1
|
Bonetti G, Cozza W, Bernini A, Kaftalli J, Mareso C, Cristofoli F, Medori MC, Colombo L, Martella S, Staurenghi G, Salvetti AP, Falsini B, Placidi G, Attanasio M, Pertile G, Bengala M, Bosello F, Petracca A, D’Esposito F, Toschi B, Lanzetta P, Ricci F, Viola F, Marceddu G, Bertelli M. Towards a Long-Read Sequencing Approach for the Molecular Diagnosis of RPGR ORF15 Genetic Variants. Int J Mol Sci 2023; 24:16881. [PMID: 38069202 PMCID: PMC10706286 DOI: 10.3390/ijms242316881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Sequencing of the low-complexity ORF15 exon of RPGR, a gene correlated with retinitis pigmentosa and cone dystrophy, is difficult to achieve with NGS and Sanger sequencing. False results could lead to the inaccurate annotation of genetic variants in dbSNP and ClinVar databases, tools on which HGMD and Ensembl rely, finally resulting in incorrect genetic variants interpretation. This paper aims to propose PacBio sequencing as a feasible method to correctly detect genetic variants in low-complexity regions, such as the ORF15 exon of RPGR, and interpret their pathogenicity by structural studies. Biological samples from 75 patients affected by retinitis pigmentosa or cone dystrophy were analyzed with NGS and repeated with PacBio. The results showed that NGS has a low coverage of the ORF15 region, while PacBio was able to sequence the region of interest and detect eight genetic variants, of which four are likely pathogenic. Furthermore, molecular modeling and dynamics of the RPGR Glu-Gly repeats binding to TTLL5 allowed for the structural evaluation of the variants, providing a way to predict their pathogenicity. Therefore, we propose PacBio sequencing as a standard procedure in diagnostic research for sequencing low-complexity regions such as RPGRORF15, aiding in the correct annotation of genetic variants in online databases.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (M.C.M.); (M.B.)
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - William Cozza
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Jurgen Kaftalli
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Chiara Mareso
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | | | | | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (L.C.); (S.M.)
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (L.C.); (S.M.)
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy; (G.S.); (A.P.S.)
| | - Anna Paola Salvetti
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy; (G.S.); (A.P.S.)
| | - Benedetto Falsini
- UOC Oculistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy (G.P.)
- Istituto di Oftalmologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giorgio Placidi
- UOC Oculistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy (G.P.)
| | - Marcella Attanasio
- Ospedale Sacrocuore Don Calabria, Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy; (M.A.); (G.P.)
| | - Grazia Pertile
- Ospedale Sacrocuore Don Calabria, Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy; (M.A.); (G.P.)
| | - Mario Bengala
- Medical Genetics Unit, Department of Oncohematology, Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Francesca Bosello
- Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, Section of Ophthalmology, University of Verona, 37134 Verona, Italy;
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Fabiana D’Esposito
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80138 Naples, Italy
| | - Benedetta Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Paolo Lanzetta
- Department of Medicine-Ophthalmology, University of Udine, 33100 Udine, Italy;
- Istituto Europeo di Microchirurgia Oculare (IEMO), 33100 Udine, Italy
| | - Federico Ricci
- Department of Experimental Medicine, Tor Vergata University of Rome, Viale Oxford, 00133 Rome, Italy;
| | - Francesco Viola
- Department of Ophthalmology, Fondazione IRCCS Cà Granda, Clinica Regina Elena, 20122 Milan, Italy;
| | - Giuseppe Marceddu
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (M.C.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy; (W.C.); (J.K.); (C.M.); (F.D.); (G.M.)
