1
|
Tye H, Conos SA, Djajawi TM, Gottschalk TA, Abdoulkader N, Kong IY, Kammoun HL, Narayana VK, Kratina T, Speir M, Emery J, Simpson DS, Hall C, Vince AJ, Russo S, Crawley R, Rashidi M, Hildebrand JM, Murphy JM, Whitehead L, De Souza DP, Masters SL, Samson AL, Lalaoui N, Hawkins ED, Murphy AJ, Vince JE, Lawlor KE. Divergent roles of RIPK3 and MLKL in high-fat diet-induced obesity and MAFLD in mice. Life Sci Alliance 2025; 8:e202302446. [PMID: 39532538 PMCID: PMC11557689 DOI: 10.26508/lsa.202302446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death frequently occurs in the pathogenesis of obesity and metabolic dysfunction-associated fatty liver disease (MAFLD). However, the exact contribution of core cell death machinery to disease manifestations remains ill-defined. Here, we show via the direct comparison of mice genetically deficient in the essential necroptotic regulators, receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL), as well as mice lacking apoptotic caspase-8 in myeloid cells combined with RIPK3 loss, that RIPK3/caspase-8 signaling regulates macrophage inflammatory responses and drives adipose tissue inflammation and MAFLD upon high-fat diet feeding. In contrast, MLKL, divergent to RIPK3, contributes to both obesity and MAFLD in a manner largely independent of inflammation. We also uncover that MLKL regulates the expression of molecules involved in lipid uptake, transport, and metabolism, and congruent with this, we discover a shift in the hepatic lipidome upon MLKL deletion. Collectively, these findings highlight MLKL as an attractive therapeutic target to combat the growing obesity pandemic and metabolic disease.
Collapse
Affiliation(s)
- Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Stephanie A Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Tirta M Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Timothy A Gottschalk
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Nasteho Abdoulkader
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | | | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Jack Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Angelina J Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sophia Russo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Rhiannan Crawley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Ban Z, Yue X, Huang K, Yuan L, Zhou S, Jiang J, Fei C, Xie J. Molecular cloning and functional characterization of Caspase-8 in goldfish (Carassius auratus L.). FISH & SHELLFISH IMMUNOLOGY 2024; 157:110090. [PMID: 39681222 DOI: 10.1016/j.fsi.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Apoptosis, a form of programmed cell death, is essential for maintaining homeostasis within the internal environment. Caspase-8, an initiator caspase, plays a pivotal role in activating the caspase cascade during the apoptotic process. This study cloned and expressed Caspase-8 from goldfish, aimed to investigate the role of Caspase-8 in the immune response of fish to bacterial infections, specifically those caused by Aeromonas hydrophila. The Gf-Casp8 gene consists of 1425 base pairs, encoding a protein of 474 amino acids with a molecular weight of 54.55 kDa. Quantitative real-time PCR analysis revealed that Gf-Casp8 is highly expressed in the spleen and kidney, with lower expression levels in the muscle and heart. Moreover, Gf-Casp8 expression was significantly upregulated in kidney leukocytes following stimulation with A. hydrophila and LPS. Post-immunization, both mRNA and protein levels of Gf-Casp8 in the kidney were significantly increased. Subcellular localization analysis indicated that Gf-Casp8 is localized in both the cytoplasm and nucleus. In addition, flow cytometry analysis demonstrated that overexpression of Gf-Casp8 significantly enhances apoptosis in HEK293T cells. These results highlight the critical function of Gf-Casp8 in modulating apoptosis and antibacterial immune responses in goldfish.
