1
|
Rath SK, Nyamsuren G, Tampe B, Yu DSW, Hulshoff MS, Schlösser D, Maamari S, Zeisberg M, Zeisberg EM. Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response. Clin Epigenetics 2024; 16:119. [PMID: 39192299 DOI: 10.1186/s13148-024-01719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandip Kumar Rath
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - David Sung-Wen Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Melanie S Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Denise Schlösser
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
2
|
Zhang C, Zheng J, Liu J, Li Y, Xing G, Zhang S, Chen H, Wang J, Shao Z, Li Y, Jiang Z, Pan Y, Liu X, Xu P, Wu W. Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target. Front Pharmacol 2024; 15:1418456. [PMID: 39104395 PMCID: PMC11298443 DOI: 10.3389/fphar.2024.1418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jin Liu
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhijiang Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Ping Xu
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenhan Wu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Fang Y, Huang W, Zhu X, Wang X, Wu X, Wang H, Hong W, Yan S, Zhang L, Deng Y, Wei W, Tu J, Zhu C. Epigenetic Regulatory Axis MIR22-TET3-MTRNR2L2 Represses Fibroblast-Like Synoviocyte-Mediated Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:845-856. [PMID: 38221658 DOI: 10.1002/art.42795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The specific role of fibroblast-like synoviocytes (FLSs) in the pathogenesis of rheumatoid arthritis (RA) is still not fully elucidated. This study aimed to explore the molecular mechanisms of epigenetic pathways, including three epigenetic factors, microRNA (miRNA)-22 (MIR22), ten-eleven translocation methylcytosine dioxygenase 3 (TET3), and MT-RNR2 like 2 (MTRNR2L2), in RA-FLSs. METHODS The expression of MIR22, TET3, and MTRNR2L2 in the synovium of patients with RA and arthritic mice were determined by fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), immunohistochemistry, and Western blot. Mir22-/- and Tet3+/- mice were used to establish a collagen antibody-induced arthritis (CAIA) model. Mir22 angomir and Tet3 small interfering RNA (siRNA) were used to illustrate the therapeutic effects on arthritis using a collagen-induced (CIA) model. Bioinformatics, luciferase reporter assay, 5-hydroxymethylcytosine (5hmC) dot blotting, chromatin immunoprecipitation-qPCR, and hydroxymethylated DNA immunoprecipitation were conducted to show the direct repression of MIR22 on the TET3 and transcriptional activation of TET3 on MTRNR2L2. RESULTS The Mir22-/- CAIA model and RA-FLS-related in vitro experiments demonstrated the inhibitory effect of MIR22 on inflammation. MIR22 can directly inhibit the translation of TET3 in RA-FLSs by binding to its 3' untranslated region in TET3. The Tet3+/- mice-established CAIA model showed less severe symptoms of arthritis in vivo. In vitro experiments further confirmed the proinflammatory effect of TET3 in RA. In addition, the CIA model was used to validate the therapeutic effects of Mir22 angomir and Tet3 siRNA. Finally, TET3 exerts its proinflammatory effect by promoting 5hmC production in the promoter of its target MTRNR2L2 in RA-FLSs. CONCLUSION The key role of the MIR22-TET3-MTRNR2L2 pathway in RA-FLSs provided an experimental basis for further studies into the pathogenesis and related targets of RA from the perspective of FLSs.
Collapse
Affiliation(s)
- Yilong Fang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Huang
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Xiangling Zhu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuming Wu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangxue Yan
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Lingling Zhang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, China
| | - Wei Wei
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Tu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chen Zhu
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
5
|
Leon Kropf V, Albany CJ, Zoccarato A, Green HLH, Yang Y, Brewer AC. TET3 is a positive regulator of mitochondrial respiration in Neuro2A cells. PLoS One 2024; 19:e0294187. [PMID: 38227585 PMCID: PMC10790995 DOI: 10.1371/journal.pone.0294187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024] Open
Abstract
Ten-Eleven-Translocase (TET) enzymes contribute to the regulation of the methylome via successive oxidation of 5-methyl cytosine (5mC) to derivatives which can be actively removed by base-excision-repair (BER) mechanisms in the absence of cell division. This is particularly important in post-mitotic neurons where changes in DNA methylation are known to associate with changes in neural function. TET3, specifically, is a critical regulator of both neuronal differentiation in development and mediates dynamic changes in the methylome of adult neurons associated with cognitive function. While DNA methylation is understood to regulate transcription, little is known of the specific targets of TET3-dependent catalytic activity in neurons. We report the results of an unbiased transcriptome analysis of the neuroblastoma-derived cell line; Neuro2A, in which Tet3 was silenced. Oxidative phosphorylation (OxPhos) was identified as the most significantly down-regulated functional canonical pathway, and these findings were confirmed by measurements of oxygen consumption rate in the Seahorse bioenergetics analyser. The mRNA levels of both nuclear- and mitochondrial-encoded OxPhos genes were reduced by Tet3-silencing, but we found no evidence for differential (hydroxy)methylation deposition at these gene loci. However, the mRNA expression of genes known to be involved in mitochondrial quality control were also shown to be significantly downregulated in the absence of TET3. One of these genes; EndoG, was identified as a direct target of TET3-catalytic activity at non-CpG methylated sites within its gene body. Accordingly, we propose that aberrant mitochondrial homeostasis may contribute to the decrease in OxPhos, observed upon Tet3-downregulation in Neuro2A cells.
