1
|
Hsu ML, Jhuang KF, Zouali M. Inflammasome functional activities in B lymphocytes. Immunol Res 2024; 72:828-840. [PMID: 38777958 DOI: 10.1007/s12026-024-09490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Studies in animal models and human subjects have shown that, in addition to their implication in innate immunity, inflammasomes also can play a role in adaptive immunity. However, the contribution of the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome pathway to adaptive immunity remains incompletely explored. Here, we show that NLRP3 plays an important role in different facets of B cell functions, including proliferation, antibody production, and secretion of inflammatory and anti-inflammatory cytokines. When exposed to B cell receptor engagement, Toll-like receptor activation, stimulation in conditions that mimic T cell-dependent responses, or NLRP3 activation, B cells manifest disparate responses and produce different cytokine patterns critical for modulating innate and adaptive immunity, indicating that the cytokines produced serve a critical link between the early innate immune response and the delayed adaptive immunity. Importantly, genetic ablation of nlrp3 reduced the inflammasome-mediated functions of B cells. We propose that, in the absence of other cell types, the potential of B lymphocytes to respond to NLRP3 engagement enables them to initiate inflammatory cascades through recruitment of other cell subsets, such as macrophages and neutrophils. Since NLRP3 activation of B cells is not followed by pyroptosis, even in the presence of a basal caspase-1 activity, this pathway acts as a bridge that optimizes interactions between the innate and adoptive branches of the immune response.
Collapse
Affiliation(s)
- Man Lun Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Road, North District, 404, Taichung, Taiwan
| | - Kai Fu Jhuang
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Road, North District, 404, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Road, North District, 404, Taichung, Taiwan.
| |
Collapse
|
2
|
Yi BJ, Wang CC, Li XW, Xu YR, Ma XY, Jian PA, Talukder M, Li XN, Li JL. Lycopene Protects against Atrazine-Induced Kidney STING-Dependent PANoptosis through Stabilizing mtDNA via Interaction with Sam50/PHB1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14956-14966. [PMID: 38820047 DOI: 10.1021/acs.jafc.4c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.
Collapse
Affiliation(s)
- Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
3
|
Wang P, Zhang L, Chen S, Li R, Liu P, Li X, Luo H, Huo Y, Zhang Z, Cai Y, Liu X, Huang J, Zhou G, Sun Z, Ding S, Shi J, Zhou Z, Yuan R, Liu L, Wu S, Wang G. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res 2024; 34:504-521. [PMID: 38811766 PMCID: PMC11217343 DOI: 10.1038/s41422-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Peipei Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ruoxi Yuan
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Liang Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
4
|
He W, Sun Z, Tong G, Zeng L, He W, Chen X, Zhen C, Chen P, Tan N, He P. FUNDC1 alleviates doxorubicin-induced cardiotoxicity by restoring mitochondrial-endoplasmic reticulum contacts and blocked autophagic flux. Theranostics 2024; 14:3719-3738. [PMID: 38948070 PMCID: PMC11209712 DOI: 10.7150/thno.92771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.
Collapse
Affiliation(s)
- Weibin He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Zhongchan Sun
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Guang Tong
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical university, 510080 Guangzhou, China
| | - Lin Zeng
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Wenlong He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Xiaopan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
| | - Cien Zhen
- School of Medicine, South China University of Technology, 510006 Guangzhou, China
| | - Pengyuan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, 517000 Heyuan, China
| |
Collapse
|
5
|
Cells dispose of cytoplasmic mitochondrial DNA by nucleoid-phagy. Nat Cell Biol 2024; 26:849-850. [PMID: 38811694 DOI: 10.1038/s41556-024-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
6
|
Belosludtsev KN, Ilzorkina AI, Matveeva LA, Chulkov AV, Semenova AA, Dubinin MV, Belosludtseva NV. Effect of VBIT-4 on the functional activity of isolated mitochondria and cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184329. [PMID: 38679309 DOI: 10.1016/j.bbamem.2024.184329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15-30 μM) suppressed mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15-30 μM VBIT-4 caused an increase in H2O2 production in mitochondria, decreased the Ca2+ retention capacity, but increased the time of Ca2+-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 μM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.
