1
|
Deehan MA, Kothuis JM, Sapp E, Chase K, Ke Y, Seeley C, Iuliano M, Kim E, Kennington L, Miller R, Boudi A, Shing K, Li X, Pfister E, Anaclet C, Brodsky M, Kegel-Gleason K, Aronin N, DiFiglia M. Nacc1 Mutation in Mice Models Rare Neurodevelopmental Disorder with Underlying Synaptic Dysfunction. J Neurosci 2024; 44:e1610232024. [PMID: 38388424 PMCID: PMC10993038 DOI: 10.1523/jneurosci.1610-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Deehan
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Josine M Kothuis
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kathryn Chase
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Connor Seeley
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Emily Kim
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Lori Kennington
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Rachael Miller
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Edith Pfister
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, California 95817
| | - Michael Brodsky
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Neil Aronin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
2
|
Lanza DG, Mao J, Lorenzo I, Liao L, Seavitt JR, Ljungberg MC, Simpson EM, DeMayo FJ, Heaney JD. An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing. Genesis 2024; 62:e23589. [PMID: 38523431 PMCID: PMC10987075 DOI: 10.1002/dvg.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Cas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus. The X-linked Hprt1 locus was selected because it is a defined integration site that does not influence transgene expression, and breeding of transgenic males generates obligate transgenic females to serve as embryo donors. Using microinjections and electroporation to introduce sgRNAs into zygotes derived from transgenic dams, we demonstrate that Gdf9-Cas9 mediates genome editing as efficiently as exogenous Cas9 at several loci. We show that genome editing efficiency is independent of transgene inheritance, verifying that maternally derived Cas9 facilitates genome editing. We also show that paternal inheritance of Gdf9-Cas9 does not mediate genome editing, confirming that Gdf9-Cas9 is not expressed in embryos. Finally, we demonstrate that off-target mutagenesis is equally rare when using transgenic or exogenous Cas9. Together, these results show that the Gdf9-Cas9 transgene is a viable alternative to exogenous Cas9.
Collapse
Affiliation(s)
- Denise G. Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Jianqiang Mao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Lan Liao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Present address: The Jackson Laboratory 600 Main St., Bar Harbor, Maine, ME, USA 04609
| | - M. Cecilia Ljungberg
- Department of Pediatrics – Neurology, Baylor College of Medicine Houston, TX, USA 77030
- Duncan Neurological Research Institute, Texas Children’s Hospital Houston, TX, USA 77030
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital Department of Medical Genetics, The University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory National Institute of Environmental Health Sciences Research Triangle Park, NC, USA 27709
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, USA 77030
| |
Collapse
|
3
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
4
|
Van Laere AS, Tromme A, Delaval L, Farnir F, Blomet J, Desmecht D. A timely, user-friendly, and flexible marker-assisted speed congenics method. Transgenic Res 2023; 32:451-461. [PMID: 37843753 DOI: 10.1007/s11248-023-00365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Mice are the most widely used mammalian animal model worldwide. Their use presents many advantages, including our ability to manipulate their genome. Unfortunately, transgenic mice often need to be introgressed to transfer the transgene of interest in a specific mouse line. This time-consuming process can be shortened using the speed congenics technique. However, the need for a panel of informative markers to evaluate the proportion of donor and receiver genomes in different individuals produced at each generation hinders the utilisation of speed congenics. In this study, we present 255 microsatellites and 10 RFLPs which can be used in 18 marker panels, allowing the easy and fast introgression of genes of interest from three mouse lines commonly used for transgenesis (C57BL/6, 129/Sv and FVB) to six mouse lines relevant for biomedical research (BALB/c, C3H, DBA/1, DBA/2, SJL and SWR/J). In addition, our markers analysis confirmed a recently described lack of isogeny in well-established inbred mouse lines available from commercial breeders.
