trafficking as assessed by imaging of fluorescently labelled ceramide. With the Golgi apparatus being central within the secretory pathway, we sought to investigate the role of the GABARAP-type proteins for cell surface protein trafficking. By analysing the surfaceome compositionofTKOs, we identified a subset of cell surface proteins with altered plasma membrane localisation. Taken together, we provide novel insights into an underrated aspect of autophagy-independent functions of the GABARAP subfamily and recommend considering the potential impact of GABARAP subfamily proteins on a plethora of processes during experimental analysis of GABARAP-deficient cells not only in the autophagic context.
Collapse
Affiliation(s)
- Julia L. Sanwald
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alina Üffing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Silke Hoffmann
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| |
Collapse
|
26
|
Wojnacki J, Nola S, Bun P, Cholley B, Filippini F, Pressé MT, Lipecka J, Man Lam S, N’guyen J, Simon A, Ouslimani A, Shui G, Fader CM, Colombo MI, Guerrera IC, Galli T. Role of VAMP7-Dependent Secretion of Reticulon 3 in Neurite Growth. Cell Rep 2020; 33:108536. [DOI: 10.1016/j.celrep.2020.108536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
|
27
|
Eren E, Planès R, Bagayoko S, Bordignon P, Chaoui K, Hessel A, Santoni K, Pinilla M, Lagrange B, Burlet‐Schiltz O, Howard JC, Henry T, Yamamoto M, Meunier E. Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response. EMBO Rep 2020; 21:e50829. [PMID: 33124769 PMCID: PMC7645206 DOI: 10.15252/embr.202050829] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Collapse
Affiliation(s)
- Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Pierre‐Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Karima Chaoui
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Mass Spectrometry Core FacilityInstitute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Brice Lagrange
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111CNRS, UMR5308École Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Univ LyonLyonFrance
| | - Odile Burlet‐Schiltz
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Mass Spectrometry Core FacilityInstitute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
| | - Jonathan C Howard
- Fundação Calouste GulbenkianInstituto Gulbenkian de CiênciaOeirasPortugal
| | - Thomas Henry
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111CNRS, UMR5308École Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Univ LyonLyonFrance
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversityOsakaJapan
- Laboratory of ImmunoparasitologyWPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS)CNRS, UMR5089University of ToulouseToulouseFrance
- Present address:
Institute of Pharmacology and Structural Biology (IPBS)CNRSToulouseFrance
| |
Collapse
|
28
|
Chen F, Amgalan D, Kitsis RN, Pessin JE, Feng D. ATG16L1 autophagy pathway regulates BAX protein levels and programmed cell death. J Biol Chem 2020; 295:15045-15053. [PMID: 32848017 PMCID: PMC7606669 DOI: 10.1074/jbc.ra120.013999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX-SNAP23-ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.
Collapse
Affiliation(s)
- Fenfen Chen
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dulguun Amgalan
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Richard N. Kitsis
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA,Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daorong Feng
- Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA,For correspondence: Daorong Feng,
| |
Collapse
|
29
|
Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020; 8:564975. [PMID: 33015059 PMCID: PMC7509445 DOI: 10.3389/fcell.2020.564975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy has dual effects in human diseases: appropriate autophagy may protect cells from stress, while excessive autophagy may cause cell death. Additionally, close interactions exist between autophagy and the Golgi. This review outlines recent advances regarding the role of the Golgi apparatus in autophagy. The signaling processes of autophagy are dependent on the normal function of the Golgi. Specifically, (i) autophagy-related protein 9 is mainly located in the Golgi and forms new autophagosomes in response to stressors; (ii) Golgi fragmentation is induced by Golgi-related proteins and accompanied with autophagy induction; and (iii) the endoplasmic reticulum-Golgi intermediate compartment and the reticular trans-Golgi network play essential roles in autophagosome formation to provide a template for lipidation of microtubule-associated protein 1A/1B-light chain 3 and induce further ubiquitination. Golgi-related proteins regulate formation of autophagosomes, and disrupted formation of autophagy can influence Golgi function. Notably, aberrant autophagy has been demonstrated to be implicated in neurological diseases. Thus, targeted therapies aimed at protecting the Golgi or regulating Golgi proteins might prevent or ameliorate autophagy-related neurological diseases. Further studies are needed to investigate the potential application of Golgi therapy in autophagy-based neurological diseases.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