Collapse
Affiliation(s)
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | | | | | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Natalia V Belosludtseva
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
7
|
Liu H, Zhen C, Xie J, Luo Z, Zeng L, Zhao G, Lu S, Zhuang H, Fan H, Li X, Liu Z, Lin S, Jiang H, Chen Y, Cheng J, Cao Z, Dai K, Shi J, Wang Z, Hu Y, Meng T, Zhou C, Han Z, Huang H, Zhou Q, He P, Feng D. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat Cell Biol 2024; 26:878-891. [PMID: 38783142 DOI: 10.1038/s41556-024-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huaihe Hospital of Henan University, Kaifeng City, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Cien Zhen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Jianming Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhenhuan Luo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lin Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Xia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huilin Jiang
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqian Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiahao Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Keyu Dai
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaohua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tian Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuchu Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Han
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinghua Zhou
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, Heyuan, China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
9
|
Jiao K, Xu G, Liu Y, Yang Z, Xiang L, Chen Z, Xu C, Zuo Y, Wu Z, Zheng N, Xu W, Zhang L, Liu Y. UBXN1 promotes liver tumorigenesis by regulating mitochondrial homeostasis. J Transl Med 2024; 22:485. [PMID: 38773518 PMCID: PMC11110256 DOI: 10.1186/s12967-024-05208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.
Collapse
Affiliation(s)
- Kun Jiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - You Zuo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibai Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningqian Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
11
|
Si JY, Wu LJ, Xu FL, Cao XT, Lan JF. PHB2 inhibits WSSV replication by promoting the nuclear translocation of STAT. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109503. [PMID: 38479567 DOI: 10.1016/j.fsi.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes β-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.
Collapse
Affiliation(s)
- Jia-Yu Si
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
12
|
Wang K, Wen Y, Fu X, Wei S, Liu S, Chen M. mtDNA regulates cGAS-STING signaling pathway in adenomyosis. Free Radic Biol Med 2024; 216:80-88. [PMID: 38494142 DOI: 10.1016/j.freeradbiomed.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
In various hyperproliferative disorders, damaged mitochondria can release mitochondrial DNA (mtDNA) into the cytoplasm, activating the cGAS-STING signaling pathway and subsequent immune imbalances. Our previous research has demonstrated that hypoxia plays a role in the development of adenomyosis (AM) by inducing mitochondrial dysfunction. However, the precise involvement of the cGAS-STING signaling pathway and mtDNA in AM remains unclear. Therefore, this study aims to investigate the relationship between mtDNA secretion, changes in the cGAS-STING signaling pathway, and the abnormal cellular proliferation observed in AM. We found the cGAS, STING, TBK1, p-TBK1, IRF3, and p-IRF3 proteins levels were significantly elevated in the tissues of patients with AM compared to the control group. Additionally, there was an increase in the expression of the pro-inflammatory cytokines IL-6 and IFN-α in the AM tissues. Hypoxia-induced an increase in the proliferation and migration abilities of endometrial stromal cells (ESCs), accompanied by the activation of the cGAS-STING signaling pathway and elevated levels of IFN-α. Furthermore, hypoxia promoted the leakage of mtDNA into the cytoplasm in AM ESCs, and the deletion of mtDNA reduced the activation of the cGAS-STING pathway. Moreover, knockdown of the STING gene inhibited the expression of TBK1, p-TBK1, IRF3, and p-IRF3 and suppressed the secretion of the inflammatory cytokines IL-6 and IFN-α. Furthermore, the migration and invasion abilities of AM ESCs were significantly diminished after STING knockdown. These findings provide valuable insights into the role of mtDNA release and the cGAS-STING signaling pathway in the pathogenesis of AM.