Collapse
Affiliation(s)
- Valeria Leon Kropf
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Caraugh J. Albany
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anna Zoccarato
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Hannah L. H. Green
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Youwen Yang
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Alison C. Brewer
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| |
Collapse
|
6
|
Liu F, Ma Y, Sun H, Cai H, Liang X, Xu C, Du L, Wang Y, Liu Q. SUMO1 Modification Stabilizes TET3 Protein and Increases Colorectal Cancer Radiation Therapy Sensitivity. Int J Radiat Oncol Biol Phys 2023; 117:942-954. [PMID: 37244630 DOI: 10.1016/j.ijrobp.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The aim of this work was to explore the role and mechanism of active DNA demethylase in colorectal cancer (CRC) radiation sensitization and better understand the function of DNA demethylation in tumor radiosensitization. METHODS AND MATERIALS Tested the effect of ten-eleven translocation 3 (TET3) overexpression on the sensitivity of CRC to radiation therapy through G2/M arrest, apoptosis, and clonogenic suppression. TET3 knockdown HCT 116 and TET3 knockdown LS 180 cell lines were constructed by siRNA technology, and the effect of exogenous knockdown of TET3 on radiation-induced apoptosis, cell cycle arrest, DNA damage, and clone formation in CRC cells were detected. The co-localization of TET3 and small ubiquitin-like modifier 1 (SUMO1), SUMO2/3 was detected by immunofluorescence and cytoplasmic-nuclear extraction, and the interaction between TET3 and SUMO1, SUMO2/3 was detected by a coimmunoprecipitation assay. RESULTS The malignant phenotype and radiosensitivity of CRC cell lines were favorably linked with TET3 protein and mRNA expression. TET3 is upregulated in 23 of the 27 tumor types investigated, including colon cancer. TET3 was shown to correlate with the CRC pathologic malignancy grade positively. Overexpression of TET3 in CRC cell lines increased radiation-induced apoptosis, G2/M phase arrest, DNA damage, and clonal suppression in vitro. The binding region of TET3 and SUMO2/3 was located at 833-1795 AA except for K1012, K1188, K1397, and K1623. SUMOylation of TET3 increased the stability of the TET3 protein without changing its nuclear localization. CONCLUSIONS We report the sensitizing role of TET3 protein in the radiation of CRC cells, depending on SUMO1 modification of TET3 at the lysine sites (K479, K758, K1012, K1188, K1397, K1623), in turn stabilizing TET3 expression in the nucleus and subsequently increasing the sensitivity of CRC to radiation therapy. Together, this study highlights the potentially critical role of TET3 SUMOylation in radiation regulation, which may contribute to an enhanced understanding of the relationship between DNA demethylation and radiation therapy.
Collapse
Affiliation(s)
- Fengting Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Department of Radiation Oncology, The Afliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou 450008, Henan, China
| | - Ya Ma
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Liang
- School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Tricarico R, Madzo J, Scher G, Cohen M, Jelinek J, Maegawa S, Nagarathinam R, Scher C, Chang WC, Nicolas E, Slifker M, Zhou Y, Devarajan K, Cai KQ, Kwok T, Nakajima P, Xu J, Mancuso P, Doneddu V, Bagella L, Williams R, Balachandran S, Maskalenko N, Campbell K, Ma X, Cañadas I, Viana-Errasti J, Moreno V, Valle L, Grivennikov S, Peshkova I, Kurilenko N, Mazitova A, Koltsova E, Lee H, Walsh M, Duttweiler R, Whetstine JR, Yen TJ, Issa JP, Bellacosa A. TET1 and TDG Suppress Inflammatory Response in Intestinal Tumorigenesis: Implications for Colorectal Tumors With the CpG Island Methylator Phenotype. Gastroenterology 2023; 164:921-936.e1. [PMID: 36764492 PMCID: PMC10586516 DOI: 10.1053/j.gastro.2023.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND & AIMS Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.
Collapse
Affiliation(s)
- Rossella Tricarico
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, New Jersey
| | - Gabrielle Scher
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maya Cohen
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Shinji Maegawa
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Carly Scher
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Experimental Histopathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tim Kwok
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pamela Nakajima
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jinfei Xu
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pietro Mancuso
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valentina Doneddu
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Riley Williams
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nicholas Maskalenko
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry Campbell
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Julen Viana-Errasti
- Hereditary Cancer Program Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program Catalan Institute of Oncology, Oncobell Program, Investigación Biomédica de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Sergei Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Iuliia Peshkova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Natalia Kurilenko
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aleksandra Mazitova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekaterina Koltsova
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hayan Lee
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Martin Walsh
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Reuben Duttweiler
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Timothy J Yen
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Alfonso Bellacosa
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Zhang W, Wang M, Song Z, Fu Q, Chen J, Zhang W, Gao S, Sun X, Yang G, Zhang Q, Yang J, Tang H, Wang H, Kou X, Wang H, Mao Z, Xu X, Gao S, Jiang Y. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer. Nat Commun 2023; 14:1838. [PMID: 37012254 PMCID: PMC10070447 DOI: 10.1038/s41467-023-37576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Farrerol, a natural flavanone, promotes homologous recombination (HR) repair to improve genome-editing efficiency, but the specific protein that farrerol directly targets to regulate HR repair and the underlying molecular mechanisms have not been determined. Here, we find that the deubiquitinase UCHL3 is the direct target of farrerol. Mechanistically, farrerol enhanced the deubiquitinase activity of UCHL3 to promote RAD51 deubiquitination, thereby improving HR repair. Importantly, we find that embryos of somatic cell nuclear transfer (SCNT) exhibited defective HR repair, increased genomic instability and aneuploidy, and that the farrerol treatment post nuclear transfer enhances HR repair, restores transcriptional and epigenetic network, and promotes SCNT embryo development. Ablating UCHL3 significantly attenuates farrerol-mediated stimulation in HR and SCNT embryo development. In summary, we identify farrerol as an activator of the deubiquitinase UCHL3, highlighted the importance of HR and epigenetic changes in SCNT reprogramming and provide a feasible method to promote SCNT efficiency.
Collapse
Affiliation(s)
- Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Tsingtao Advanced Research Institute, Tongji University, 266071, Qingdao, China
| | - Mingzhu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Jiaxing University Affiliated Women and Children Hospital, 314000, Jiaxing, China
| | - Zhiwei Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Qianzheng Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Jiayu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Jiaqing Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, 266071, Qingdao, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
9
|
Carrillo-Cocom LM, Juárez-Méndez L, Rincón S, Rivera-Villanueva JM, Nic-Can GI, Zepeda A. Induction of cytotoxic effects and changes in DNA methylation-related gene expression in a human fibroblast cell line by the metal-organic framework [H 2NMe 2] 3 [Tb(III)(2,6 pyridinedicarboxylate) 3] (Tb-MOF). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46685-46696. [PMID: 36723839 DOI: 10.1007/s11356-023-25314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide metal-organic frameworks (lanthanide MOFs) may be utilized for a variety of environmental and human health applications due to their luminescent properties and high thermal and water stability. However, the cytotoxic and epigenetic effects produced in human cells are not known. Therefore, we evaluated the cytotoxic effects, internalization, and changes in the mRNA abundance of DNA methylation and demethylation enzymes by exposing human fibroblast cells to a metal-organic framework [H2NMe2]3 [Tb(III)(2,6 pyridinedicarboxylate)3] (Tb-MOF). For this purpose, the cells were exposed to six concentrations (0.05 to 1.6 mg/mL) of Tb-MOF for 48 h. Field emission electron microscopy coupled to linear energy dispersive spectroscopy (FESEM‒EDS) and confocal microscopy analysis were performed. The cytotoxicity was determined with crystal violet and MTT assays. The results demonstrated the internalization of Tb-MOF at concentrations as low as 0.05 mg/mL, as well as concentration-dependent toxicity. Additionally, we detected significant changes in the gene expression levels of DNA methyltransferases and demethylases due to the presence of Tb-MOF, suggesting that Tb-MOF could generate epigenetic changes even at low concentrations. The results of our study may establish a foundation for future research attempting to develop and apply secure nanomaterials (e.g., MOFs) to minimize damage to the environment and human health.