Collapse
Affiliation(s)
- Ziqi Ban
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China
| | - Lu Yuan
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China
| | - Suming Zhou
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Chenjie Fei
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, China, Ningbo, Zhejiang, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
3
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2024; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
4
|
Wang M, Sheng W, Zhang J, Cao Q, Du X, Li Q. A Mutation Losing an RBP-Binding Site in the LncRNA NORSF Transcript Influences Granulosa Cell Apoptosis and Sow Fertility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404747. [PMID: 39120076 PMCID: PMC11516108 DOI: 10.1002/advs.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Indexed: 08/10/2024]
Abstract
Sow fertility is an economically important quantitative trait. Hundreds of quantitative trait loci (QTLs) containing tens of thousands of potential candidate genes are excavated. However, among these genes, non-coding RNAs including long non-coding RNAs (lncRNAs) are often overlooked. Here, it is reported that NORSF is a novel causal lncRNA for sow fertility traits in QTLs. QTLs are characterized for sow fertility traits at the genome-wide level and identified 4,630 potential candidate lncRNAs, with 13 differentially expressed during sow follicular atresia. NORSF, a lncRNA that involved in sow granulosa cell (sGC) function, is identified as a candidate gene for sow fertility traits as a G to A transversion at 128 nt in its transcript is shown to be markedly associated with sow fertility traits. Mechanistically, after forming the RNA:dsDNA triplexes with the promoter of Caspase8, NORSF transcript with allele G binds to an RNA-binding protein (RBP) NR2C1 and recruits it to the promoter of Caspase8, to induce Caspase8 transcription in sGCs. Functionally, this leads to a loss of inducing effect of NORSF on sGC apoptosis by inactivating the death receptor-mediated apoptotic pathway. This study identified a novel causal lncRNA that can be used for the genetic improvement of sow fertility traits.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Wenmin Sheng
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jiyu Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qiuyu Cao
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Xing Du
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qifa Li
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
5
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
6
|
Dissanayake D, Firouzabady A, Massumi M, de Paz Linares GA, Marshall C, Freeman SA, Laxer RM, Yeung RSM. Interleukin-1-mediated hyperinflammation in XIAP deficiency is associated with defective autophagy. Blood 2024; 144:1183-1192. [PMID: 38820590 DOI: 10.1182/blood.2023023707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is a rare genetic condition that can present with recurrent episodes of hemophagocytic lymphohistiocytosis (HLH), though the exact mechanisms leading to this hyperinflammatory disorder are unclear. Understanding its biology is critical to developing targeted therapies for this potentially fatal disease. Here, we report on a novel multiexonic intragenic duplication leading to XIAP deficiency with recurrent HLH that demonstrated complete response to interleukin (IL)-1β blockade. We further demonstrate using both primary patient cells and genetically modified THP-1 monocyte cell lines that, contrary to what has previously been shown in mouse cells, XIAP-deficient human macrophages do not produce excess IL-1β when stimulated under standard conditions. Instead, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated hyperproduction of IL-1β is observed only when the XIAP-deficient cells are stimulated under autophagy-promoting conditions and this correlates with defective autophagic flux as measured by decreased accumulation of the early autophagy marker LC3-II. This work, therefore, highlights IL-1β blockade as a therapeutic option for patients with XIAP deficiency experiencing recurrent HLH and identifies a critical role for XIAP in promoting autophagy as a means of limiting IL-1β-mediated hyperinflammation during periods of cellular stress.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Mohammad Massumi
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | | | - Christian Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ronald M Laxer
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Ji R, Chen J, Xu J, Zhang L, Liu L, Li F. Protective effect of chlorogenic acid on liver injury in heat-stressed meat rabbits. J Anim Physiol Anim Nutr (Berl) 2024; 108:1203-1213. [PMID: 38628061 DOI: 10.1111/jpn.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
This study investigated the protective effects of chlorogenic acid (CGA) on production performance and liver function of rabbits under heat stress (HS) condition. A total of 120 healthy New Zealand weaned rabbits with similar initial body weight, were randomly divided into 3 treatments with 20 replicates per treatment and 2 weaned rabbits per replicate: control (CON) group (rabbits were housed at 25 ± 1°C and fed a basal diet), HS group (rabbits were housed at 35 ± 1°C and fed a basal diet), and HS + CGA group (rabbits were housed at 35 ± 1°C and fed a basal diet supplemented with 800 mg/kg CGA). The trial lasted for 28 days. The results showed that HS challenge decreased (p < 0.05) growth performance, induced oxidative stress and hepatic apoptosis, and caused liver damage in rabbits. However, dietary CGA supplementation increased (p < 0.05) body weight gain and feed efficiency, and enhanced (p < 0.05) antioxidative capacity in serum and liver in HS-challenged rabbits; attenuated HS-induced increases in urea nitrogen (p = 0.03), alanine aminotransferase (p = 0.03), aspartate aminotransferase (p = 0.01), caspase-8 (p = 0.02), and caspase-3 (p = 0.04) as well as decrease albumin (p = 0.04). Moreover, supplementation with CGA upregulated Nrf2/HO-1 pathway-related genes expressions, including Nrf2 (p = 0.009), HO-1 (p = 0.03) and SOD1 (p = 0.04) in HS-challenged rabbits. Our findings demonstrated that dietary CGA supplementation could alleviate HS-induced decline in growth performance, and protect against HS-induced liver damage partially through enhancing antioxidant capacity via acting Nrf2/HO-1 pathway and inhibiting hepatic apoptosis in rabbits.