Collapse
Affiliation(s)
- Kun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yi Chang, 443000, China; College of Medicine and Health Sciences, China Three Gorges University, Yi Chang, 443000, China
| | - Yi Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China; Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Xianyun Fu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yi Chang, 443000, China; College of Medicine and Health Sciences, China Three Gorges University, Yi Chang, 443000, China.
| | - Shaobin Wei
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China; Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| | - Shidan Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yi Chang, 443000, China; College of Medicine and Health Sciences, China Three Gorges University, Yi Chang, 443000, China
| | - Minmin Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yi Chang, 443000, China; College of Medicine and Health Sciences, China Three Gorges University, Yi Chang, 443000, China
| |
Collapse
|
13
|
Li Y, Wang HB, Cao JL, Zhang WJ, Wang HL, Xu CH, Li KP, Liu Y, Wang JR, Ha HL, Fu SJ, Yang L. Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury. J Transl Med 2024; 22:261. [PMID: 38461333 PMCID: PMC10925013 DOI: 10.1186/s12967-024-05021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.
Collapse
Affiliation(s)
- Yi Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Bin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jin-Long Cao
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wen-Jun Zhang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hai-Long Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chang-Hong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun-Peng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Liu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ji-Rong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Lan Ha
- Department of Nephrology, The First People's Hospital of Lanzhou City, Lanzhou, 730030, Gansu, China
| | - Sheng-Jun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
14
|
Motta RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol 2024; 15:1272084. [PMID: 38433835 PMCID: PMC10904653 DOI: 10.3389/fimmu.2024.1272084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Immunoglobulins are an essential part of the humoral immune response. IgG4 antibodies are the least prevalent subclass and have unique structural and functional properties. In this review, we discuss IgG4 class switch and B cell production. We review the importance of IgG4 antibodies in the context of allergic responses, helminth infections and malignancy. We discuss their anti-inflammatory and tolerogenic effects in allergen-specific immunotherapy, and ability to evade the immune system in parasitic infection and tumour cells. We then focus on the role of IgG4 autoantibodies and autoantigens in IgG4-autoimmune diseases and IgG4-related disease, highlighting important parallels and differences between them. In IgG4-autoimmune diseases, pathogenesis is based on a direct role of IgG4 antibodies binding to self-antigens and disturbing homeostasis. In IgG4-related disease, where affected organs are infiltrated with IgG4-expressing plasma cells, IgG4 antibodies may also directly target a number of self-antigens or be overexpressed as an epiphenomenon of the disease. These antigen-driven processes require critical T and B cell interaction. Lastly, we explore the current gaps in our knowledge and how these may be addressed.
Collapse
Affiliation(s)
- Rodrigo V. Motta
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L. Culver
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
15
|
Shan Z, Li S, Gao Y, Jian C, Ti X, Zuo H, Wang Y, Zhao G, Wang Y, Zhang Q. mtDNA extramitochondrial replication mediates mitochondrial defect effects. iScience 2024; 27:108970. [PMID: 38322987 PMCID: PMC10844862 DOI: 10.1016/j.isci.2024.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
A high ratio of severe mitochondrial defects causes multiple human mitochondrial diseases. However, until now, the in vivo rescue signal of such mitochondrial defect effects has not been clear. Here, we built fly mitochondrial defect models by knocking down the essential mitochondrial genes dMterf4 and dMrps23. Following genome-wide RNAi screens, we found that knockdown of Med8/Tfb4/mtSSB/PolG2/mtDNA-helicase rescued dMterf4/dMrps23 RNAi-mediated mitochondrial defect effects. Extremely surprisingly, they drove mtDNA replication outside mitochondria through the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis to amplify cytosolic mtDNA, leading to activation of the cGAS-Sting-like IMD pathway to partially mediate dMterf4/dMrps23 RNAi-triggered effects. Moreover, we found that the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis also mediated other fly mitochondrial gene defect-triggered dysfunctions and Drosophila aging. Overall, our study demarcates the Med8/Tfb4-mtSSB/PolG2/mtDNA-helicase axis as a candidate mechanism to mediate mitochondrial defect effects through driving mtDNA extramitochondrial replication; dysfunction of this axis might be used for potential treatments for many mitochondrial and age-related diseases.