Collapse
Affiliation(s)
- Anne-Sophie Van Laere
- Department of Pathology, FARAH, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
- Laboratoires Prevor, Moulin de Verville, 95670, Valmondois, France
| | - Audrey Tromme
- Department of Pathology, FARAH, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
- Laboratoires Prevor, Moulin de Verville, 95670, Valmondois, France
| | - Laetitia Delaval
- Department of Pathology, FARAH, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
- Laboratoires Prevor, Moulin de Verville, 95670, Valmondois, France
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, FARAH, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Joël Blomet
- Laboratoires Prevor, Moulin de Verville, 95670, Valmondois, France
| | - Daniel Desmecht
- Department of Pathology, FARAH, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium.
| |
Collapse
|
5
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Sasaguri H. Introduction of Genetic Mutations Into Mice by Base Editor and Target-AID. Methods Mol Biol 2023; 2637:111-124. [PMID: 36773142 DOI: 10.1007/978-1-0716-3016-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Generating genetically modified animal models that precisely recapitulate disease characteristics forms an integral and indispensable tool to understanding disease pathophysiology. Recently, important advances in genome editing technologies have enabled us to efficiently create sophisticated animal models in short periods of time. Base editing is a modified CRISPR/Cas system that induces base substitution at targeted genomic regions. Here I describe a basic protocol to introduce disease-relevant pathogenic mutations into mice utilizing two representative base editing tools, Base Editor and Target-AID.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
7
|
Harbison ST. What have we learned about sleep from selective breeding strategies? Sleep 2022; 45:zsac147. [PMID: 36111812 PMCID: PMC9644121 DOI: 10.1093/sleep/zsac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Indexed: 09/18/2023] Open
Abstract
Selective breeding is a classic technique that enables an experimenter to modify a heritable target trait as desired. Direct selective breeding for extreme sleep and circadian phenotypes in flies successfully alters these behaviors, and sleep and circadian perturbations emerge as correlated responses to selection for other traits in mice, rats, and dogs. The application of sequencing technologies to the process of selective breeding identifies the genetic network impacting the selected trait in a holistic way. Breeding techniques preserve the extreme phenotypes generated during selective breeding, generating community resources for further functional testing. Selective breeding is thus a unique strategy that can explore the phenotypic limits of sleep and circadian behavior, discover correlated responses of traits having shared genetic architecture with the target trait, identify naturally-occurring genomic variants and gene expression changes that affect trait variability, and pinpoint genes with conserved roles.
Collapse
Affiliation(s)
- Susan T Harbison
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD,USA
| |
Collapse
|
8
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
9
|
Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, Xiao WF, Li YS. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle 2021; 12:538-554. [PMID: 33951340 PMCID: PMC8200444 DOI: 10.1002/jcsm.12709] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is a progressive and widespread skeletal muscle disease that is related to an increased possibility of adverse consequences such as falls, fractures, physical disabilities and death, and its risk increases with age. With the deepening of the understanding of sarcopenia, the disease has become a major clinical disease of the elderly and a key challenge of healthy ageing. However, the exact molecular mechanism of this disease is still unclear, and the selection of treatment strategies and the evaluation of its effect are not the same. Most importantly, the early symptoms of this disease are not obvious and are easy to ignore. In addition, the clinical manifestations of each patient are not exactly the same, which makes it difficult to effectively study the progression of sarcopenia. Therefore, it is necessary to develop and use animal models to understand the pathophysiology of sarcopenia and develop therapeutic strategies. This paper reviews the mouse models that can be used in the study of sarcopenia, including ageing models, genetically engineered models, hindlimb suspension models, chemical induction models, denervation models, and immobilization models; analyses their advantages and disadvantages and application scope; and finally summarizes the evaluation of sarcopenia in mouse models.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Deng-Jie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Xiu-Hua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Rondal JA. From the lab to the people: major challenges in the biological treatment of Down syndrome. AIMS Neurosci 2021; 8:284-294. [PMID: 33709029 PMCID: PMC7940110 DOI: 10.3934/neuroscience.2021015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) refers to a genetic condition due to the triplication of human chromosome 21. It is the most frequent autosomal trisomy. In recent years, experimental work has been conducted with the aim of removing or silencing the extra chromosome 21 (C21) in cells and normalizing genetic expression. This paper examines the feasibility of the move from laboratory studies to biologically treating “bone and flesh” people with DS. A chromosome or a gene therapy for humans is fraught with practical and ethical difficulties. To prevent DS completely, genome editing would have to be performed early on embryos in the womb. New in vitro findings point toward the possibility of epigenetic silencing the extra C21 in later embryonic or fetal life, or even postnatally for some aspects of neurogenesis. These possibilities are far beyond what is possible or allowed today. Another approach is through epigenetic regulation of the overexpression of particular genes in C21. Research with mouse modeling of DS is yielding promising results. Human applications have barely begun and are questioned on ethical grounds.