- MAGISNAT, Atlanta Tech Park, 107 Technology Parkway, Peachtree Corners, GA 30092, USA
| |
Collapse
|
2
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs 2022; 27:431-443. [PMID: 36562395 DOI: 10.1080/14728214.2022.2152003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| |
Collapse
|
3
|
Abstract
Polyglutamylation is a posttranslational modification (PTM) that adds several glutamates on glutamate residues in the form of conjugated peptide chains by a family of enzymes known as polyglutamylases. Polyglutamylation is well documented in microtubules. Polyglutamylated microtubules consist of different α- and β-tubulin subunits with varied number of added glutamate residues. Kinetic control and catalytic rates of tubulin modification by polyglutamylases influence the polyglutamylation pattern of functional microtubules. The recent studies uncovered catalytic mechanisms of the glutamylation enzymes family, particularly tubulin tyrosine ligase-like (TTLL). Variable length polyglutamylation of primary sequence glutamyl residues have been mapped with a multitude of protein chemistry and proteomics approaches. Although polyglutamylation was initially considered a tubulin-specific modification, the recent studies have uncovered a calmodulin-dependent glutamylase, SidJ. Nano-electrospray ionization (ESI) proteomic approaches have identified quantifiable polyglutamylated sites in specific substrates. Indeed, conjugated glutamylated peptides were used in nano-liquid chromatography gradient delivery due to their relative hydrophobicity for their tandem mass spectrometry (MS/MS) characterization. The recent polyglutamylation characterization has revealed three major sites: E445 in α-tubulin, E435 in β-tubulin, and E860 in SdeA. In this review, we have summarized the progress made using proteomic approaches for large-scale detection of polyglutamylated peptides, including biology and analysis.
Collapse
|
4
|
Evers TMJ, Holt LJ, Alberti S, Mashaghi A. Reciprocal regulation of cellular mechanics and metabolism. Nat Metab 2021; 3:456-468. [PMID: 33875882 PMCID: PMC8863344 DOI: 10.1038/s42255-021-00384-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolism and mechanics are intrinsically intertwined. External forces, sensed through the cytoskeleton or distortion of the cell and organelles, induce metabolic changes in the cell. The resulting changes in metabolism, in turn, feed back to regulate every level of cell biology, including the mechanical properties of cells and tissues. Here we examine the links between metabolism and mechanics, highlighting signalling pathways involved in the regulation and response to cellular mechanosensing. We consider how forces and metabolism regulate one another through nanoscale molecular sensors, micrometre-scale cytoskeletal networks, organelles and dynamic biomolecular condensates. Understanding this cross-talk will create diagnostic and therapeutic opportunities for metabolic disorders such as cancer, cardiovascular pathologies and obesity.
Collapse
Affiliation(s)
- Tom M J Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
5
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
6
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
7
|
Khan AO, Slater A, Maclachlan A, Nicolson PLR, Pike JA, Reyat JS, Yule J, Stapley R, Rayes J, Thomas SG, Morgan NV. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 2020; 107:243-259. [PMID: 33327716 PMCID: PMC8719104 DOI: 10.3324/haematol.2020.270793] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which b1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Annabel Maclachlan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Jack Yule
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT.
| |
Collapse
|
8
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
9
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
10
|
Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nat Struct Mol Biol 2020; 27:802-813. [PMID: 32747782 DOI: 10.1038/s41594-020-0462-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/12/2020] [Indexed: 11/08/2022]
Abstract
Glutamylation, introduced by tubulin tyrosine ligase-like (TTLL) enzymes, is the most abundant modification of brain tubulin. Essential effector proteins read the tubulin glutamylation pattern, and its misregulation causes neurodegeneration. TTLL glutamylases post-translationally add glutamates to internal glutamates in tubulin carboxy-terminal tails (branch initiation, through an isopeptide bond), and additional glutamates can extend these (elongation). TTLLs are thought to specialize in initiation or elongation, but the mechanistic basis for regioselectivity is unknown. We present cocrystal structures of murine TTLL6 bound to tetrahedral intermediate analogs that delineate key active-site residues that make this enzyme an elongase. We show that TTLL4 is exclusively an initiase and, through combined structural and phylogenetic analyses, engineer TTLL6 into a branch-initiating enzyme. TTLL glycylases add glycines post-translationally to internal glutamates, and we find that the same active-site residues discriminate between initiase and elongase glycylases. These active-site specializations of TTLL glutamylases and glycylases ultimately yield the chemical complexity of cellular microtubules.