Collapse
Affiliation(s)
- Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Shengnan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yuxue Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chunhua Jian
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xiuxiu Ti
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Hui Zuo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Guochun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| |
Collapse
|
16
|
Mu S, Han T, Zhang X, Liu J, Sun H, Zhang J, Liu X, Zhang H. Exploring the Role of Mitochondrial Hydrogen Sulfide in Maintaining Polarity and mtDNA Integrity with a Multichannel Fluorescent Probe. Anal Chem 2023; 95:18460-18469. [PMID: 37990434 DOI: 10.1021/acs.analchem.3c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Abnormal mitochondrial state has been implicated in the pathogenesis of various diseases including neurodegenerative disorders, myopathies, cardiovascular diseases, and cancers. Assessing mitochondrial functionality can be achieved by monitoring alterations in mitochondrial polarity and mitochondrial DNA (mtDNA) integrity, which serve as valuable biomarkers. Hydrogen sulfide (H2S), a gaseous signaling molecule, plays a regulatory role in mitochondrial respiratory chain activity, ATP synthesis, and calcium ion balance, thereby influencing cellular metabolism and signal transduction. Investigating the interplay between mitochondrial H2S, polarity, and mtDNA can enhance our understanding of the underlying regulatory mechanisms involved in H2S-mediated mitochondrial functions. To address this, we designed a mitochondria-targeted multichannel fluorescent probe, HNA, capable of cascaded detection of H2S and polarity, as well as parallel detection of mtDNA. The probe exhibited a significant turn-on response to H2S, emitting at approximately 604 nm, while the product HNAP demonstrated high sensitivity to polarity within the wavelength range of 526-591 nm. Additionally, the probe was able to bind to DNA, resulting in an enhanced long-wave emission at 668 nm. Facilitated by HNA, our study provides novel insights into the role of mitochondrial H2S in maintaining mitochondrial polarity and validates its protective effect on mtDNA through antioxidative mechanisms. Overall, this work proposes a potential therapeutic strategy for modulating the inflammatory process in mitochondrial-related diseases.
Collapse
Affiliation(s)
- Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
18
|
Xu Y, Chu C, Shi Z, Zhang J. The role of hepatocyte mitochondrial DNA in liver injury. Biomed Pharmacother 2023; 168:115692. [PMID: 37844357 DOI: 10.1016/j.biopha.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Hepatocytes, the predominant cellular constituents of the liver, exhibit the highest mitochondrial density within the human body. Remarkably, experimental insights from the latter part of the previous century involving extracellular injection of mitochondrial DNA (mtDNA) elucidated its potential to incite autoimmune disorders. Consequently, in instances of liver injury, the substantial release of mtDNA has the potential to trigger the activation of the innate immune response, thereby inducing sustained pathogenic consequences within the organism. This article provides a comprehensive retrospective analysis of recent literature pertaining to the impact of mtDNA release on various hepatic cell populations, elucidating its role and potential mechanisms in liver injury. The findings underscore the central role of mtDNA in modulating the immune system, primarily through the orchestration of a cytokine storm, further exacerbating the occurrence of liver injury.
