1
|
Benitz S, Steep A, Nasser MM, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas DJ, Brender SM, Song L, Huang L, Theisen BK, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 Regulates Cellular Plasticity in Pancreatic Neoplasia and Adenocarcinoma. Cancer Discov 2024; 14:2162-2182. [PMID: 38975886 PMCID: PMC11528200 DOI: 10.1158/2159-8290.cd-24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor PDX1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in a mouse and human. We identified the receptor tyrosine kinase ROR2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition. Significance: We discovered the receptor tyrosine kinase ROR2 as an important regulator of cellular identity in pancreatic precancerous lesions and pancreatic cancer. ROR2 drives an aggressive PDAC phenotype and confers resistance to KRAS inhibitors, suggesting that targeting ROR2 will enhance sensitivity to this new generation of targeted therapies. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | | | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York
| | | | | | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Michaela Louw
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | | | | | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Ling Huang
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Tamagawa H, Fujii M, Togasaki K, Seino T, Kawasaki S, Takano A, Toshimitsu K, Takahashi S, Ohta Y, Matano M, Kawasaki K, Machida Y, Sekine S, Machinaga A, Sasai K, Kodama Y, Kakiuchi N, Ogawa S, Hirano T, Seno H, Kitago M, Kitagawa Y, Iwasaki E, Kanai T, Sato T. Wnt-deficient and hypoxic environment orchestrates squamous reprogramming of human pancreatic ductal adenocarcinoma. Nat Cell Biol 2024; 26:1759-1772. [PMID: 39232216 DOI: 10.1038/s41556-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human pancreatic cancer is characterized by the molecular diversity encompassing native duct-like and squamous cell-like identities, but mechanisms underlying squamous transdifferentiation have remained elusive. To comprehensively capture the molecular diversity of human pancreatic cancer, we here profiled 65 patient-derived pancreatic cancer organoid lines, including six adenosquamous carcinoma lines. H3K27me3-mediated erasure of the ductal lineage specifiers and hijacking of the TP63-driven squamous-cell programme drove squamous-cell commitment, providing survival benefit in a Wnt-deficient environment and hypoxic conditions. Gene engineering of normal pancreatic duct organoids revealed that GATA6 loss and a Wnt-deficient environment, in concert with genetic or hypoxia-mediated inactivation of KDM6A, facilitate squamous reprogramming, which in turn enhances environmental fitness. EZH2 inhibition counterbalanced the epigenetic bias and curbed the growth of adenosquamous cancer organoids. Our results demonstrate how an adversarial microenvironment dictates the molecular and histological evolution of human pancreatic cancer and provide insights into the principles and significance of lineage conversion in human cancer.
Collapse
Affiliation(s)
- Hiroki Tamagawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Seino
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Machida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Feng M, Chai C, Hao X, Lai X, Luo Y, Zhang H, Tang W, Gao N, Pan G, Liu X, Wang Y, Xiong W, Wu Q, Wang J. Inherited KDM6A A649T facilitates tumor-immune escape and exacerbates colorectal signet-ring cell carcinoma outcomes. Oncogene 2024; 43:1757-1768. [PMID: 38622203 DOI: 10.1038/s41388-024-03029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Pediatric General Surgery, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| | - Xiaodong Hao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Xiaojiang Lai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuanyuan Luo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenzhu Tang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ningxin Gao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaojie Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wenjing Xiong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Qiang Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Liu S, Wang Y, Li B, Liang J, Chen Y, Tang B, Yu S, Wang H. KDM5B promotes SMAD4 loss-driven drug resistance through activating DLG1/YAP to induce lipid accumulation in pancreatic ductal adenocarcinoma. Cell Death Discov 2024; 10:252. [PMID: 38789418 PMCID: PMC11126577 DOI: 10.1038/s41420-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inactivated suppressor of mothers against decapentaplegic homolog (SMAD) 4 significantly affects cancer development in pancreatic ductal adenocarcinoma (PDAC). However, the contribution of smad4 loss to drug resistance in PDAC is largely undetermined. In the present study, we reported that the loss of SMAD4 endows PDAC cells the ability to drug resistance through upregulating histone lysine demethylase, Lysine-Specific Demethylase 5B (KDM5B, also known as JARID1B or PLU1). Upregulated KDM5B was found in PDAC, associated with poor prognosis and recurrence of PDAC patients. Upregulated KDM5B promotes PDAC tumor malignancy, i.e. cancer cells stemness and drug resistance in vitro and in vivo, while KDM5B knockout exerts opposite effects. Mechanistically, loss of Smad4-mediated upregulation of KDM5B promotes drug resistance through inhibiting the discs-large homolog 1 (DLG1), thereby facilitating nuclear translocation of YAP to induce de novo lipogenesis. Moreover, m6A demethylase FTO is involved in the upregulation of KDM5B by maintaining KDM5B mRNA stability. Collectively, the present study suggested FTO-mediated KDM5B stabilization in the context of loss of Smad4 activate DLG1/YAP1 pathway to promote tumorigenesis by reprogramming lipid accumulation in PDAC. Our study confirmed that the KDM5B-DLG1-YAP1 pathway axis plays a crucial role in the genesis and progression of PDAC, and KDM5B was expected to become a target for the treatment of PDAC. The schematic diagram of KDM5B-DLG1-YAP pathway axis in regulating drug resistance of PDAC to gemcitabine (GEM). In the context of SMAD4 loss PDAC cells, FTO-mediated stabilization and upregulation of KDM5B promotes drug resistance through directly targeting DLG1 to promote YAP1 translocation to nucleus to induce de novo lipogenesis (DNL).