Collapse
|
11
|
Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 2020; 19:447-462. [PMID: 32612262 DOI: 10.1038/s41573-020-0065-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
A large number of mouse models have been engineered, characterized and used to advance biomedical research in Alzheimer disease (AD). Early models simply damaged the rodent brain through toxins or lesions. Later, the spread of genetic engineering technology enabled investigators to develop models of familial AD by overexpressing human genes such as those encoding amyloid precursor protein (APP) or presenilins (PSEN1 or PSEN2) carrying mutations linked to early-onset AD. Recently, more complex models have sought to explore the impact of multiple genetic risk factors in the context of different biological challenges. Although none of these models has proven to be a fully faithful reproduction of the human disease, models remain essential as tools to improve our understanding of AD biology, conduct thorough pharmacokinetic and pharmacodynamic analyses, discover translatable biomarkers and evaluate specific therapeutic approaches. To realize the full potential of animal models as new technologies and knowledge become available, it is critical to define an optimal strategy for their use. Here, we review progress and challenges in the use of AD mouse models, highlight emerging scientific innovations in model development, and introduce a conceptual framework for use of preclinical models for therapeutic development.
Collapse
|
12
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Smith JC. A Review of Strain and Sex Differences in Response to Pain and Analgesia in Mice. Comp Med 2019; 69:490-500. [PMID: 31822324 DOI: 10.30802/aalas-cm-19-000066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pain and its alleviation are currently a highly studied issue in human health. Research on pain and response to analgesia has evolved to include the effects of genetics, heritability, and sex as important components in both humans and animals. The laboratory mouse is the major animal studied in the field of pain and analgesia. Studying the inbred mouse to understand how genetic heritable traits and/or sex influence pain and analgesia has added valuable information to the complex nature of pain as a human disease. In the context of biomedical research, identifying pain and ensuring its control through analgesia in research animals remains one of the hallmark responsibilities of the research community. Advancements in both human and mouse genomic research shed light not only on the need to understand how both strain and sex affect the mouse pain response but also on how these research achievements can be used to improve the humane use of all research animal species. A better understanding of how strain and sex affect the response to pain may allow researchers to improve study design and thereby the reproducibility of animal research studies. The need to use both sexes, along with an improved understanding of how genetic heritability affects nociception and analgesic sensitivity, remains a key priority for pain researchers working with mice. This review summarizes the current literature on how strain and sex alter the response to pain and analgesia in the modern research mouse, and highlights the importance of both strain and sex selection in pain research.