Collapse
Affiliation(s)
- Leydi Maribel Carrillo-Cocom
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenierías y Ciencias Exactas, periférico norte km 33.5, C.P. 97203, Mérida, Yucatán, México
| | - Lucia Juárez-Méndez
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenierías y Ciencias Exactas, periférico norte km 33.5, C.P. 97203, Mérida, Yucatán, México
| | - Susana Rincón
- Tecnológico Nacional de México/I.T. Mérida, Av. Tecnológico S/N, C.P. 97118, Mérida, Yucatán, México
| | - José María Rivera-Villanueva
- Facultad de Ciencias Químicas, Universidad Veracruzana, prolongación oriente 6 No. 1009. Colonia Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, México
| | - Geovanny Iran Nic-Can
- CONACYT-Universidad Autónoma de Yucatán. Facultad de Ingeniería Química, Campus de Ingenierías y Ciencias Exactas, periférico norte km 33.5, C.P. 97203, Mérida, Yucatán, México
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenierías y Ciencias Exactas, periférico norte km 33.5, C.P. 97203, Mérida, Yucatán, México.
| |
Collapse
|
10
|
Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, Zhang R, Chen W, Chen R, Zheng Y, Piao J. Nrf2 -/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM 2.5 exposure. Front Genet 2023; 14:1144903. [PMID: 37113990 PMCID: PMC10128193 DOI: 10.3389/fgene.2023.1144903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/29/2023] Open
Abstract
Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
Collapse
Affiliation(s)
- Mengjie Wu
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Ding
- The Municipal Government Hospital of Zibo, Zibo, Shandong, China
| | - Siying Tang
- Qingdao Chengyang District Center for Disease Control and Prevention, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Jinmei Piao,
| |
Collapse
|
11
|
Pan ZY, Ling YY, Zhang H, Hao L, Tan CP, Mao ZW. Pt(IV)-Deferasirox Prodrug Combats DNA Damage Repair by Regulating RNA N 6-Methyladenosine Methylation. J Med Chem 2022; 65:14692-14700. [DOI: 10.1021/acs.jmedchem.2c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
12
|
DNA Hypomethylation May Contribute to Metabolic Recovery of Frozen Wood Frog Brains. EPIGENOMES 2022; 6:epigenomes6030017. [PMID: 35893013 PMCID: PMC9326605 DOI: 10.3390/epigenomes6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional suppression is characteristic of extreme stress responses, speculated to preserve energetic resources in the maintenance of hypometabolism. In recent years, epigenetic regulation has become heavily implicated in stress adaptation of many animals, including supporting freeze tolerance of the wood frog (Rana sylvatica). However, nervous tissues are frequently lacking in these multi-tissue analyses which warrants investigation. The present study examines the role of DNA methylation, a core epigenetic mechanism, in the response of wood frog brains to freezing. We use immunoblot analysis to track the relative expression of DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins and ten-eleven-translocation (TET) demethylases across the freeze-thaw cycle in R. sylvatica brain, including selected comparisons to freeze-associated sub-stresses (anoxia and dehydration). Global methyltransferase activities and 5-hmC content were also assessed. The data show coordinated evidence for DNA hypomethylation in wood frog brains during freeze-recovery through the combined roles of depressed DNMT3A/3L expression driving lowered DNMT activity and increased TET2/3 levels leading to elevated 5-hmC genomic content (p < 0.05). Raised levels of DNMT1 during high dehydration were also noteworthy. The above suggest that alleviation of transcriptionally repressive 5-mC DNA methylation is a necessary component of the wood frog freeze-thaw cycle, potentially facilitating the resumption of a normoxic transcriptional state as frogs thaw and resume normal metabolic activities.
Collapse
|
13
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
Mahajan V, Gujral P, Jain L, Ponnampalam AP. Differential Expression of Steroid Hormone Receptors and Ten Eleven Translocation Proteins in Endometrial Cancer Cells. Front Oncol 2022; 12:763464. [PMID: 35372016 PMCID: PMC8966408 DOI: 10.3389/fonc.2022.763464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid hormones govern the complex, cyclic changes of the endometrium, predominantly through their receptors. An interplay between steroid hormones and epigenetic mechanisms controls the dynamic endometrial gene regulation. Abnormalities in expression of genes and enzymes associated with steroid hormone signaling, contribute to a disturbed hormonal equilibrium. Limited evidence suggests the involvement of TET (Ten Eleven Translocation)-mediated DNA hydroxymethylation in endometrial cancer, with some data on the use of TET1 as a potential prognostic and diagnostic biomarker, however the mechanisms guiding it and its regulation remains unexplored. This study aims to explore the changes in the expressions of TETs and steroid hormone receptors in response to estrogen and progesterone in endometrial cancer cells. Gene expression was examined using real-time PCR and protein expression was quantified using fluorescent western blotting in endometrial cancer cell lines (AN3 and RL95-2). Results indicate that TET1 and TET3 gene and protein expression was cell-specific in cancer cell-lines. Protein expression of TET1 was downregulated in AN3 cells, while TET1 and TET3 expressions were both upregulated in RL95-2 cells in response to estrogen-progesterone. Further, a decreased AR expression in AN3 cells and an increased ERα and ERβ protein expressions in RL95-2 cells was seen in response to estrogen-progesterone. PR gene and protein expression was absent from both cancer cell-lines. Overall, results imply that expressions of steroid hormones, steroid-hormone receptors and TETs are co-regulated in endometrial cancer-cells. Further studies are needed to interpret how these mechanisms fit in with DNMTs and DNA methylation in regulating endometrial biology. Understanding the role of TETs and hydroxymethylation in steroid hormone receptor regulation is crucial to comprehend how these mechanisms work together in a broader context of epigenetics in the endometrium and its pathologies.