Collapse
Affiliation(s)
- Yumin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P. R. China
| | - Baibei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Hongquan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
6
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Yang G, Su F, Han BX, Su HX, Guo CH, Yu SH, Guan QL, Hou XM. HNF1A induces glioblastoma by upregulating EPS8 and activating PI3K/AKT signaling pathway. Biochem Pharmacol 2024; 223:116133. [PMID: 38494066 DOI: 10.1016/j.bcp.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.
Collapse
Affiliation(s)
- Gang Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bin-Xiao Han
- Gansu Institute of Medical Information, Institute of Gansu Medical Science Research, Lanzhou, Gansu 730000, PR China
| | - Hong-Xin Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Chen-Hao Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shao-Hua Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Quan-Lin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
8
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
10
|
Benitz S, Steep A, Nasser M, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas D, Brender S, Song L, Huang L, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 regulates cellular plasticity in pancreatic neoplasia and adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571566. [PMID: 38168289 PMCID: PMC10760092 DOI: 10.1101/2023.12.13.571566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia (SPEM)-like identity in the pancreas. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Malak Nasser
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York, USA
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Holly McQuithey
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Michaela Louw
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Donald Rempinski
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Sydney Brender
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Ling Huang
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
11
|
Bao H, Li J, Dong Q, Liang Z, Yang C, Xu Y. Circular RNAs in pancreatic cancer progression. Clin Chim Acta 2024; 552:117633. [PMID: 37949391 DOI: 10.1016/j.cca.2023.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic cancer (PC), typically diagnosed at relatively advanced stages with poor prognosis, is a dominant cause of cancer-related deaths worldwide. Accumulating evidence demonstrates that circular RNAs (circRNAs) are abnormally expressed in diverse tumors and affect tumorigenesis and progression. In this article, we examine the roles of circRNAs in regulation of PC progression. Additionally, circRNAs enriched in exosomes could be transferred among PC cells to modulate malignancy. Characterization of regulatory mechanisms involving circRNAs in general and PC specifically will enable earlier detection and potential development of therapeutic strategies.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361000, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310000, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou and Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang 313000, China.
| |
Collapse
|
12
|
Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev 2023; 42:1113-1131. [PMID: 37659057 PMCID: PMC10713713 DOI: 10.1007/s10555-023-10132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Collapse
Affiliation(s)
- Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany.
| |
Collapse
|
13
|
Zhou X, An J, Kurilov R, Brors B, Hu K, Peccerella T, Roessler S, Pfütze K, Schulz A, Wolf S, Hohmann N, Theile D, Sauter M, Burhenne J, Ei S, Heger U, Strobel O, Barry ST, Springfeld C, Tjaden C, Bergmann F, Büchler M, Hackert T, Fortunato F, Neoptolemos JP, Bailey P. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. NATURE CANCER 2023; 4:1362-1381. [PMID: 37679568 PMCID: PMC10518256 DOI: 10.1038/s43018-023-00628-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.
Collapse
Affiliation(s)
- Xu Zhou
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumour Disease (NCT), Heidelberg, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katrin Pfütze
- Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Tjaden
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Department of General, Visceral and Thoracic Surgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
| | - Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Duplaquet L, Li Y, Booker MA, Xie Y, Olsen SN, Patel RA, Hong D, Hatton C, Denize T, Walton E, Laimon YN, Li R, Jiang Y, Bronson RT, Southard J, Li S, Signoretti S, Qiu X, Cejas P, Armstrong SA, Long HW, Tolstorukov MY, Haffner MC, Oser MG. KDM6A epigenetically regulates subtype plasticity in small cell lung cancer. Nat Cell Biol 2023; 25:1346-1358. [PMID: 37591951 PMCID: PMC10546329 DOI: 10.1038/s41556-023-01210-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah Naomi Olsen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yasmin N Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yijia Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA.