Collapse
Affiliation(s)
- Rongmei Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Jiali Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Jian Xu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lirui Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
8
|
Wu LY, Zhang JL, Zeeshan M, Zhou Y, Zhang YT, He WT, Jin N, Dai Y, Chi W, Ou Z, Dong GH, Lin LZ. Caspase-8 promotes NLRP3 inflammasome activation mediates eye development defects in zebrafish larvae exposed to perfulorooctane sulfonate (PFOS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124252. [PMID: 38815886 DOI: 10.1016/j.envpol.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Epidemiological evidence showed that serum high perfluorooctane sulfonate (PFOS) levels are associated with multiple eye related diseases, but the potential underlying molecular mechanisms remain poorly understood. Zebrafish and photoreceptor cell (661w) models were used to investigate the molecular mechanism of PFOS induced eye development defects. Our results showed a novel molecular mechanism of PFOS-induced inflammation response-mediated photoreceptor cell death associated with eye development defects. Inhibition of Caspase-8 activation significantly decreased photoreceptor cell death in PFOS exposure. Mechanistically, Toll-like receptor 4 (TLR4) mediates activation of Caspase-8 promote activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome to elicit maturation of interleukin-1 beta (IL-1β) via Caspase-1 activation, facilitating photoreceptor cell inflammation damage in PFOS exposure. In addition, we also made a novel finding that Caspase-3 activation was increased via Caspase-8 activation and directly intensified cell death. Our results show the important role of Caspase-8 activation in PFOS induced eye development defects and highlight Caspase-8 mediated activation of the NLRP3 inflammation triggers activation of Caspase-1 and promote the maturation of IL-1β in retinal inflammatory injury.
Collapse
Affiliation(s)
- Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210, Kuopio, Finland
| | - Ye Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
10
|
Koloko Ngassie ML, Drake LY, Roos BB, Koenig-Kappes A, Pabelick CM, Gosens R, Brandsma CA, Burgess JK, Prakash YS. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2024; 327:L126-L139. [PMID: 38771153 PMCID: PMC11380945 DOI: 10.1152/ajplung.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-β-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-β-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.
Collapse
Affiliation(s)
- Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Amanda Koenig-Kappes
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
11
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Xie H, Liang B, Zhu Q, Wang L, Li H, Qin Z, Zhang J, Liu Z, Wu Y. The role of PANoptosis in renal vascular endothelial cells: Implications for trichloroethylene-induced kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116433. [PMID: 38714087 DOI: 10.1016/j.ecoenv.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China
| | - Bo Liang
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Qixing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lin Wang
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Li
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Zhuohui Qin
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhibing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yonggui Wu
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
Liu S, Joshi K, Zhang L, Li W, Mack R, Runde A, Hagen PA, Barton K, Breslin P, Ji HL, Kini AR, Wang Z, Zhang J. Caspase 8 deletion causes infection/inflammation-induced bone marrow failure and MDS-like disease in mice. Cell Death Dis 2024; 15:278. [PMID: 38637559 PMCID: PMC11026525 DOI: 10.1038/s41419-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.
Collapse
Affiliation(s)
- Shanhui Liu
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, China
| | - Wenyan Li
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Austin Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Departments of Biology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Ameet R Kini
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Zhiping Wang
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China.