Collapse
|
11
|
McClung C, Chin HG, Hansen U, Noren CJ, Pradhan S, Ruse CI. Mapping of polyglutamylation in tubulins using nanoLC-ESI-MS/MS. Anal Biochem 2020; 612:113761. [PMID: 32502490 DOI: 10.1016/j.ab.2020.113761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022]
Abstract
Tubulin polyglutamylation is a polymeric modification that extends from the carboxyl-terminus of tubulins. Molecular description of amino acids and their branching polyglutamyls is a hallmark of tubulin in microtubules. There are different chemical approaches for detecting these polymeric structures, mostly reported prior to development of nESI peptide analysis. Here we demonstrate a novel and simple approach to detect shared regions of amino acid ions from tubulin polyglutamylated peptides in nanoLC-MS/MS. This involves two parallel in gel digestions with trypsin and subtilisin followed by mapping of di- and triglutamyl modifications of α- and β-tubulins using a routine proteomics assay. We present three levels of information: i) identification of proteomics MS/MS data, ii) description of internal fragment ion series common across digests, and iii) extracted ion chromatograms mapped relative to retention time standards for confirmation of relative hydrophobicity values. Our nanoLC assay positive ion ESI detects up to 3 conjugated glutamates in tubulins. We implemented an analytical column only bottom up approach that characterizes molecular features of polyglutamylated tubulins.
Collapse
Affiliation(s)
| | - Hang Gyeong Chin
- New England Biolabs, Ipswich, MA, 01938, USA; MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, 02215, USA
| | - Ulla Hansen
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, 02215, USA; Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | | | |
Collapse
|
12
|
Reduced TUBA1A Tubulin Causes Defects in Trafficking and Impaired Adult Motor Behavior. eNeuro 2020; 7:ENEURO.0045-20.2020. [PMID: 32184299 PMCID: PMC7218002 DOI: 10.1523/eneuro.0045-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Newly born neurons express high levels of TUBA1A α-tubulin to assemble microtubules for neurite extension and to provide tracks for intracellular transport. In the adult brain, Tuba1a expression decreases dramatically. A mouse that harbors a loss-of-function mutation in the gene encoding TUBA1A (Tuba1aND/+) allows us to ask whether TUBA1A is important for the function of mature neurons. α-Tubulin levels are about half of wild type in juvenile Tuba1aND/+ brains, but are close to normal in older animals. In postnatal day (P)0 cultured neurons, reduced TUBA1A allows for assembly of less microtubules in axons resulting in more pausing during organelle trafficking. While Tuba1aND/+ mouse behavior is indistinguishable from wild-type siblings at weaning, Tuba1aND/+ mice develop adult-onset ataxia. Neurons important for motor function in Tuba1aND/+ remain indistinguishable from wild-type with respect to morphology and number and display no evidence of axon degeneration. Tuba1aND/+ neuromuscular junction (NMJ) synapses are the same size as wild-type before the onset of ataxia, but are reduced in size in older animals. Together, these data indicate that the TUBA1A-rich microtubule tracks that are assembled during development are essential for mature neuron function and maintenance of synapses over time.
Collapse
|
13
|
Tubulin tails and their modifications regulate protein diffusion on microtubules. Proc Natl Acad Sci U S A 2020; 117:8876-8883. [PMID: 32245812 DOI: 10.1073/pnas.1914772117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are essential components of the eukaryotic cytoskeleton that serve as "highways" for intracellular trafficking. In addition to the well-known active transport of cargo by motor proteins, many MT-binding proteins seem to adopt diffusional motility as a transportation mechanism. However, because of the limited spatial resolution of current experimental techniques, the detailed mechanism of protein diffusion has not been elucidated. In particular, the precise role of tubulin tails and tail modifications in the diffusion process is unclear. Here, using coarse-grained molecular dynamics simulations validated against atomistic simulations, we explore the molecular mechanism of protein diffusion along MTs. We found that electrostatic interactions play a central role in protein diffusion; the disordered tubulin tails enhance affinity but slow down diffusion, and diffusion occurs in discrete steps. While diffusion along wild-type MT is performed in steps of dimeric tubulin, the removal of the tails results in a step of monomeric tubulin. We found that the energy barrier for diffusion is larger when diffusion on MTs is mediated primarily by the MT tails rather than the MT body. In addition, globular proteins (EB1 and PRC1) diffuse more slowly than an intrinsically disordered protein (Tau) on MTs. Finally, we found that polyglutamylation and polyglycylation of tubulin tails lead to slower protein diffusion along MTs, although polyglycylation leads to faster diffusion across MT protofilaments. Taken together, our results explain experimentally observed data and shed light on the roles played by disordered tubulin tails and tail modifications in the molecular mechanism of protein diffusion along MTs.