| |
Collapse
|
15
|
Wei J, Alfajaro MM, Cai WL, Graziano VR, Strine MS, Filler RB, Biering SB, Sarnik SA, Patel S, Menasche BL, Compton SR, Konermann S, Hsu PD, Orchard RC, Yan Q, Wilen CB. The KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression. PLoS Pathog 2023; 19:e1011351. [PMID: 37410700 PMCID: PMC10325096 DOI: 10.1371/journal.ppat.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Vincent R. Graziano
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sylvia A. Sarnik
- University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Sonam Patel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bridget L. Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Susan R. Compton
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Silvana Konermann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Arc Institute, Palo Alto, California, United States of America
| | - Patrick D. Hsu
- Arc Institute, Palo Alto, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Yang R, Zhang G, Dong Z, Wang S, Li Y, Lian F, Liu X, Li H, Wei X, Cui H. Homeobox A3 and KDM6A cooperate in transcriptional control of aerobic glycolysis and glioblastoma progression. Neuro Oncol 2023; 25:635-647. [PMID: 36215227 PMCID: PMC10076951 DOI: 10.1093/neuonc/noac231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alterations in transcriptional regulators of glycolytic metabolism have been implicated in brain tumor growth, but the underlying molecular mechanisms remain poorly understood. METHODS Knockdown and overexpression cells were used to explore the functional roles of HOXA3 in cell proliferation, tumor formation, and aerobic glycolysis. Chromatin immunoprecipitation, luciferase assays, and western blotting were performed to verify the regulation of HK2 and PKM2 by HOXA3. PLA, Immunoprecipitation, and GST-pull-down assays were used to examine the interaction of HOXA3 and KDM6A. RESULTS We report that transcription factor homeobox A3 (HOXA3), which is aberrantly highly expressed in glioblastoma (GBM) patients and predicts poor prognosis, transcriptionally activates aerobic glycolysis, leading to a significant acceleration in cell proliferation and tumor growth. Mechanically, we identified KDM6A, a lysine-specific demethylase, as an important cooperator of HOXA3 in regulating aerobic glycolysis. HOXA3 activates KDM6A transcription and recruits KDM6A to genomic binding sites of glycolytic genes, targeting glycolytic genes for transcriptional activation by removing the suppressive histone modification H3K27 trimethylation. Further evidence demonstrates that HOXA3 requires KDM6A for transcriptional activation of aerobic glycolysis and brain tumor growth. CONCLUSIONS Our findings provide a novel molecular mechanism linking HOXA3-mediated transactivation and KDM6A-coupled H3K27 demethylation in regulating glucose metabolism and GBM progression.
Collapse
Affiliation(s)
- Rui Yang
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Guanghui Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Zhen Dong
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Shanshan Wang
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Fuming Lian
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xiaoran Liu
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Haibin Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xiaonan Wei
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| |
Collapse
|
18
|
Xia R, Hu C, Ye Y, Zhang X, Li T, He R, Zheng S, Wen X, Chen R. HNF1A regulates oxaliplatin resistance in pancreatic cancer by targeting 53BP1. Int J Oncol 2023; 62:45. [PMID: 36825600 PMCID: PMC9990585 DOI: 10.3892/ijo.2023.5493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double‑strand break repair is critically involved in oxaliplatin resistance in pancreatic ductal adenocarcinoma (PDAC). Hepatocyte nuclear factor 1 homeobox A (HNF1A) has received increased attention regarding its role in cancer progression. The present study explored the role of HNF1A in oxaliplatin resistance in PDAC. The results revealed that HNF1A expression was negatively associated with oxaliplatin chemoresistance in PDAC tissues and cell lines. HNF1A inhibition promoted the proliferation, colony formation and stemness of PDAC cells, and suppressed their apoptosis. Furthermore, HNF1A inhibition switched nonhomologous end joining to homologous recombination, thereby enhancing genomic stability and oxaliplatin resistance. Mechanistically, HNF1A transcriptionally activates p53‑binding protein 1 (53BP1) expression by directly interacting with the 53BP1 promoter region. Upregulation of HNF1A and 53BP1 induced significant inhibition of PDAC growth and oxaliplatin resistance in patient‑derived PDAC xenograft models and orthotopic models. In conclusion, the findings of the present study suggested that HNF1A/53BP1 may be a promising PDAC therapeutic target for overcoming oxaliplatin resistance.
Collapse
Affiliation(s)
- Renpeng Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chonghui Hu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuancheng Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tingting Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Rihua He
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Shangyou Zheng
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaofeng Wen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Rufu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
19
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Bailey P, Zhou X, An J, Peccerella T, Hu K, Springfeld C, Büchler M, Neoptolemos JP. Refining the Treatment of Pancreatic Cancer From Big Data to Improved Individual Survival. FUNCTION 2023; 4:zqad011. [PMID: 37168490 PMCID: PMC10165547 DOI: 10.1093/function/zqad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 05/13/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers worldwide, most notably in Europe and North America. Great strides have been made in combining the most effective conventional therapies to improve survival at least in the short and medium term. The start of treatment can only be made once a diagnosis is made, which at this point, the tumor volume is already very high in the primary cancer and systemically. If caught at the earliest opportunity (in circa 20% patients) surgical resection of the primary followed by combination chemotherapy can achieve 5-year overall survival rates of 30%-50%. A delay in detection of even a few months after symptom onset will result in the tumor having only borderline resectabilty (in 20%-30% of patients), in which case the best survival is achieved by using short-course chemotherapy before tumor resection as well as adjuvant chemotherapy. Once metastases become visible (in 40%-60% of patients), cure is not possible, palliative cytotoxics only being able to prolong life by few months. Even in apparently successful therapy in resected and borderline resectable patients, the recurrence rate is very high. Considerable efforts to understand the nature of pancreatic cancer through large-scale genomics, transcriptomics, and digital profiling, combined with functional preclinical models, using genetically engineered mouse models and patient derived organoids, have identified the critical role of the tumor microenvironment in determining the nature of chemo- and immuno-resistance. This functional understanding has powered fresh and exciting approaches for the treatment of this cancer.