Collapse
Affiliation(s)
- Jennifer C Smith
- Department of Bioresources, Henry Ford Health System, Detroit, Michigan;,
| |
Collapse
|
14
|
González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica 2019; 104:881-893. [PMID: 30923099 PMCID: PMC6518885 DOI: 10.3324/haematol.2018.211359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in genome engineering in the last decade, particularly in the development of programmable nucleases, have made it possible to edit the genomes of most cell types precisely and efficiently. Chief among these advances, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a novel, versatile and easy-to-use tool to edit genomes irrespective of their complexity, with multiple and broad applications in biomedicine. In this review, we focus on the use of CRISPR/Cas9 genome editing in the context of hematologic diseases and appraise the major achievements and challenges in this rapidly moving field to gain a clearer perspective on the potential of this technology to move from the laboratory to the clinic. Accordingly, we discuss data from studies editing hematopoietic cells to understand and model blood diseases, and to develop novel therapies for hematologic malignancies. We provide an overview of the applications of gene editing in experimental, preclinical and clinical hematology including interrogation of gene function, target identification and drug discovery and chimeric antigen receptor T-cell engineering. We also highlight current limitations of CRISPR/Cas9 and the possible strategies to overcome them. Finally, we consider what advances in CRISPR/Cas9 are needed to move the hematology field forward.
Collapse
Affiliation(s)
| | | | | | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia
- CIBER de Enfermedades Raras, Madrid
| | - José Cervera
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia
- CIBER de Oncología, Madrid, Spain
| | | |
Collapse
|
15
|
Rager JE, Carberry C, Fry RC. Use of Genome Editing Tools in Environmental Health Research. CURRENT OPINION IN TOXICOLOGY 2019; 18:13-17. [PMID: 31656878 DOI: 10.1016/j.cotox.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nature and types of genome editing tools are rapidly expanding and becoming increasingly incorporated into research efforts aimed at understanding human disease. The majority of research involving genome editing has been driven by medical research, with a limited but increasing number of studies currently published in the field of environmental health and toxicology. This review aims to address this research gap by providing a high-level summary of current genome editing techniques and presenting examples of how some of these techniques have been used toxicologically to evaluate environmental exposure-induced disease. Specific strategies surrounding the evaluation of hazardous chemicals, chemical mechanism of action / adverse outcome pathways, and inter-individual response variability are also discussed to aid in the translation of genome editing methods towards toxicological and environmental health research.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill.,The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill.,Curriculum in Toxicology, The University of North Carolina at Chapel Hill
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill.,The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill.,Curriculum in Toxicology, The University of North Carolina at Chapel Hill
| |
Collapse
|
16
|
Schork NJ, Raghavachari N. Report: NIA workshop on translating genetic variants associated with longevity into drug targets. GeroScience 2018; 40:523-538. [PMID: 30374935 PMCID: PMC6294726 DOI: 10.1007/s11357-018-0046-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
To date, candidate gene and genome-wide association studies (GWAS) have led to the discovery of longevity-associated variants (LAVs) in genes such as FOXO3A and APOE. Unfortunately, translating variants into drug targets is challenging for any trait, and longevity is no exception. Interdisciplinary and integrative multi-omics approaches are needed to understand how LAVs affect longevity-related phenotypes at the molecular physiologic level in order to leverage their discovery to identify new drug targets. The NIA convened a workshop in August 2017 on emerging and novel in silico (i.e., bioinformatics and computational) approaches to the translation of LAVs into drug targets. The goal of the workshop was to identify ways of enabling, enhancing, and facilitating interactions among researchers from different disciplines whose research considers either the identification of LAVs or the mechanistic or causal pathway(s) and protective factors they influence for discovering drug targets. Discussions among the workshop participants resulted in the identification of critical needs for enabling the translation of LAVs into drug targets in several areas. These included (1) the initiation and better use of cohorts with multi-omics profiling on the participants; (2) the generation of longitudinal information on multiple individuals; (3) the collection of data from non-human species (both long and short-lived) for comparative biology studies; (4) the refinement of computational tools for integrative analyses; (5) the development of novel computational and statistical inference techniques for assessing the potential of a drug target; (6) the identification of available drugs that could modulate a target in a way that could potentially provide protection against age-related diseases and/or enhance longevity; and (7) the development or enhancement of databases and repositories of relevant information, such as the Longevity Genomics website ( https://www.longevitygenomics.org ), to enhance and help motivate future interdisciplinary studies. Integrative approaches that examine the influence of LAVs on molecular physiologic phenotypes that might be amenable to pharmacological modulation are necessary for translating LAVs into drugs to enhance health and life span.