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Li W, Zhang W, Zhang D, Shi C, Wang Y. Effect of lipopolysaccharide on TAK1-mediated hepatocyte PANoptosis through Toll-like receptor 4 during acute liver failure. Int Immunopharmacol 2024; 129:111612. [PMID: 38335652 DOI: 10.1016/j.intimp.2024.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Intestinal endotoxemia (IETM) is an important pathogenic mechanism of acute liver failure (ALF), and TAK1-mediated PANoptosis is a novel cell death mode. This study investigated whether IETM can induce hepatocyte PANoptosis during ALF. METHOD PANoptosis cell and mouse models were generated, and lentiviruses (LVs), adeno-associated viral vectors (AVVs), and small interfering RNAs (siRNAs) were subsequently used to overexpress or knock down TLR and TAK1. Then, the levels of hepatocyte injury, TLR4, TAK1 and PANoptosis were detected via an enzyme-labeling instrument, tissue staining, RT-PCR, western blotting, immunofluorescence, and flow cytometry. RESULTS The BioGRID database search revealed that TAK1 might interact with TLR4. According to the in vivo experiments, compared with those in ALF mice, liver tissue damage, hepatocyte mortality and PANoptosis in mice in the AAV-TAK1 group were significantly lower, and liver function was significantly improved. According to the in vitro experiments, after promoting the expression of TLR4 in the model group, the degree of cell damage, TLR4 expression and PANoptosis further increased, while the level of TAK1 further decreased. The opposite result was obtained when TLR4 expression was inhibited. The increase in TAK1 expression in the model group reduced the degree of cell damage and PANoptosis, but the level of TLR4 was not significantly changed. In the model group of cells that exhibited TAK1 expression, further promotion of TLR4 expression inhibited the protective effect of TAK1 on cells. In the model group of cells after TAK1 expression was promoted, if the expression of TLR4 was further promoted, the protective effect of TAK1 on cells was inhibited. CONCLUSION IETM inhibited the expression of TAK1 by binding to TLR4 molecules and promoting hepatocyte PANoptosis during ALF. Promoting TAK1 expression effectively relieved lipopolysaccharide-induced hepatocyte PANoptosis.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenbin Zhang
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
16
|
Santavanond JP, Chiu YH, Tixeira R, Liu Z, Yap JKY, Chen KW, Li CL, Lu YR, Roncero-Carol J, Hoijman E, Rutter SF, Shi B, Ryan GF, Hodge AL, Caruso S, Baxter AA, Ozkocak DC, Johnson C, Day ZI, Mayfosh AJ, Hulett MD, Phan TK, Atkin-Smith GK, Poon IKH. The small molecule raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Cell Death Dis 2024; 15:123. [PMID: 38336804 PMCID: PMC10858176 DOI: 10.1038/s41419-024-06513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.
Collapse
Affiliation(s)
- Jascinta P Santavanond
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Yu-Hsin Chiu
- Departments of Medical Science, Life Science, and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Rochelle Tixeira
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zonghan Liu
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jeremy K Y Yap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chen-Lu Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ru Lu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Joan Roncero-Carol
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Esteban Hoijman
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie F Rutter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Amy L Hodge
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Sarah Caruso
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Amy A Baxter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Chad Johnson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Zoe I Day
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alyce J Mayfosh
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Thanh K Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medial Research, Parkville, Vic, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medial Research, Parkville, Vic, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
- Research Centre of Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
19
|
Minns MS, Liboro K, Lima TS, Abbondante S, Miller BA, Marshall ME, Tran Chau J, Roistacher A, Rietsch A, Dubyak GR, Pearlman E. NLRP3 selectively drives IL-1β secretion by Pseudomonas aeruginosa infected neutrophils and regulates corneal disease severity. Nat Commun 2023; 14:5832. [PMID: 37730693 PMCID: PMC10511713 DOI: 10.1038/s41467-023-41391-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Macrophages infected with Gram-negative bacteria expressing Type III secretion system (T3SS) activate the NLRC4 inflammasome, resulting in Gasdermin D (GSDMD)-dependent, but GSDME independent IL-1β secretion and pyroptosis. Here we examine inflammasome signaling in neutrophils infected with Pseudomonas aeruginosa strain PAO1 that expresses the T3SS effectors ExoS and ExoT. IL-1β secretion by neutrophils requires the T3SS needle and translocon proteins and GSDMD. In macrophages, PAO1 and mutants lacking ExoS and ExoT (ΔexoST) require NLRC4 for IL-1β secretion. While IL-1β release from ΔexoST infected neutrophils is also NLRC4-dependent, infection with PAO1 is instead NLRP3-dependent and driven by the ADP ribosyl transferase activity of ExoS. Genetic and pharmacologic approaches using MCC950 reveal that NLRP3 is also essential for bacterial killing and disease severity in a murine model of P. aeruginosa corneal infection (keratitis). Overall, these findings reveal a function for ExoS ADPRT in regulating inflammasome subtype usage in neutrophils versus macrophages and an unexpected role for NLRP3 in P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Martin S Minns