Collapse
Affiliation(s)
- Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Xu Zhou
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Disease (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg 69120, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
21
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
22
|
Maines E, Maiorana A, Leonardi L, Piccoli G, Soffiati M, Franceschi R. A narrative review on pathogenetic mechanisms of hyperinsulinemic hypoglycemia in Kabuki syndrome. Endocr Regul 2023; 57:128-137. [PMID: 37285460 DOI: 10.2478/enr-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Objective. Kabuki syndrome (KS) is associated with hyperinsulinemic hypoglycemia (HH) in 0.3-4% of patients, thus exceeding the prevalence in the general population. HH association is stronger for KS type 2 (KDM6A-KS, OMIM #300867) than KS type 1 (KMT2D-KS, OMIM #147920). Both the disease-associated genes, KMD6A and KMT2D, modulate the chromatin dynamic. As such, KS is considered to be the best characterized pediatric chromatinopathy. However, the exact pathogenetic mechanisms leading to HH in this syndrome remain still unclear. Methods. We selected on the electronic database PubMed all articles describing or hypothesizing the mechanisms underlying the dysregulated insulin secretion in KS. Results. The impact on the gene expression due to the KDM6A or KMT2D function loss may lead to a deregulated pancreatic β-cell differentiation during embryogenesis. Moreover, both KMT2D gene and KDM6A gene are implicated in promoting the transcription of essential pancreatic β-cell genes and in regulating the metabolic pathways instrumental for insulin release. Somatic KMT2D or KDM6A mutations have also been described in several tumor types, including insulinoma, and have been associated with metabolic pathways promoting pancreatic cell proliferation. Conclusions. The impact of pathogenic variants in KDM6A and KDM2D genes on β-cell insulin release remains to be fully clarified. Understanding this phenomenon may provide valuable insight into the physiological mechanisms of insulin release and into the pathological cascade causing hyperinsulinism in KS. The identification of these molecular targets may open new therapeutic opportunities based on epigenetic modifiers.
Collapse
Affiliation(s)
- Evelina Maines
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Arianna Maiorana
- 2Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Letizia Leonardi
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Giovanni Piccoli
- 3CIBIO - Department of Cellular, Computational and Integrative Biology, Università degli Studi di Trento, Italy
| | - Massimo Soffiati
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| | - Roberto Franceschi
- 1Division of Pediatrics, S. Chiara General Hospital, APSS, Trento, Italy
| |
Collapse
|
23
|
Espinet E, Klein L, Puré E, Singh SK. Mechanisms of PDAC subtype heterogeneity and therapy response. Trends Cancer 2022; 8:1060-1071. [PMID: 36117109 DOI: 10.1016/j.trecan.2022.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is clinically challenging due to late diagnosis and resistance to therapy. Two major PDAC subtypes have been defined based on malignant epithelial cell gene expression profiles; the basal-like/squamous subtype is associated with a worse prognosis and therapeutic resistance as opposed to the classical subtype. Subtype specification is not binary, consistent with plasticity of malignant cell phenotype. PDAC heterogeneity and plasticity reflect partly malignant cell-intrinsic transcriptional and epigenetic regulation. However, the stromal and immune compartments of the tumor microenvironment (TME) also determine disease progression and therapy response. It is evident that integration of intrinsic and extrinsic factors can dictate subtype heterogeneity, and thus, delineating the pathways involved can help to reprogram PDAC towards a classical/druggable subtype.
Collapse
Affiliation(s)
- Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany; Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Miguel-Escalada I, Maestro MÁ, Balboa D, Elek A, Bernal A, Bernardo E, Grau V, García-Hurtado J, Sebé-Pedrós A, Ferrer J. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell 2022; 57:1922-1936.e9. [PMID: 35998583 PMCID: PMC9426562 DOI: 10.1016/j.devcel.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations. The pancreas agenesis enhancer (EnhP) activates PTF1A in early pancreatic progenitors EnhP also activates other progenitor PTF1A enhancers This master key function explains why EnhP is vulnerable to loss-of-function mutations Transient PTF1A expression in progenitors controls pancreas growth and endocrinogenesis
Collapse
Affiliation(s)
- Irene Miguel-Escalada
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| | - Miguel Ángel Maestro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Diego Balboa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Aina Bernal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Edgar Bernardo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Vanessa Grau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Javier García-Hurtado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London W12 0NN, UK; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
25
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
26
|
Kloesch B, Ionasz V, Paliwal S, Hruschka N, Martinez de Villarreal J, Öllinger R, Mueller S, Dienes HP, Schindl M, Gruber ES, Stift J, Herndler-Brandstetter D, Lomberk GA, Seidler B, Saur D, Rad R, Urrutia RA, Real FX, Martinelli P. A GATA6-centred gene regulatory network involving HNFs and ΔNp63 controls plasticity and immune escape in pancreatic cancer. Gut 2022; 71:766-777. [PMID: 33846140 PMCID: PMC9733634 DOI: 10.1136/gutjnl-2020-321397] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Molecular taxonomy of tumours is the foundation of personalised medicine and is becoming of paramount importance for therapeutic purposes. Four transcriptomics-based classification systems of pancreatic ductal adenocarcinoma (PDAC) exist, which consistently identified a subtype of highly aggressive PDACs with basal-like features, including ΔNp63 expression and loss of the epithelial master regulator GATA6. We investigated the precise molecular events driving PDAC progression and the emergence of the basal programme. DESIGN We combined the analysis of patient-derived transcriptomics datasets and tissue samples with mechanistic experiments using a novel dual-recombinase mouse model for Gata6 deletion at late stages of KRasG12D-driven pancreatic tumorigenesis (Gata6LateKO). RESULTS This comprehensive human-to-mouse approach showed that GATA6 loss is necessary, but not sufficient, for the expression of ΔNp63 and the basal programme in patients and in mice. The concomitant loss of HNF1A and HNF4A, likely through epigenetic silencing, is required for the full phenotype switch. Moreover, Gata6 deletion in mice dramatically increased the metastatic rate, with a propensity for lung metastases. Through RNA-Seq analysis of primary cells isolated from mouse tumours, we show that Gata6 inhibits tumour cell plasticity and immune evasion, consistent with patient-derived data, suggesting that GATA6 works as a barrier for acquiring the fully developed basal and metastatic phenotype. CONCLUSIONS Our work provides both a mechanistic molecular link between the basal phenotype and metastasis and a valuable preclinical tool to investigate the most aggressive subtype of PDAC. These data, therefore, are important for understanding the pathobiological features underlying the heterogeneity of pancreatic cancer in both mice and human.