Collapse
Affiliation(s)
- Nicholas J. Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute, Phoenix, AZ USA
| | | | | |
Collapse
|
17
|
Uraji J, Scheffler K, Schuh M. Functions of actin in mouse oocytes at a glance. J Cell Sci 2018; 131:131/22/jcs218099. [PMID: 30467138 DOI: 10.1242/jcs.218099] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gametes undergo a specialized and reductional cell division termed meiosis. Female gametes (oocytes) undergo two rounds of meiosis; the first meiotic division produces the fertilizable egg, while the second meiotic division occurs upon fertilization. Both meiotic divisions are highly asymmetric, producing a large egg and small polar bodies. Actin takes over various essential function during oocyte meiosis, many of which commonly rely on microtubules in mitotic cells. Specifically, the actin network has been linked to long-range vesicle transport, nuclear positioning, spindle migration and anchorage, polar body extrusion and accurate chromosome segregation in mammalian oocytes. In this Cell Science at a Glance article and the accompanying poster, we summarize the many functions of the actin cytoskeleton in oocytes, with a focus on findings from the mouse model system.
Collapse
Affiliation(s)
- Julia Uraji
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
18
|
|
19
|
Carter SR, Warner CM. Trends in Synthetic Biology Applications, Tools, Industry, and Oversight and Their Security Implications. Health Secur 2018; 16:320-333. [PMID: 30339097 DOI: 10.1089/hs.2018.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent developments in synthetic biology tools and techniques are driving commercialization of a wide range of products for human health, agriculture, environmental stewardship, and other purposes. This article reviews some of the trends in synthetic biology applications as well as some of the tools enabling these and future advances. These tools and capabilities are being developed in the context of a rapidly changing industry, which may have an impact on the rate and direction of progress. Final products are subject to a regulatory framework that is being challenged by the pace, scale, and novelty of this new era of biotechnology. This article includes discussion of these factors and how they may affect product design and the types of applications that are most likely to be supported and pursued commercially. The final section provides perspective on the security implications of these advances, with a focus on US interests.
Collapse
Affiliation(s)
- Sarah R Carter
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| | - Christopher M Warner
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| |
Collapse
|
20
|
Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci 2018; 21:1370-1379. [PMID: 30250265 PMCID: PMC6615039 DOI: 10.1038/s41593-018-0236-8] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Animal models of adult-onset neurodegenerative diseases have enhanced the understanding of the molecular pathogenesis of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Nevertheless, our understanding of these disorders and the development of mechanistically designed therapeutics can still benefit from more rigorous use of the models and from generation of animals that more faithfully recapitulate human disease. Here we review the current state of rodent models for Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. We discuss the limitations and utility of current models, issues regarding translatability, and future directions for developing animal models of these human disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology; and Department of Pharmacology and Molecular Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA.