Collapse
Affiliation(s)
- Vishakha Mahajan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lekha Jain
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna P. Ponnampalam
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Anna P. Ponnampalam,
| |
Collapse
|
15
|
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front Genet 2022; 12:810689. [PMID: 34976029 PMCID: PMC8714670 DOI: 10.3389/fgene.2021.810689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Zhangwei Zeng
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chenghao Shang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Stress hematopoiesis induces a proliferative advantage in TET2 deficiency. Leukemia 2021; 36:809-820. [PMID: 34588613 DOI: 10.1038/s41375-021-01427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022]
Abstract
TET2 loss-of-function mutations are recurrent events in a wide range of hematological malignancies and a physiologic occurrence in blood cells of healthy older adults. It is currently unknown what determines if a person harboring a somatic TET2 mutation will progress to myelodysplastic syndrome or acute myeloid leukemia. Here we develop a zebrafish tet2 mutant through which we show that tet2 loss leads to restricted hematopoietic differentiation combined with a modest upregulation of p53, which is also characteristic of many inherited bone marrow failure syndromes. Uniquely in the context of emergency hematopoiesis by external stimuli, such as infection or cytokine stimulation, lack of tet2 leads hematopoietic stem cells to undergo excessive proliferation, resulting in an accumulation of immature cells, which are poised to become leukemogenic following additional genetic/epigenetic perturbations. This same phenomenon observed in zebrafish extends to human hematopoietic stem cells, identifying TET2 as a critical relay switch in the context of stress hematopoiesis.
Collapse
|
17
|
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:701681. [PMID: 34421950 PMCID: PMC8377586 DOI: 10.3389/fpls.2021.701681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, H2S, ROS, and mtDNA damage are also intricate. This article summarized the current knowledge about the metabolism of H2S, NO, and ROS and their roles in maintaining redox balance and regulating the repair pathway of mtDNA damage in plants. The three reactive species may likely influence each other in their generation, elimination, and signaling actions, indicating a crosstalk relationship between them. In addition, NO and H2S are reported to be involved in epigenetic variations by participating in various cell metabolisms, including (nuclear and mitochondrial) DNA damage and repair. Nevertheless, the research on the details of NO and H2S in regulating DNA damage repair of plants is in its infancy, especially in mtDNA.
Collapse
Affiliation(s)
- Dandan Huang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Guangqin Jing
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Changbao Chen
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
18
|
Making it or breaking it: DNA methylation and genome integrity. Essays Biochem 2021; 64:687-703. [PMID: 32808652 DOI: 10.1042/ebc20200009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.
Collapse
|
19
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
20
|
Morris-Blanco KC, Chokkalla AK, Bertogliat MJ, Vemuganti R. TET3 regulates DNA hydroxymethylation of neuroprotective genes following focal ischemia. J Cereb Blood Flow Metab 2021; 41:590-603. [PMID: 32380888 PMCID: PMC7922754 DOI: 10.1177/0271678x20912965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 5-hydroxymethylcytosine (5hmC) epigenetic modification is highly enriched in the CNS and a critical modulator of neuronal function and development. We found that cortical 5hmC was enhanced from 5 min to three days of reperfusion following focal ischemia in adult mice. Blockade of the 5hmC-producing enzyme ten-eleven translocase 3 (TET3) increased edema, infarct volume, and motor function impairments. To determine the mechanism by which TET3 provides ischemic neuroprotection, we assessed the genomic regions where TET3 modulates 5hmC. Genome-wide sequencing analysis of differentially hydroxymethylated regions (DhMRs) revealed that focal ischemia robustly increased 5hmC at the promoters of thousands of genes in a TET3-dependent manner. TET3 inhibition reduced 5hmC at the promoters of neuroprotective genes involved in cell survival, angiogenesis, neurogenesis, antioxidant defense, DNA repair, and metabolism demonstrating a role for TET3 in endogenous protection against stroke. The mRNA expression of several genes with known involvement in ischemic neuroprotection were also reduced with TET3 knockdown in both male and female mice, establishing a correlation between decreased promoter 5hmC levels and decreased gene expression. Collectively, our results indicate that TET3 globally increases 5hmC at regulatory regions and overwhelmingly modulates 5hmC in several neuroprotective pathways that may improve outcome after ischemic injury.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Research, William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Research, William S. Middleton Veterans Administration Hospital, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Spada F, Schiffers S, Kirchner A, Zhang Y, Arista G, Kosmatchev O, Korytiakova E, Rahimoff R, Ebert C, Carell T. Active turnover of genomic methylcytosine in pluripotent cells. Nat Chem Biol 2020; 16:1411-1419. [PMID: 32778844 DOI: 10.1038/s41589-020-0621-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known, and the underlying pathways are poorly understood. Here we use metabolic labeling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic 5-methyl-2'-deoxycytidine (mdC), 5-hydroxymethyl-2'-deoxycytidine (hmdC) and 5-formyl-2'-deoxycytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells, the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on ten-eleven translocation (Tet)-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage-committed cells. Thus, in pluripotent cells, active mdC turnover involves both mdC oxidation-dependent and oxidation-independent processes.
Collapse
Affiliation(s)
- Fabio Spada
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| | - Sarah Schiffers
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Angie Kirchner
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yingqian Zhang
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- State Key Laboratory of Elemento-organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Gautier Arista
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Olesea Kosmatchev
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Eva Korytiakova
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - René Rahimoff
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Department of Chemistry, University of California, Los Angeles, Berkeley, CA, USA
| | - Charlotte Ebert
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| |
Collapse
|
22
|
Tomkuvienė M, Ikasalaitė D, Slyvka A, Rukšėnaitė A, Ravichandran M, Jurkowski TP, Bochtler M, Klimašauskas S. Enzymatic Hydroxylation and Excision of Extended 5-Methylcytosine Analogues. J Mol Biol 2020; 432:6157-6167. [PMID: 33065111 PMCID: PMC7763475 DOI: 10.1016/j.jmb.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine to 5-methylcytosine (mC) is a prevalent reversible epigenetic mark in vertebrates established by DNA methyltransferases (MTases); the methylation mark can be actively erased via a multi-step demethylation mechanism involving oxidation by Ten-eleven translocation (TET) enzyme family dioxygenases, excision of the latter oxidation products by thymine DNA (TDG) or Nei-like 1 (NEIL1) glycosylases followed by base excision repair to restore the unmodified state. Here we probed the activity of the mouse TET1 (mTET1) and Naegleria gruberi TET (nTET) oxygenases with DNA substrates containing extended derivatives of the 5-methylcytosine carrying linear carbon chains and adjacent unsaturated CC bonds. We found that the nTET and mTET1 enzymes were active on modified mC residues in single-stranded and double-stranded DNA in vitro, while the extent of the reactions diminished with the size of the extended group. Iterative rounds of nTET hydroxylations of ssDNA proceeded with high stereo specificity and included not only the natural alpha position but also the adjoining carbon atom in the extended side chain. The regioselectivity of hydroxylation was broken when the reactive carbon was adjoined with an sp1 or sp2 system. We also found that NEIL1 but not TDG was active with bulky TET-oxidation products. These findings provide important insights into the mechanism of these biologically important enzymatic reactions.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Diana Ikasalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Anton Slyvka
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Audronė Rukšėnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania.