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Odyssey Therapeutics, Boston, MA, USA
| | - Karl Liboro
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Tatiane S Lima
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Serena Abbondante
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Brandon A Miller
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela E Marshall
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Jolynn Tran Chau
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Alicia Roistacher
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - George R Dubyak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Eric Pearlman
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Stoess C, Leszczynska A, Kui L, Feldstein AE. Pyroptosis and gasdermins-Emerging insights and therapeutic opportunities in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2023; 11:1218807. [PMID: 37664463 PMCID: PMC10470644 DOI: 10.3389/fcell.2023.1218807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, there has been a rapid expansion in our understanding of regulated cell death, leading to the discovery of novel mechanisms that govern diverse cell death pathways. One recently discovered type of cell death is pyroptosis, initially identified in the 1990s as a caspase-1-dependent lytic cell death. However, further investigations have redefined pyroptosis as a regulated cell death that relies on the activation of pore-forming proteins, particularly the gasdermin family. Among the key regulators of pyroptosis is the inflammasome sensor NOD-like receptor 3 (NLRP3), a critical innate immune sensor responsible for regulating the activation of caspase-1 and gasdermin D. A deeper understanding of pyroptosis and its interplay with other forms of regulated cell death is emerging, shedding light on a complex regulatory network controlling pore-forming proteins and cell fate. Cell death processes play a central role in diseases such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, autoinflammatory disorders, and cancer. Cell death often acts as a starting point in these diseases, making it an appealing target for drug development. Yet, the complete molecular mechanisms are not fully understood, and new discoveries reveal promising novel avenues for therapeutic interventions. In this review, we summarize recent evidence on pathways and proteins controlling pyroptosis and gasdermins. Furthermore, we will address the role of pyroptosis and the gasdermin family in metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Additionally, we highlight new potential therapeutic targets for treating metabolic dysfunction-associated steatohepatitis and other inflammatory-associated diseases.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Aleksandra Leszczynska
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Lin Kui
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Garciaz S, Miller T, Collette Y, Vey N. Targeting regulated cell death pathways in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:151-168. [PMID: 37065864 PMCID: PMC10099605 DOI: 10.20517/cdr.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML patients, particularly those resistant to intrinsic apoptosis.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Hematology Department, Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Thomas Miller
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Yves Collette
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Norbert Vey
- Hematology Department, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| |
Collapse
|
22
|
Hughes SA, Vince JE. A Streamlined Method for Detecting Inflammasome-Induced ASC Oligomerization Using Chemical Crosslinking. Methods Mol Biol 2023; 2691:155-164. [PMID: 37355544 DOI: 10.1007/978-1-0716-3331-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
The apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) functions as the integral adaptor protein between inflammasome sensors such as NOD-like receptor protein 3 (NLRP3) and the inflammatory caspase, caspase-1. Inflammasome sensor triggering allows recruitment of ASC and the formation of long amyloid-like ASC oligomers that enable binding and proximity-induced activation of caspase-1. The detection of ASC oligomerization thus constitutes a highly specific and direct test for inflammasome complex formation and activation. Here, we describe a simplified and streamlined method for the detection of ASC oligomers via Western blotting, using the chemical crosslinking reagent disuccinimidyl suberate.
Collapse
Affiliation(s)
- Sebastian A Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|