| | - Todd E Golde
- McKnight Brain Institute Center for Translational Research in Neurodegenerative Disease Department of Neuroscience and Neurology, University of Florida, Gainesville, FL, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
21
|
Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat Commun 2018; 9:2892. [PMID: 30042426 PMCID: PMC6057936 DOI: 10.1038/s41467-018-05262-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Base Editor (BE) and Target-AID (activation-induced cytidine deaminase) are engineered genome-editing proteins composed of Cas9 and cytidine deaminases. These base-editing tools convert C:G base pairs to T:A at target sites. Here, we inject either BE or Target-AID mRNA together with identical single-guide RNAs (sgRNAs) into mouse zygotes, and compare the base-editing efficiencies of the two distinct tools in vivo. BE consistently show higher base-editing efficiency (10.0–62.8%) compared to that of Target-AID (3.4–29.8%). However, unexpected base substitutions and insertion/deletion formations are also more frequently observed in BE-injected mice or zygotes. We are able to generate multiple mouse lines harboring point mutations in the mouse presenilin 1 (Psen1) gene by injection of BE or Target-AID. These results demonstrate that BE and Target-AID are highly useful tools to generate mice harboring pathogenic point mutations and to analyze the functional consequences of the mutations in vivo. CRISPR-guided cytidine deaminases, including BE3 (Base Editor 3) and Target-AID (activation-induced cytidine deaminase), can covert C:G base pairs to T:A at target site. Here, the authors generate missense mutations of mouse Psen1 gene and find BE3 has higher editing efficiency than Target-AID.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan. .,Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Deepika Kurup
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
22
|
Vesikansa A. Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. J Cent Nerv Syst Dis 2018; 10:1179573518787469. [PMID: 30013417 PMCID: PMC6043941 DOI: 10.1177/1179573518787469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022] Open
Abstract
The complex structure and highly variable gene expression profile of the brain makes it among the most challenging fields to study in both basic and translational biological research. Most of the brain diseases are multifactorial and despite the rapidly increasing genomic data, molecular pathways and causal links between genes and central nervous system (CNS) diseases are largely unknown. The advent of an easy and flexible CRISPR-Cas genome editing technology has rapidly revolutionized the field of functional genomics and opened unprecedented possibilities to dissect the mechanisms of CNS disease. CRISPR-Cas allows a plenitude of applications for both gene-focused and genome-wide approaches, ranging from original “gene scissors” making permanent modifications in the genome to the regulation of gene expression and epigenetics. CRISPR technology provides a unique opportunity to establish new cellular and animal models of CNS diseases and holds potential for breakthroughs in the CNS research and drug development.
Collapse
Affiliation(s)
- Aino Vesikansa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR, DeMayo FJ, Xu J, Dickinson ME, Beaudet AL, Heaney JD. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 2018; 16:69. [PMID: 29925370 PMCID: PMC6011517 DOI: 10.1186/s12915-018-0529-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The International Mouse Phenotyping Consortium is generating null allele mice for every protein-coding gene in the genome and characterizing these mice to identify gene-phenotype associations. While CRISPR/Cas9-mediated null allele production in mice is highly efficient, generation of conditional alleles has proven to be more difficult. To test the feasibility of using CRISPR/Cas9 gene editing to generate conditional knockout mice for this large-scale resource, we employed Cas9-initiated homology-driven repair (HDR) with short and long single stranded oligodeoxynucleotides (ssODNs and lssDNAs). RESULTS Using pairs of single guide RNAs and short ssODNs to introduce loxP sites around a critical exon or exons, we obtained putative conditional allele founder mice, harboring both loxP sites, for 23 out of 30 targeted genes. LoxP sites integrated in cis in at least one mouse for 18 of 23 genes. However, loxP sites were mutagenized in 4 of the 18 in cis lines. HDR efficiency correlated with Cas9 cutting efficiency but was minimally influenced by ssODN homology arm symmetry. By contrast, using pairs of guides and single lssDNAs to introduce loxP-flanked exons, conditional allele founders were generated for all four genes targeted, although one founder was found to harbor undesired mutations within the lssDNA sequence interval. Importantly, when employing either ssODNs or lssDNAs, random integration events were detected. CONCLUSIONS Our studies demonstrate that Cas9-mediated HDR with pairs of ssODNs can generate conditional null alleles at many loci, but reveal inefficiencies when applied at scale. In contrast, lssDNAs are amenable to high-throughput production of conditional alleles when they can be employed. Regardless of the single-stranded donor utilized, it is essential to screen for sequence errors at sites of HDR and random insertion of donor sequences into the genome.