| |
Collapse
|
23
|
Abstract
Chemoresistance remains to be a common and significant hurdle with all chemotherapies. Tumors gain resistance by acquiring additional mutations. Some of the chemoresistance mechanisms are known and can be tackled. However, the majority of chemoresistance mechanisms are unknown. Our recent findings shed light on one such unknown mechanism. We identified a novel role for 5-hydroxymethycytosine (5hmC), an epigenetic mark on the DNA, in maintaining the integrity of stalled replication forks and its impact on genomic stability and chemoresistance.
Collapse
Affiliation(s)
- Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland USA
| |
Collapse
|
24
|
Dong X, Feng M, Yang H, Liu H, Guo H, Gao X, Liu Y, Liu R, Zhang N, Chen R, Kong R. Rictor promotes cell migration and actin polymerization through regulating ABLIM1 phosphorylation in Hepatocellular Carcinoma. Int J Biol Sci 2020; 16:2835-2852. [PMID: 33061800 PMCID: PMC7545703 DOI: 10.7150/ijbs.46285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
As one of the most ominous malignancies, hepatocellular carcinoma (HCC) is frequently diagnosed at an advanced stage, owing to its aggressive invasion and metastatic spread. Emerging evidence has demonstrated that Rictor, as a unique component of the mTORC2, plays a role in cell migration, as it is dysregulated in various cancers, including HCC. However, the underlying molecular mechanism has not been well-characterized. Here, evaluation on a tissue-array panel and bioinformatics analysis revealed that Rictor is highly expressed in HCC tissues. Moreover, increased Rictor expression predicts poor survival of HCC patients. Rictor knockdown significantly suppressed cell migration and actin polymerization, thereby leading to decreased nuclear accumulation of MKL1 and subsequent inactivation of SRF/MKL1-dependent gene transcription, i.e. Arp3 and c-Fos. Mechanistically, we identified ABLIM1 as a previously unknown phosphorylation target of Rictor. Rictor interacts with ABLIM1 and regulates its serine phosphorylation in HCC cells. We generated ABLIM1 knockout cell lines of HCC, in which dominant negative mutations of Ser 214 and Ser 431 residues inhibited the ABLIM1-mediated actin polymerization and the MKL1 signaling pathway. Overall, ABLIM1 phosphorylation induced by Rictor plays an important role in controlling actin polymerization in HCC cells.
Collapse
Affiliation(s)
- Xin Dong
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China.,Department of General Surgery, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Hengkang Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Hua Guo
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P.R. China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Rong Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing. 100034, P.R. China
| |
Collapse
|
25
|
Alhmoud JF, Mustafa AG, Malki MI. Targeting DNA Repair Pathways in Hematological Malignancies. Int J Mol Sci 2020; 21:ijms21197365. [PMID: 33036137 PMCID: PMC7582413 DOI: 10.3390/ijms21197365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
DNA repair plays an essential role in protecting cells that are repeatedly exposed to endogenous or exogenous insults that can induce varying degrees of DNA damage. Any defect in DNA repair mechanisms results in multiple genomic changes that ultimately may result in mutation, tumor growth, and/or cell apoptosis. Furthermore, impaired repair mechanisms can also lead to genomic instability, which can initiate tumorigenesis and development of hematological malignancy. This review discusses recent findings and highlights the importance of DNA repair components and the impact of their aberrations on hematological malignancies.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ayman G. Mustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
- Correspondence: ; Tel.: +97-44403-7847
| |
Collapse
|
26
|
Yang Z, Jiang H. A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cell Mol Life Sci 2020; 77:4031-4047. [PMID: 32318759 PMCID: PMC7541408 DOI: 10.1007/s00018-020-03522-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Fate determination in self-renewal and differentiation of hematopoietic stem and progenitor cells (HSCs and HPCs) is ultimately controlled by gene expression, which is profoundly influenced by the global and local chromatin state. Cellular metabolism directly influences the chromatin state through the dynamic regulation of the enzymatic activities that modify DNA and histones, but also generates genotoxic metabolites that can damage DNA and thus pose threat to the genome integrity. On the other hand, mechanisms modulating the chromatin state impact metabolism by regulating the expression and activities of key metabolic enzymes. Moreover, through regulating either DNA damage response directly or expression of genes involved in this process, chromatin modulators play active and crucial roles in guarding the genome integrity, breaching of which results in defective HSPC function. Therefore, HSPC function is regulated by the dynamic and two-way interactions between metabolism and chromatin. Here, we review recent advances that provide a chromatin perspective on the major impacts the metabolic and genotoxic factors can have on HSPC function and fate determination.
Collapse
Affiliation(s)
- Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
27
|
Kharat SS, Ding X, Swaminathan D, Suresh A, Singh M, Sengodan SK, Burkett S, Marks H, Pamala C, He Y, Fox SD, Buehler EC, Muegge K, Martin SE, Sharan SK. Degradation of 5hmC-marked stalled replication forks by APE1 causes genomic instability. Sci Signal 2020; 13:13/645/eaba8091. [PMID: 32817374 DOI: 10.1126/scisignal.aba8091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic lethality between poly(ADP-ribose) polymerase (PARP) inhibition and BRCA deficiency is exploited to treat breast and ovarian tumors. However, resistance to PARP inhibitors (PARPis) is common. To identify potential resistance mechanisms, we performed a genome-wide RNAi screen in BRCA2-deficient mouse embryonic stem cells and validation in KB2P1.21 mouse mammary tumor cells. We found that resistance to multiple PARPi emerged with reduced expression of TET2 (ten-eleven translocation), which promotes DNA demethylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethycytosine (5hmC) and other products. TET2 knockdown in BRCA2-deficient cells protected stalled replication forks (RFs). Increasing 5hmC abundance induced the degradation of stalled RFs in KB2P1.21 and human cancer cells by recruiting the base excision repair-associated apurinic/apyrimidinic endonuclease APE1, independent of the BRCA2 status. TET2 loss did not affect the recruitment of the repair protein RAD51 to sites of double-strand breaks (DSBs) or the abundance of proteins associated with RF integrity. The loss of TET2, of its product 5hmC, and of APE1 recruitment to stalled RFs promoted resistance to the chemotherapeutic cisplatin. Our findings reveal a previously unknown role for the epigenetic mark 5hmC in maintaining the integrity of stalled RFs and a potential resistance mechanism to PARPi and cisplatin.