Collapse
Affiliation(s)
- Bernhard Kloesch
- Institute of Cancer Research, Departmet of Medicine I, Medical University of Vienna, Wien, Austria
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
| | - Vivien Ionasz
- Institute of Cancer Research, Departmet of Medicine I, Medical University of Vienna, Wien, Austria
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
| | - Sumit Paliwal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, Madrid, Spain
| | - Natascha Hruschka
- Institute of Cancer Research, Departmet of Medicine I, Medical University of Vienna, Wien, Austria
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
| | | | - Rupert Öllinger
- Center for Translational Cancer Research, Technical University Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research, Technical University Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany
| | - Hans Peter Dienes
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Schindl
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
- Division of General Surgery, Medical University of Vienna, Wien, Austria
| | - Elisabeth S Gruber
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
- Division of General Surgery, Medical University of Vienna, Wien, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Institute of Cancer Research, Departmet of Medicine I, Medical University of Vienna, Wien, Austria
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
| | - Gwen A Lomberk
- Genomics Sciences and Precision Medicine Center and Division of Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Barbara Seidler
- Center for Translational Cancer Research, Technical University Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Gemany
| | - Dieter Saur
- Center for Translational Cancer Research, Technical University Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Gemany
- German Cancer Consortium (DKTK), German Cancer Research Consortium (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research, Technical University Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Gemany
- German Cancer Consortium (DKTK), German Cancer Research Consortium (DKFZ), Heidelberg, Germany
| | - Raul A Urrutia
- Genomics Sciences and Precision Medicine Center and Division of Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, Madrid, Spain
- Departament de Ciènces Experimental i de la Salut, Pompeu Fabra University, Barcelona, Spain
| | - Paola Martinelli
- Institute of Cancer Research, Departmet of Medicine I, Medical University of Vienna, Wien, Austria
- Comprehensive Cancer Center, Medical University Vienna, Wien, Austria
| |
Collapse
|
27
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
28
|
Krauß L, Urban BC, Hastreiter S, Schneider C, Wenzel P, Hassan Z, Wirth M, Lankes K, Terrasi A, Klement C, Cernilogar FM, Öllinger R, de Andrade Krätzig N, Engleitner T, Schmid RM, Steiger K, Rad R, Krämer OH, Reichert M, Schotta G, Saur D, Schneider G. HDAC2 Facilitates Pancreatic Cancer Metastasis. Cancer Res 2022; 82:695-707. [PMID: 34903606 PMCID: PMC9359718 DOI: 10.1158/0008-5472.can-20-3209] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
The mortality of patients with pancreatic ductal adenocarcinoma (PDAC) is strongly associated with metastasis, a multistep process that is incompletely understood in this disease. Although genetic drivers of PDAC metastasis have not been defined, transcriptional and epigenetic rewiring can contribute to the metastatic process. The epigenetic eraser histone deacetylase 2 (HDAC2) has been connected to less differentiated PDAC, but the function of HDAC2 in PDAC has not been comprehensively evaluated. Using genetically defined models, we show that HDAC2 is a cellular fitness factor that controls cell cycle in vitro and metastasis in vivo, particularly in undifferentiated, mesenchymal PDAC cells. Unbiased expression profiling detected a core set of HDAC2-regulated genes. HDAC2 controlled expression of several prosurvival receptor tyrosine kinases connected to mesenchymal PDAC, including PDGFRα, PDGFRβ, and EGFR. The HDAC2-maintained program disabled the tumor-suppressive arm of the TGFβ pathway, explaining impaired metastasis formation of HDAC2-deficient PDAC. These data identify HDAC2 as a tractable player in the PDAC metastatic cascade. The complexity of the function of epigenetic regulators like HDAC2 implicates that an increased understanding of these proteins is needed for implementation of effective epigenetic therapies. SIGNIFICANCE HDAC2 has a context-specific role in undifferentiated PDAC and the capacity to disseminate systemically, implicating HDAC2 as targetable protein to prevent metastasis.