Collapse
Affiliation(s)
- Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Angelina Gaspero
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Lan Liao
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Genetically Engineered Mouse Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ping Zheng
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ying Wang
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yu Deng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Jianming Xu
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Genetically Engineered Mouse Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA.
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Sacchi S, Cappelletti P, Murtas G. Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies. Front Mol Biosci 2018; 5:55. [PMID: 29946548 PMCID: PMC6005901 DOI: 10.3389/fmolb.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The stereoselective flavoenzyme D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of neutral and polar D-amino acids producing the corresponding α-keto acids, ammonia, and hydrogen peroxide. Despite its peculiar and atypical substrates, DAAO is widespread expressed in most eukaryotic organisms. In mammals (and humans in particular), DAAO is involved in relevant physiological processes ranging from D-amino acid detoxification in kidney to neurotransmission in the central nervous system, where DAAO is responsible of the catabolism of D-serine, a key endogenous co-agonist of N-methyl-D-aspartate receptors. Recently, structural and functional studies have brought to the fore the distinctive biochemical properties of human DAAO (hDAAO). It appears to have evolved to allow a strict regulation of its activity, so that the enzyme can finely control the concentration of substrates (such as D-serine in the brain) without yielding to an excessive production of hydrogen peroxide, a potentially toxic reactive oxygen species (ROS). Indeed, dysregulation in D-serine metabolism, likely resulting from altered levels of hDAAO expression and activity, has been implicated in several pathologies, ranging from renal disease to neurological, neurodegenerative, and psychiatric disorders. Only one mutation in DAO gene was unequivocally associated to a human disease. However, several single nucleotide polymorphisms (SNPs) are reported in the database and the biochemical characterization of the corresponding recombinant hDAAO variants is of great interest for investigating the effect of mutations. Here we reviewed recently published data focusing on the modifications of the structural and functional properties induced by amino acid substitutions encoded by confirmed SNPs and on their effect on D-serine cellular levels. The potential significance of the different hDAAO variants in human pathologies will be also discussed.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Pamela Cappelletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
25
|
Lutz C. Mouse models of ALS: Past, present and future. Brain Res 2018; 1693:1-10. [PMID: 29577886 DOI: 10.1016/j.brainres.2018.03.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
Genome sequencing of both sporadic and familial patients of Amyotrophic Lateral Sclerosis (ALS) has led to the identification of new genes that are both contributing and causative in the disease. This gene discovery has come at an unprecedented rate, and much of it in recent years. Knowledge of these genetic mutations provides us with opportunities to uncover new and related mechanisms, increasing our understanding of the disease and bringing us closer to defined therapies for patients. Mouse models have played an important role in our current understanding of the pathophysiology of ALS and have served as important preclinical models in testing new therapeutics. With these new gene discoveries, new mouse models will follow. The information derived from these new models will depend on the careful construction and importantly, an understanding of the capabilities and limitations of each of the models. The genetic discovery in ALS comes at a time when genetic engineering technologies in mice are highly efficient through CRISPR/Cas9 and can be applied to a wide array of genetic backgrounds. New mouse resources in the forms of the Collaborative Cross and Diversity Outbred panels provide us with unique opportunities to study these mutations on diverse genetic backgrounds, and importantly in the context of a population. This review focuses on the mouse models of the past and present, and discusses exciting new opportunities for mouse models of the future.
Collapse
Affiliation(s)
- Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
26
|
Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2018; 19:ijms19030906. [PMID: 29562705 PMCID: PMC5877767 DOI: 10.3390/ijms19030906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin.
Collapse
Affiliation(s)
- Ewa Kruminis-Kaszkiel
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Judyta Juranek
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
27
|
Krupke DM, Begley DA, Sundberg JP, Richardson JE, Neuhauser SB, Bult CJ. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer. Cancer Res 2017; 77:e67-e70. [PMID: 29092943 DOI: 10.1158/0008-5472.can-17-0584] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023]
Abstract
Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR.
Collapse
|