31
|
Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat Cell Biol 2020; 22:973-985. [PMID: 32753672 PMCID: PMC7482486 DOI: 10.1038/s41556-020-0549-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Collapse
|
32
|
Wetzel L, Blanchard S, Rama S, Beier V, Kaufmann A, Wollert T. TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes. Nat Commun 2020; 11:2993. [PMID: 32532970 PMCID: PMC7293217 DOI: 10.1038/s41467-020-16689-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of protein aggregates is involved in the onset of many neurodegenerative diseases. Aggrephagy is a selective type of autophagy that counteracts neurodegeneration by degrading such aggregates. In this study, we found that LC3C cooperates with lysosomal TECPR1 to promote the degradation of disease-related protein aggregates in neural stem cells. The N-terminal WD-repeat domain of TECPR1 selectively binds LC3C which decorates matured autophagosomes. The interaction of LC3C and TECPR1 promotes the recruitment of autophagosomes to lysosomes for degradation. Augmented expression of TECPR1 in neural stem cells reduces the number of protein aggregates by promoting their autophagic clearance, whereas knockdown of LC3C inhibits aggrephagy. The PH domain of TECPR1 selectively interacts with PtdIns(4)P to target TECPR1 to PtdIns(4)P containing lysosomes. Exchanging the PH against a tandem-FYVE domain targets TECPR1 ectopically to endosomes. This leads to an accumulation of LC3C autophagosomes at endosomes and prevents their delivery to lysosomes. Many neurodegenerative disorders are characterised by the accumulation of protein aggregates in neurons. Here, the authors show that the lysosomal protein TECPR1 selectively recruits mature autophagosomes via an interaction with LC3C to break down protein aggregates in neural stem cells.
Collapse
Affiliation(s)
- Lisa Wetzel
- Membrane Biochemistry and Transport, UMR3691 CNRS, Institute Pasteur, 28 rue du Dr Roux, 75015, Paris, France.,Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Stéphane Blanchard
- Membrane Biochemistry and Transport, UMR3691 CNRS, Institute Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Sowmya Rama
- Membrane Biochemistry and Transport, UMR3691 CNRS, Institute Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Viola Beier
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Anna Kaufmann
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas Wollert
- Membrane Biochemistry and Transport, UMR3691 CNRS, Institute Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
33
|
Dobner J, Simons IM, Rufinatscha K, Hänsch S, Schwarten M, Weiergräber OH, Abdollahzadeh I, Gensch T, Bode JG, Hoffmann S, Willbold D. Deficiency of GABARAP but not its Paralogs Causes Enhanced EGF-induced EGFR Degradation. Cells 2020; 9:E1296. [PMID: 32456010 PMCID: PMC7291022 DOI: 10.3390/cells9051296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Thomas Gensch
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Silke Hoffmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| |
Collapse
|
34
|
Birgisdottir ÅB, Johansen T. Autophagy and endocytosis – interconnections and interdependencies. J Cell Sci 2020; 133:133/10/jcs228114. [DOI: 10.1242/jcs.228114] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Autophagy and endocytosis are membrane-vesicle-based cellular pathways for degradation and recycling of intracellular and extracellular components, respectively. These pathways have a common endpoint at the lysosome, where their cargo is degraded. In addition, the two pathways intersect at different stages during vesicle formation, fusion and trafficking, and share parts of the molecular machinery. Accumulating evidence shows that autophagy is dependent upon endocytosis and vice versa. The emerging joint network of autophagy and endocytosis is of vital importance for cellular metabolism and signaling, and thus also highly relevant in disease settings. In this Review, we will discuss examples of how the autophagy machinery impacts on endocytosis and cell signaling, and highlight how endocytosis regulates the different steps in autophagy in mammalian cells. Finally, we will focus on the interplay of these pathways in the quality control of their common endpoint, the lysosome.