Collapse
Affiliation(s)
- Lukas Krauß
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Bettina C. Urban
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Sieglinde Hastreiter
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Carolin Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Patrick Wenzel
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, German
| | - Katharina Lankes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Andrea Terrasi
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Christine Klement
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Filippo M. Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Roland M. Schmid
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, Mainz, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
D’Agosto S, Pezzini F, Veghini L, Delfino P, Fiorini C, Temgue Tane GD, Del Curatolo A, Vicentini C, Ferrari G, Pasini D, Andreani S, Lupo F, Fiorini E, Lorenzon G, Lawlor RT, Rusev B, Malinova A, Luchini C, Milella M, Sereni E, Pea A, Bassi C, Bailey P, Scarpa A, Bria E, Corbo V. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene 2022; 41:4371-4384. [PMID: 35963908 PMCID: PMC9481460 DOI: 10.1038/s41388-022-02432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.510779.d0000 0004 9414 6915Present Address: Human Technopole, Milan, Italy
| | - Francesco Pezzini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Lisa Veghini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Delfino
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudia Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Gael D. Temgue Tane
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anais Del Curatolo
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgia Ferrari
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Pasini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Andreani
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Lupo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Lorenzon
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T. Lawlor
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Antonia Malinova
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Sereni
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Antonio Pea
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Claudio Bassi
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Peter Bailey
- grid.8756.c0000 0001 2193 314XInstitute of Cancer Sciences, University of Glasgow, Glasgow, UK ,grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK ,grid.7700.00000 0001 2190 4373Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Aldo Scarpa
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Emilio Bria
- grid.411075.60000 0004 1760 4193Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Section of Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
30
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
31
|
Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. NATURE CANCER 2021; 2:1185-1203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | | | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaojuan Li
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
- Division of Cancer Epigenomics, DKFZ, Heidelberg, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Guo Q, Zhang X, Shen T, Wang X. Identification of Autophagy- and Ferroptosis-Related lncRNAs Functioned through Immune-Related Pathways in Head and Neck Squamous Carcinoma. Life (Basel) 2021; 11:life11080835. [PMID: 34440579 PMCID: PMC8399325 DOI: 10.3390/life11080835] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between autophagy and ferroptosis has been highlighted as an important event to decide cancer cell fate. However, the underlying mechanisms remain largely unclear. In this study, we systematically explored the expression, prognostic value and functional roles of lncRNA in autophagy and ferroptosis. By a set of bioinformatics analyses, we identified 363 autophagy- and ferroptosis-related lncRNAs (AF-lncRNAs) and found 17 of them are dramatically related to the prognosis of head and neck squamous cell carcinoma (HNSC) patients, named as prognosis-related AF-lncRNAs (PAF-lncRNAs). Based on six key PAF-lncRNAs, a risk score model was developed and used to categorize the TCGA-retrieved HNSC patients into two groups (high-risk vs. low-risk). Functional analysis showed the differentially expressed genes (DEGs) between the two groups were mainly enriched in immune-related pathways and regulated by a PAF-lncRNA-directed ceRNA (competitive endogenous RNA) network. Combined with a variety of immune infiltration analyses, we also found a decreased landscape of immune cell infiltration in high-risk groups. Together, by revealing PAF-lncRNAs with tumor prognostic features functioned through immune-related pathways, our work would contribute to show the pathogenesis of a lncRNA-directed interplay among autophagy, ferroptosis and tumor immunity in HNSC and to develop potential prognostic biomarkers and targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| |
Collapse
|
33
|
Milan M, Diaferia GR, Natoli G. Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many variants. EMBO J 2021; 40:e107206. [PMID: 33844319 PMCID: PMC8246061 DOI: 10.15252/embj.2020107206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most highly lethal tumors, is characterized by complex histology, with a massive fibrotic stroma in which both pseudo-glandular structures and compact nests of abnormally differentiated tumor cells are embedded, in different proportions and with different mutual relationships in space. This complexity and the heterogeneity of the tumor component have hindered the development of a broadly accepted, clinically actionable classification of PDACs, either on a morphological or a molecular basis. Here, we discuss evidence suggesting that such heterogeneity can to a large extent, albeit not exclusively, be traced back to two main classes of PDAC cells that commonly coexist in the same tumor: cells that maintained their ability to differentiate toward endodermal, mucin-producing epithelia and epithelial cells unable to form glandular structures and instead characterized by various levels of squamous differentiation and the expression of mesenchymal lineage genes. The underlying gene regulatory networks and how they are controlled by distinct transcription factors, as well as the practical implications of these two different populations of tumor cells, are discussed.
Collapse
Affiliation(s)
- Marta Milan
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
- Present address:
The Francis Crick InstituteLondonUK
| | - Giuseppe R Diaferia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
| | - Gioacchino Natoli
- Department of Experimental OncologyEuropean Institute of Oncology (IEO) IRCCSMilanItaly
- Humanitas UniversityMilanItaly
| |
Collapse
|
34
|
Kim HR, Yim J, Yoo HB, Lee SE, Oh S, Jung S, Hwang CI, Shin DM, Kim T, Yoo KH, Kim YS, Lee HW, Roe JS. EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer 2021; 3:zcab023. [PMID: 34316710 PMCID: PMC8210884 DOI: 10.1093/narcan/zcab023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.