Collapse
Affiliation(s)
- Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Divya Swaminathan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Akshey Suresh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Manish Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Satheesh K Sengodan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hanna Marks
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chinmayi Pamala
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yafeng He
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stephen D Fox
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eugen C Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.,Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Scott E Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
28
|
Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome. Proc Natl Acad Sci U S A 2020; 117:19328-19338. [PMID: 32690705 DOI: 10.1073/pnas.2006038117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-Alu LIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Collapse
|
29
|
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 2020; 35:389-403. [PMID: 32409690 DOI: 10.1038/s41375-020-0864-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.
Collapse
|
30
|
Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol 2020; 36:459-480. [PMID: 32342329 DOI: 10.1007/s10565-020-09522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global health problem. Currently, there is a lack of knowledge about the pathobiology of this disease and available therapies are ineffective. Cigarette smoking is the leading cause of COPD; however, not all smokers develop COPD. Exacerbations of COPD caused by microbes are common and detrimental. Approximately 20-50% of patient exacerbations are caused by bacterial colonization in the lower airways. It is generally accepted that epigenetic mechanisms, especially DNA methylation, play an important role during progression of COPD. Thus, we hypothesized that DNA methylation patterns vary significantly following smoke exposure and during exacerbations caused by bacterial infections. To test our hypothesis, we used an in vitro study model that mimics COPD exacerbations and performed extensive studies to understand the role of CpG promoter methylation of NF-κB and STAT3-mediated pathway genes. Both NF-κB and STAT3 transcription factors play critical roles in orchestrating inflammatory responses during cigarette smoke exposure. In brief, human lung adenocarcinoma cells with type II alveolar epithelium characteristics (A549) were challenged with cigarette smoke extract (CSE) or DMSO (control) followed by a 3-h challenge with bacterial lipopolysaccharide (LPS; from Pseudomonas aeruginosa) prior to the termination of CSE exposure (COPD exacerbation group). The production of cytokines/chemokines, regulation of transcription factors, and DNA methylation of specific genes were then assessed. We also studied changes in the expression and activity of ten-eleven translocases (TETs), the enzymes responsible for DNA demethylation, and assessed their role in regulating DNA methylation in the CSE-challenged group. RESULTS There was a significant increase in the release of cytokines/chemokines (IL-8, MCP-1, IL-6 and CCL5) in the COPD exacerbation group as compared to the control group. Hypomethylation of NF-κB-mediated pathway genes correlated with their induction in our COPD exacerbation study model. Further, we observed an important role of TET1/2 in regulating the DNA methylation of NF-κB, STAT3, IKK, and NIK genes and cytokine/chemokine production by A549 cells during CSE challenge. CONCLUSIONS Studies to further define the role of TETs in CSE-mediated epigenetic regulation may lead to the development of better and more effective therapeutic intervention strategies for COPD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
31
|
Rao VK, Swarnaseetha A, Tham GH, Lin WQ, Han BB, Benoukraf T, Xu GL, Ong CT. Phosphorylation of Tet3 by cdk5 is critical for robust activation of BRN2 during neuronal differentiation. Nucleic Acids Res 2020; 48:1225-1238. [PMID: 31807777 PMCID: PMC7026633 DOI: 10.1093/nar/gkz1144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Tet3 regulates the dynamic balance between 5-methylcyotsine (5mC) and 5-hydroxymethylcytosine (5hmC) in DNA during brain development and homeostasis. However, it remains unclear how its functions are modulated in a context-dependent manner during neuronal differentiation. Here, we show that cyclin-dependent kinase 5 (cdk5) phosphorylates Tet3 at the highly conserved serine 1310 and 1379 residues within its catalytic domain, changing its in vitro dioxygenase activity. Interestingly, when stably expressed in Tet1, 2, 3 triple-knockout mouse embryonic stem cells (ESCs), wild-type Tet3 induces higher level of 5hmC and concomitant expression of genes associated with neurogenesis whereas phosphor-mutant (S1310A/S1379A) Tet3 causes elevated 5hmC and expression of genes that are linked to metabolic processes. Consistent with this observation, Tet3-knockout mouse ESCs rescued with wild-type Tet3 have higher level of 5hmC at the promoter of neuron-specific gene BRN2 when compared to cells that expressed phosphor-mutant Tet3. Wild-type and phosphor-mutant Tet3 also exhibit differential binding affinity to histone variant H2A.Z. The differential 5hmC enrichment and H2A.Z occupancy at BRN2 promoter is correlated with higher gene expression and more efficient neuronal differentiation of ESCs that expressed wild-type Tet3. Taken together, our results suggest that cdk5-mediated phosphorylation of Tet3 is required for robust activation of neuronal differentiation program.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Adusumalli Swarnaseetha
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Guo-Hong Tham
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Wei-Qi Lin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Bin-Bin Han
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chin-Tong Ong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
32
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina B, Vemuganti R. Induction of DNA Hydroxymethylation Protects the Brain After Stroke. Stroke 2019; 50:2513-2521. [PMID: 31327315 DOI: 10.1161/strokeaha.119.025665] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background and Purpose- Epigenetics play a significant role in brain pathologies. We currently evaluated the role of a recently discovered brain-enriched epigenetic modification known as 5-hydroxymethylcytosine (5hmC) in regulating transcriptomic and pathogenic mechanisms after focal ischemic injury. Methods- Young and aged male and female mice were subjected to transient middle cerebral artery occlusion, and the peri-infarct region was analyzed at various times of reperfusion. Two days before middle cerebral artery occlusion, short-interfering RNA against an isoform of the 5hmC producing enzyme TET (ten-eleven translocase) was injected intracerebrally. Ascorbate was injected intraperitoneally at 5 minutes, 30 minutes, or 2 hours of reperfusion. Motor function was tested with rotarod and beam-walk test. Results- Focal ischemia rapidly induced the activity of TET, the enzyme that catalyzes the formation of 5hmC and preferentially increased expression of the TET3 isoform in the peri-infarct region of the ischemic cortex. Levels of 5hmC were increased in a TET3-dependent manner, and inhibition of TET3 led to wide-scale reductions in the postischemic expression of neuroprotective genes involved in antioxidant defense and DNA repair. TET3 knockdown in adult male and female mice further increased brain degeneration after focal ischemia, demonstrating a role for TET3 and 5hmC in endogenous protection against stroke. Ascorbate treatment after focal ischemia enhanced TET3 activity and 5hmC enrichment in the peri-infarct region. TET3 activation by ascorbate provided robust protection against ischemic injury in young and aged mice of both sexes. Moreover, ascorbate treatment improved motor function recovery in both male and female mice. Conclusions- Collectively, these results indicate the potential of TET3 and 5hmC as novel stroke therapeutic targets. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI.,William S. Middleton Veterans Administration Hospital, Madison, WI, (K.C.M.-B., T.K., R.V.)