Collapse
Affiliation(s)
- Åsa B. Birgisdottir
- The Heart and Lung Clinic, University Hospital of North Norway, 9037 Tromsø, Norway
- Clinical Cardiovascular Research Group, Department of Clinical Medicine, University of Tromsø –The Arctic University of Norway, 9037 Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
35
|
Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov 2020; 6:23. [PMID: 32377373 PMCID: PMC7198486 DOI: 10.1038/s41421-020-0155-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
ATG8 family proteins are evolutionary conserved ubiquitin-like modifiers, which become attached to the headgroup of the membrane lipid phosphatidylethanolamine in a process referred to as lipidation. This reaction is carried out analogous to the conjugation of ubiquitin to its target proteins, involving the E1-like ATG7, the E2-like ATG3 and the E3-like ATG12-ATG5-ATG16 complex, which determines the site of lipidation. ATG8 lipidation is a hallmark of autophagy where these proteins are involved in autophagosome formation, the fusion of autophagosomes with lysosomes and cargo selection. However, it has become evident that ATG8 lipidation also occurs in processes that are not directly related to autophagy. Here we discuss recent insights into the targeting of ATG8 lipidation in autophagy and other pathways with special emphasis on the recruitment and activation of the E3-like complex.
Collapse
Affiliation(s)
- Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| |
Collapse
|
36
|
Popelka H. Dancing while self-eating: Protein intrinsic disorder in autophagy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:263-305. [PMID: 32828468 DOI: 10.1016/bs.pmbts.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a major catabolic pathway that must be tightly regulated to maintain cellular homeostasis. Protein intrinsic disorder provides a very suitable conformation for regulation; accordingly, the molecular machinery of autophagy is significantly enriched in intrinsically disordered proteins and protein regions (IDPs/IDPRs). Despite experimental challenges that the characterization of IDPRs encounters, remarkable progress has been made in recent years in revealing various roles of IDPs/IDPRs in autophagy. This chapter describes the autophagy pathway from a specific point of view, that of IDPRs. It focuses in detail on structural and mechanistic functions in autophagy that are executed by disordered regions. Via a description of autophagosome biogenesis, linking the cargo to the autophagy machinery, as well as a discussion of certain post-translational regulations, this review reveals many indispensable roles of IDPRs in the functional autophagy pathway. Devastating pathologies such as neurodegeneration, cancer, or diabetes have been linked to a malfunction in IDPs/IDPRs. The same pathologies are associated with dysfunctional autophagy, indicating that autophagic IDPRs may be a paramount causative factor. Several disease-related mechanisms of the autophagy pathway involving protein intrinsic disorder are reported in this chapter, to illustrate a wide-ranging potential of IDPRs in the therapeutic modulation of autophagy.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
37
|
Tang BL. Syntaxin 16's Newly Deciphered Roles in Autophagy. Cells 2019; 8:cells8121655. [PMID: 31861136 PMCID: PMC6953085 DOI: 10.3390/cells8121655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Syntaxin 16, a Qa-SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor), is involved in a number of membrane-trafficking activities, particularly transport processes at the trans-Golgi network (TGN). Recent works have now implicated syntaxin 16 in the autophagy process. In fact, syntaxin 16 appears to have dual roles, firstly in facilitating the transport of ATG9a-containing vesicles to growing autophagosomes, and secondly in autolysosome formation. The former involves a putative SNARE complex between syntaxin 16, VAMP7 and SNAP-47. The latter occurs via syntaxin 16’s recruitment by Atg8/LC3/GABARAP family proteins to autophagosomes and endo-lysosomes, where syntaxin 16 may act in a manner that bears functional redundancy with the canonical autophagosome Qa-SNARE syntaxin 17. Here, I discuss these recent findings and speculate on the mechanistic aspects of syntaxin 16’s newly found role in autophagy.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|