Collapse
Affiliation(s)
- Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Juhye Yim
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Hye-Been Yoo
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Seung Eon Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Sumin Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sungju Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, South Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - You-Sun Kim
- Department of Biochemistry, School of Medicine, Ajou University, Suwon 16499, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
35
|
Alarcón T, Sardanyés J, Guillamon A, Menendez JA. Bivalent chromatin as a therapeutic target in cancer: An in silico predictive approach for combining epigenetic drugs. PLoS Comput Biol 2021; 17:e1008408. [PMID: 34153035 PMCID: PMC8248646 DOI: 10.1371/journal.pcbi.1008408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/01/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Tumour cell heterogeneity is a major barrier for efficient design of targeted anti-cancer therapies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive cancer cells whilst leaving resistant subpopulations unharmed. Few strategies have been proposed for quantifying the variability associated to individual cancer-cell heterogeneity and minimizing its undesirable impact on clinical outcomes. Here, we report a computational approach that allows the rational design of combinatorial therapies involving epigenetic drugs against chromatin modifiers. We have formulated a stochastic model of a bivalent transcription factor that allows us to characterise three different qualitative behaviours, namely: bistable, high- and low-gene expression. Comparison between analytical results and experimental data determined that the so-called bistable and high-gene expression behaviours can be identified with undifferentiated and differentiated cell types, respectively. Since undifferentiated cells with an aberrant self-renewing potential might exhibit a cancer/metastasis-initiating phenotype, we analysed the efficiency of combining epigenetic drugs against the background of heterogeneity within the bistable sub-ensemble. Whereas single-targeted approaches mostly failed to circumvent the therapeutic problems represented by tumour heterogeneity, combinatorial strategies fared much better. Specifically, the more successful combinations were predicted to involve modulators of the histone H3K4 and H3K27 demethylases KDM5 and KDM6A/UTX. Those strategies involving the H3K4 and H3K27 methyltransferases MLL2 and EZH2, however, were predicted to be less effective. Our theoretical framework provides a coherent basis for the development of an in silico platform capable of identifying the epigenetic drugs combinations best-suited to therapeutically manage non-uniform responses of heterogenous cancer cell populations.
Collapse
Affiliation(s)
- Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Antoni Guillamon
- Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
- Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute, Salt, Girona, Spain
| |
Collapse
|
36
|
Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021; 70:900-914. [PMID: 32826305 PMCID: PMC7945295 DOI: 10.1136/gutjnl-2020-321316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.
Collapse
Affiliation(s)
- Soledad A Camolotto
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Veronika K Belova
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Luke Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Hannah Conway
- HCI Clinical Trials Operations, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Eric L Snyder
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
37
|
Schneeweis C, Hassan Z, Schick M, Keller U, Schneider G. The SUMO pathway in pancreatic cancer: insights and inhibition. Br J Cancer 2021; 124:531-538. [PMID: 33071285 PMCID: PMC7851129 DOI: 10.1038/s41416-020-01119-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
An urgent medical need to develop novel treatment strategies for patients with pancreatic ductal adenocarcinoma (PDAC) exists. However, despite various efforts in the histopathological and molecular subtyping of PDAC, novel targeted or specific therapies have not been established. Posttranslational modifications (PTMs) with ubiquitin-like proteins, including small ubiquitin-like modifiers (SUMOs), mediate numerous processes that can contribute to the fitness and survival of cancer cells. The contribution of SUMOylation to transcriptional control, DNA repair pathways, mitotic progression, and oncogenic signalling has been described. Here we review functions of the SUMO pathway in PDAC, with a special focus on its connection to an aggressive subtype of the disease characterised by high MYC activity, and discuss SUMOylation inhibitors under development for precise PDAC therapies.
Collapse
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Max-Delbrück-Center for Molecular Medicine, 13092, Berlin, Germany.
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Alonso-Curbelo D, Ho YJ, Burdziak C, Maag JLV, Morris JP, Chandwani R, Chen HA, Tsanov KM, Barriga FM, Luan W, Tasdemir N, Livshits G, Azizi E, Chun J, Wilkinson JE, Mazutis L, Leach SD, Koche R, Pe'er D, Lowe SW. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 2021; 590:642-648. [PMID: 33536616 PMCID: PMC8482641 DOI: 10.1038/s41586-020-03147-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Tissue damage increases the risk of cancer through poorly understood mechanisms1. In mouse models of pancreatic cancer, pancreatitis associated with tissue injury collaborates with activating mutations in the Kras oncogene to markedly accelerate the formation of early neoplastic lesions and, ultimately, adenocarcinoma2,3. Here, by integrating genomics, single-cell chromatin assays and spatiotemporally controlled functional perturbations in autochthonous mouse models, we show that the combination of Kras mutation and tissue damage promotes a unique chromatin state in the pancreatic epithelium that distinguishes neoplastic transformation from normal regeneration and is selected for throughout malignant evolution. This cancer-associated epigenetic state emerges within 48 hours of pancreatic injury, and involves an 'acinar-to-neoplasia' chromatin switch that contributes to the early dysregulation of genes that define human pancreatic cancer. Among the factors that are most rapidly activated after tissue damage in the pre-malignant pancreatic epithelium is the alarmin cytokine interleukin 33, which recapitulates the effects of injury in cooperating with mutant Kras to unleash the epigenetic remodelling program of early neoplasia and neoplastic transformation. Collectively, our study demonstrates how gene-environment interactions can rapidly produce gene-regulatory programs that dictate early neoplastic commitment, and provides a molecular framework for understanding the interplay between genetic and environmental cues in the initiation of cancer.