| | - TaeHee Kim
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI.,William S. Middleton Veterans Administration Hospital, Madison, WI, (K.C.M.-B., T.K., R.V.)
| | - Mary S Lopez
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Pathology Training Program (M.S.L., R.V.), University of Wisconsin-Madison, Madison, WI
| | - Mario J Bertogliat
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI
| | - Bharath Chelluboina
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI
| | - Raghu Vemuganti
- From the Department of Neurological Surgery (K.C.M.-B., T.K., M.S.L., M.J.B., B.C., R.V.), University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Pathology Training Program (M.S.L., R.V.), University of Wisconsin-Madison, Madison, WI.,William S. Middleton Veterans Administration Hospital, Madison, WI, (K.C.M.-B., T.K., R.V.)
| |
Collapse
|
34
|
Xu H, Cao L, Sun B, Wei Y, Liang M. Transcriptomic Analysis of Potential "lncRNA-mRNA" Interactions in Liver of the Marine Teleost Cynoglossus semilaevis Fed Diets With Different DHA/EPA Ratios. Front Physiol 2019; 10:331. [PMID: 31001132 PMCID: PMC6454198 DOI: 10.3389/fphys.2019.00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNA) have emerged as important regulators of lipid metabolism and have been shown to play multifaceted roles in controlling transcriptional gene regulation, but very little relevant information has been available in fish, especially in non-model fish species. With a feeding trial on a typical marine teleost tongue sole C. semilaevis followed by transcriptomic analysis, the present study investigated the possible involvement of lncRNA in hepatic mRNA expression in response to different levels of dietary DHA and EPA, which are two most important fatty acids for marine fish. An 80-day feeding trial was conducted in a flow-through seawater system, and in this trial three experimental diets differing basically in DHA/EPA ratio, i.e., 0.61 (D/E-0.61), 1.46 (D/E-1.46), and 2.75 (D/E-2.75), were randomly assigned to 9 tanks of experimental fish. A total of 124.04 G high quality genome-wide clean data about coding and non-coding transcripts was obtained in the analysis of hepatic transcriptome. Compared to diet D/E-0.61, D/E-1.46 up-regulated expression of 178 lncRNAs and 2629 mRNAs, and down-regulated that of 47 lncRNAs and 3059 mRNAs, while D/E-2.75 resulted in much less change in gene expression. The co-expression and co-localization analysis of differentially expressed (DE) lncRNA and mRNA among dietary groups were then conducted. The co-expressed DE lncRNA and mRNA were primarily enriched in GO terms such as Metabolic process, Intracellular organelle, Catalytic activity, and Oxidoreductase activity, as well as in KEGG pathways such as Ribosome and Oxidative phosphorylation. Overlap of co-expression and co-localization analysis, i.e., lncRNA–mRNA matches “XR_523541.1–solute carrier family 16, member 5 (slc16a5)” and “LNC_000285–bromodomain adjacent to zinc finger domain 2A (baz2a),” were observed in all inter-group comparisons, indicating that they might crucially mediate the effects of dietary DHA and EPA on hepatic gene expression in tongue sole. In conclusion, this was the first time in marine teleost to investigate the possible lncRNA–mRNA interactions in response to dietary fatty acids. The results provided novel knowledge of lncRNAs in non-model marine teleost, and will serve as important resources for future studies that further investigate the roles of lncRNAs in lipid metabolism of marine teleost.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lin Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Beijing Institute of Feed Control, Beijing, China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Feng Y, Li X, Cassady K, Zou Z, Zhang X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front Oncol 2019; 9:210. [PMID: 31001476 PMCID: PMC6454012 DOI: 10.3389/fonc.2019.00210] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, investigation of Ten-Eleven Translocation 2 (TET2) gene function and TET2 mutation have become of increasing interest in the field of hematology. This heightened interest was sparked by the seminal discoveries that (1) TET2 mutation is associated with development of hematological malignancies and that (2) the TET family of proteins is critical in promoting DNA demethylation and immune homeostasis. Since then, additional studies have begun to unravel the question “Does TET2 have additional biological functions in the regulation of hematopoiesis?” Here, we present a mini-review focused on the current understanding of TET2 in hematopoiesis, hematological malignancies, and immune regulation. Importantly, we highlight the critical function that TET2 facilitates in maintaining the stability of the genome. Based on our review of the literature, we provide a new hypothesis that loss of TET2 may lead to dysregulation of the DNA repair response, augment genome instability, and subsequently sensitize myeloid leukemia cells to PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
36
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
37
|
Zhang J, Tan P, Guo L, Gong J, Ma J, Li J, Lee M, Fang S, Jing J, Johnson G, Sun D, Cao WM, Dashwood R, Han L, Zhou Y, Dong WG, Huang Y. p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene 2019; 38:1905-1919. [PMID: 30390073 PMCID: PMC6419514 DOI: 10.1038/s41388-018-0524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Tumor cells with p53 inactivation frequently exhibit chemotherapy resistance, which poses a long-standing challenge to cancer treatment. Here we unveiled a previously unrecognized role of TET2 in mediating p53-loss induced chemotherapy resistance in colon cancer. Deletion of TET2 in p53-null colon cancer cells enhanced DNA damage and restored chemotherapy sensitivity. By taking a two-pronged approach that combined pharmacological inhibition with genetic depletion, we discovered that p53 destabilized TET2 at the protein level by promoting its autophagic degradation. At the molecular level, we further revealed a physical association between TET2 and p53 that facilitated the nucleoplasmic shuttling of TET2, as well as its recruitment to the autophagosome for degradation. Our study has unveiled a functional interplay between TET2 and p53 during anti-cancer therapy. Our findings establish the rationale for targeting TET2 to overcome chemotherapy resistance associated with mutant p53 tumors.