Collapse
Affiliation(s)
- Yunkai Xu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chenshuang Chu
- The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Ziyang Shi
- The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
19
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
20
|
Song L, Weng K, Bao Q, Wu J, Zhang Y, Xu Q, Zhang Y. TMT-based quantitative proteomic analysis unveils uterine fluid difference in hens producing normal and pimpled eggs. Poult Sci 2023; 102:103081. [PMID: 37774518 PMCID: PMC10542640 DOI: 10.1016/j.psj.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
Eggshell is a crucial indicator of egg quality. Pimpled eggs (PE) a type of eggshell defect are characterized by low eggshell strength, leading to substantial financial losses. Eggshell formation occurs in the uterine fluid (UF), which contains the required ions and matrix proteins However, the underlying mechanisms of PE formation remain poorly understood. In this study, we analyzed the egg quality of PE, and normal eggs (NE) by examining the differences in UF from hens producing PE and NE (n = 6 each). This 2-wk-long assessment involved histomorphological and proteomics analyses. The results showed that NE had better eggshell quality compared to PE, and the uterus structure in PE hens was conducive to the formation of PE. Using quantitative proteomic analysis, we identified 68 differential abundance proteins (DAPs) in the UF of PE hens, including 9 key proteins related to ion transport, protein synthesis and folding, and immunity. Downregulation of CALM1 and SCNN1G proteins in PE hens might have negatively affected the calcium signaling pathway, decreasing the calcium amount in UF. Additionally, the PHB1 and TSN proteins may affect eggshell formation by regulating immune responses. Taken together, our results provide insights into the mechanism of PE production, with potential applications for enhancing eggshell quality.
Collapse
Affiliation(s)
- Lina Song
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiang Bao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jia Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Xiao L, Warner B, Mallard CG, Chung HK, Shetty A, Brantner CA, Rao JN, Yochum GS, Koltun WA, To KB, Turner DJ, Gorospe M, Wang JY. Control of Paneth cell function by HuR regulates gut mucosal growth by altering stem cell activity. Life Sci Alliance 2023; 6:e202302152. [PMID: 37696579 PMCID: PMC10494932 DOI: 10.26508/lsa.202302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.
Collapse
Affiliation(s)
- Lan Xiao
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bridgette Warner
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline G Mallard
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hee K Chung
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol Shetty
- https://ror.org/04rq5mt64 Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine A Brantner
- https://ror.org/04rq5mt64 Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jaladanki N Rao
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Walter A Koltun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kathleen B To
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Douglas J Turner
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, MD, USA
| | - Jian-Ying Wang
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- https://ror.org/04rq5mt64 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Zou J, Tian S, Zhu Y, Cheng Y, Jiang M, Tu S, Jin M, Chen H, Zhou H. Prohibitin1 facilitates viral replication by impairing the RIG-I-like receptor signaling pathway. J Virol 2023; 97:e0092623. [PMID: 37754758 PMCID: PMC10617439 DOI: 10.1128/jvi.00926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinxing Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanqing Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
23
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
24
|
Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, Li YQ, Huang SY, Qiao H, Tan XR, Ye ML, Zhu XH, He SW, Li Q, Liang YL, Chen KL, Huang SW, Li QJ, Ma J, Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun 2023; 14:865. [PMID: 36797289 PMCID: PMC9935546 DOI: 10.1038/s41467-023-36523-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Although radiotherapy can promote antitumour immunity, the mechanisms underlying this phenomenon remain unclear. Here, we demonstrate that the expression of the E3 ubiquitin ligase, tumour cell-intrinsic tripartite motif-containing 21 (TRIM21) in tumours, is inversely associated with the response to radiation and CD8+ T cell-mediated antitumour immunity in nasopharyngeal carcinoma (NPC). Knockout of TRIM21 modulates the cGAS/STING cytosolic DNA sensing pathway, potentiates the antigen-presenting capacity of NPC cells, and activates cytotoxic T cell-mediated antitumour immunity in response to radiation. Mechanistically, TRIM21 promotes the degradation of the mitochondrial voltage-dependent anion-selective channel protein 2 (VDAC2) via K48-linked ubiquitination, which inhibits pore formation by VDAC2 oligomers for mitochondrial DNA (mtDNA) release, thereby inhibiting type-I interferon responses following radiation exposure. In patients with NPC, high TRIM21 expression was associated with poor prognosis and early tumour relapse after radiotherapy. Our findings reveal a critical role of TRIM21 in radiation-induced antitumour immunity, providing potential targets for improving the efficacy of radiotherapy in patients with NPC.
Collapse
Affiliation(s)
- Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Miao-Miao Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qian Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Qing-Jie Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China.
| |
Collapse
|