Collapse
Affiliation(s)
- Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassandra Burdziak
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesper L V Maag
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John P Morris
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rohit Chandwani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco M Barriga
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nilgun Tasdemir
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geulah Livshits
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elham Azizi
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaeyoung Chun
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven D Leach
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dartmouth Norris Cotton Cancer Center, Hanover, NH, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
39
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
40
|
Abstract
Lysine demethylase 6A (KDM6A), also known as UTX, belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTY and KDM6B (JMJD3). The KDM6A protein contains six tetratricopeptide repeat (TPR) domains and an enzymatic Jumonji C (JmjC) domain that catalyzes the removal of di- and trimethylation on H3K27. KDM6A physically associates with histone H3 lysine 4 monomethyltransferases MLL3 (KMT2C) and MLL4 (KMT2D). Since its identification as an H3K27 demethylase in 2007, studies have reported KDM6A's critical roles in cell differentiation, development, and cancer. KDM6A is important for differentiation of embryonic stem cells and development of various tissues. Mutations of KDM6A cause Kabuki syndrome. KDM6A is frequently mutated in cancers and functions as a tumor suppressor. KDM6A is redundant with UTY and functions largely independently of its demethylase activity. It regulates gene expression, likely through the associated transcription factors and MLL3/4 on enhancers. However, KDM6A enzymatic activity is required in certain cellular contexts. Functional redundancy between H3K27 demethylase activities of KDM6A and KDM6B in vivo has yet to be determined. Further understanding of KDM6A functions and working mechanisms will provide more insights into enhancer regulation and may help generate novel therapeutic approaches to treat KDM6A-related diseases.
Collapse
|
41
|
Tricarico R, Nicolas E, Hall MJ, Golemis EA. X- and Y-Linked Chromatin-Modifying Genes as Regulators of Sex-Specific Cancer Incidence and Prognosis. Clin Cancer Res 2020; 26:5567-5578. [PMID: 32732223 DOI: 10.1158/1078-0432.ccr-20-1741] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Biological sex profoundly conditions organismal development and physiology, imposing wide-ranging effects on cell signaling, metabolism, and immune response. These effects arise from sex-specified differences in hormonal exposure, and from intrinsic genetic and epigenetic differences associated with the presence of an XX versus XY chromosomal complement. In addition, biological sex is now recognized to be a determinant of the incidence, presentation, and therapeutic response of multiple forms of cancer, including cancers not specifically associated with male or female anatomy. Although multiple factors contribute to sex-based differences in cancer, a growing body of research emphasizes a role for differential activity of X- and Y-linked tumor-suppressor genes in males and females. Among these, the X-linked KDM6A/UTX and KDM5C/JARID1C/SMCX, and their Y-linked paralogs UTY/KDM6C and KDM5D/JARID1D/SMCY encode lysine demethylases. These epigenetic modulators profoundly influence gene expression, based on enzymatic activity in demethylating H3K27me3 and H3K4me3, and nonenzymatic scaffolding roles for large complexes that open and close chromatin for transcription. In a growing number of cases, mutations affecting these proteins have been recognized to strongly influence cancer risk, prognosis, and response to specific therapies. However, sex-specific patterns of mutation, expression, and activity of these genes, coupled with tissue-specific requirement for their function as tumor suppressors, together exemplify the complex relationship between sex and cancer vulnerabilities. In this review, we summarize and discuss the current state of the literature on the roles of these proteins in contributing to sex bias in cancer, and the status of clinical agents relevant to their function.
Collapse
Affiliation(s)
- Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Ding LY, Hou YC, Kuo IY, Hsu TY, Tsai TC, Chang HW, Hsu WY, Tsao CC, Tian CC, Wang PS, Wang HC, Lee CT, Wang YC, Lin SH, Hughes MW, Chuang WJ, Lu PJ, Shan YS, Huang PH. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. Clin Epigenetics 2020; 12:87. [PMID: 32552862 PMCID: PMC7301993 DOI: 10.1186/s13148-020-00878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). Results By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. Conclusion Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.
Collapse
Affiliation(s)
- Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yi Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Ching Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Wei Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chieh Tsao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Chen Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Shun Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
43
|
Bärthel S, Schneider G, Saur D. Blocking the road to de-differentiation: HNF1A/KDM6A complex safeguards epithelial integrity in pancreatic cancer. EMBO J 2020; 39:e104759. [PMID: 32236961 PMCID: PMC7196913 DOI: 10.15252/embj.2020104759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial differentiation of normal and tumor cells is orchestrated by lineage-determining transcriptional regulatory networks that enforce cell identity. Recent research by Kalisz et al (2020) in the EMBO Journal elucidates the molecular mechanisms by which a transcriptional differentiation program governed by HNF1A and KDM6A maintains acinar differentiation and the epithelial identity of pancreatic ductal adenocarcinoma (PDAC). Loss of function of either transcriptional regulator induces tumor progression to a poorly differentiated and highly aggressive PDAC subtype with a squamous transcriptome and poor prognosis.
Collapse
Affiliation(s)
- Stefanie Bärthel
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)Partner Site MunichKlinikum Rechts der IsarTechnische Universität MünchenMünchenGermany
- Institute of Translational Cancer Research and Experimental Cancer TherapyKlinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Günter Schneider
- German Cancer Consortium (DKTK)Partner Site MunichKlinikum Rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of Medicine IIKlinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)Partner Site MunichKlinikum Rechts der IsarTechnische Universität MünchenMünchenGermany
- Institute of Translational Cancer Research and Experimental Cancer TherapyKlinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of Medicine IIKlinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| |
Collapse
|