Collapse
Affiliation(s)
- Jixiang Zhang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jingjing Ma
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shaohai Fang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Gavin Johnson
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China, 310022
| | - Roderick Dashwood
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Molecular & Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX, 76504, USA.
| | - Wei-Guo Dong
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Molecular & Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
39
|
Tsagaratou A. TET mediated epigenetic regulation of iNKT cell lineage fate choice and function. Mol Immunol 2018; 101:564-573. [PMID: 30176520 DOI: 10.1016/j.molimm.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
During the last years, intensive research has shed light in the transcriptional networks that shape the invariant NKT (iNKT) cell lineage and guide the choices towards functionally distinct iNKT cell subsets (Constantinides and Bendelac, 2013; Engel and Kronenberg, 2014; Gapin, 2016; Kim et al., 2015). However, the epigenetic players that regulate gene expression and orchestrate the iNKT cell lineage choices remain poorly understood. Here, we summarize recent advances in our understanding of epigenetic regulation of iNKT cell development and lineage choice. Particular emphasis is placed on DNA modifications and the Ten Eleven Translocation (TET) family of DNA demethylases.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA, 92037, USA.
| |
Collapse
|
40
|
High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun 2018; 9:3509. [PMID: 30158531 PMCID: PMC6115451 DOI: 10.1038/s41467-018-05766-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
While suppression of specific genes through aberrant promoter methylation contributes to different diseases including organ fibrosis, gene-specific reactivation technology is not yet available for therapy. TET enzymes catalyze hydroxymethylation of methylated DNA, reactivating gene expression. We here report generation of a high-fidelity CRISPR/Cas9-based gene-specific dioxygenase by fusing an endonuclease deactivated high-fidelity Cas9 (dHFCas9) to TET3 catalytic domain (TET3CD), targeted to specific genes by guiding RNAs (sgRNA). We demonstrate use of this technology in four different anti-fibrotic genes in different cell types in vitro, among them RASAL1 and Klotho, both hypermethylated in kidney fibrosis. Furthermore, in vivo lentiviral delivery of the Rasal1-targeted fusion protein to interstitial cells and of the Klotho-targeted fusion protein to tubular epithelial cells each results in specific gene reactivation and attenuation of fibrosis, providing gene-specific demethylating technology in a disease model. Suppression of gene expression due to aberrant promoter methylation contributes to organ fibrosis. Here, the authors couple a deactivated Cas9 to the TET3 catalytic domain to induce expression of four antifibrotic genes, and show that lentiviral-mediated delivery is effective in reducing kidney fibrosis in mouse models.
Collapse
|
41
|
Wei S, Hua HR, Chen QQ, Zhang Y, Chen F, Li SQ, Li F, Li JL. Dynamic changes in DNA demethylation in the tree shrew ( Tupaia belangeri chinensis) brain during postnatal development and aging. Zool Res 2018; 38:96-102. [PMID: 28409505 PMCID: PMC5396032 DOI: 10.24272/j.issn.2095-8137.2017.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.
Collapse
Affiliation(s)
- Shu Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Hai-Rong Hua
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China
| | - Qian-Quan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Fei Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; School of Life Science, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Shu-Qing Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China.
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China.
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
42
|
Lejart A, Salbert G, Huet S. Cytosine hydroxymethylation by TET enzymes: From the control of gene expression to the regulation of DNA repair mechanisms, and back. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
DNA demethylation marks in chronic lymphocytic leukemia: it is time to let the cat out of the bag. Future Sci OA 2017; 4:FSO265. [PMID: 29379639 PMCID: PMC5778384 DOI: 10.4155/fsoa-2017-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/24/2022] Open
|
44
|
Kantidze OL, Razin SV. 5-hydroxymethylcytosine in DNA repair: A new player or a red herring? Cell Cycle 2017; 16:1499-1501. [PMID: 28745936 DOI: 10.1080/15384101.2017.1346761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Active DNA demethylation performed by ten-eleven translocation (TET) enzymes produces 5-hydroxymethylcytosines, 5-formylcytosines, and 5-carboxylcytosines. Recent observations suggest that 5-hydroxymethylcytosine is a stable epigenetic mark rather than merely an intermediate of DNA demethylation. However, the clear functional role of this new epigenetic player is elusive. The contribution of 5-hydroxymethylation to DNA repair is being discussed currently. Recently, Jiang and colleagues have demonstrated that DNA damage response-activated ATR kinase phosphorylates TET3 in mammalian cells and promotes DNA demethylation and 5-hydroxymethylcytosine accumulation. Moreover, TET3 catalytic activity is important for proper DNA repair and cell survival. Here, we discuss recent studies on the potential role of 5-hydroxymethylation in DNA repair and genome integrity maintenance.
Collapse
Affiliation(s)
- Omar L Kantidze
- a Institute of Gene Biology RAS , Moscow , Russia.,b LIA1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| | - Sergey V Razin
- a Institute of Gene Biology RAS , Moscow , Russia.,b LIA1066 French-Russian Joint Cancer Research Laboratory , Villejuif , France
| |
Collapse
|
45
|
Jiang D, Wei S, Chen F, Zhang Y, Li J. TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Rep 2017; 18:781-796. [PMID: 28325772 PMCID: PMC5412826 DOI: 10.15252/embr.201643179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
An efficient, accurate, and timely DNA damage response (DDR) is crucial for the maintenance of genome integrity. Here, we report that ten-eleven translocation dioxygenase (TET) 3-mediated conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in response to ATR-dependent DDR regulates DNA repair. ATR-dependent DDR leads to dynamic changes in 5hmC levels and TET3 enzymatic activity. We show that TET3 is an ATR kinase target that oxidizes DNA during ATR-dependent DNA damage repair. Modulation of TET3 expression and activity affects DNA damage signaling and DNA repair and consequently cell death. Our results provide novel insight into ATR-mediated DDR, in which TET3-mediated DNA demethylation is crucial for efficient DNA repair and maintenance of genome stability.
Collapse
Affiliation(s)
- Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Shu Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Fei Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|