Collapse
|
14
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
15
|
De La Camara CMF, Cehajic-Kapetanovic J, MacLaren RE. RPGR gene therapy presents challenges in cloning the coding sequence. Expert Opin Biol Ther 2020; 20:63-71. [PMID: 31612744 PMCID: PMC7104355 DOI: 10.1080/14712598.2020.1680635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Currently, there are three Phase I/II clinical trials based on gene therapy ongoing to test different AAV.RPGR or deleted RPGR vectors on patients affected by X-linked retinitis pigmentosa. These three vectors differ in the adeno-associated viral (AAV) vector capsid used, and the coding sequences: two contain codon optimized versions of RPGR which give the full-length protein, whilst the third uses a wild-type sequence that contains a large deletion encoding part of the functional domain of the RPGR protein.Areas covered: This review approaches the different studies that have led to the initiation of three different clinical trials for RPGR related X-linked retinitis pigmentosa.Expert opinion: The development of a gene therapy vector to deliver a normal copy of the RPGR gene into the photoreceptors has presented a challenge for the scientific community. The instability of its sequence and the fact that its function is not well understood can lead to the production of a nonfunctional or deleterious protein for the human retina. Since the RPGR protein undergoes post-translational glutamylation in the protein domain that may be particularly affected by gene instability, a functional assay of glutamylation is essential to verify the correct coding sequence.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez De La Camara
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Jasmina Cehajic-Kapetanovic
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Robert E. MacLaren
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| |
Collapse
|
16
|
Cehajic Kapetanovic J, McClements ME, Martinez-Fernandez de la Camara C, MacLaren RE. Molecular Strategies for RPGR Gene Therapy. Genes (Basel) 2019; 10:genes10090674. [PMID: 31487940 PMCID: PMC6770968 DOI: 10.3390/genes10090674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 11/16/2022] Open
Abstract
Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) gene are the commonest cause of X-linked and recessive retinitis pigmentosa (RP), accounting for 10%-20% of all cases of RP. The phenotype is one of the most severe amongst all causes of RP, characteristic for its early onset and rapid progression to blindness in young people. At present there is no cure for RPGR-related retinal disease. Recently, however, there have been important advances in RPGR research from bench to bedside that increased our understanding of RPGR function and led to the development of potential therapies, including the progress of adeno-associated viral (AAV)-mediated gene replacement therapy into clinical trials. This manuscript discusses the advances in molecular research, which have connected the RPGR protein with an important post-translational modification, known as glutamylation, that is essential for its optimal function as a key regulator of photoreceptor ciliary transport. In addition, we review key pre-clinical research that addressed challenges encountered during development of therapeutic vectors caused by high infidelity of the RPGR genomic sequence. Finally, we discuss the structure of three current phase I/II clinical trials based on three AAV vectors and RPGR sequences and link the rationale behind the use of the different vectors back to the bench research that led to their development.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK. '
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK. '
| | | | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
He K, Ma X, Xu T, Li Y, Hodge A, Zhang Q, Torline J, Huang Y, Zhao J, Ling K, Hu J. Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun 2018; 9:3310. [PMID: 30120249 PMCID: PMC6098020 DOI: 10.1038/s41467-018-05867-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Tubulin polyglutamylation is a predominant axonemal post-translational modification. However, if and how axoneme polyglutamylation is essential for primary cilia and contribute to ciliopathies are unknown. Here, we report that Joubert syndrome protein ARL13B controls axoneme polyglutamylation, which is marginally required for cilia stability but essential for cilia signaling. ARL13B interacts with RAB11 effector FIP5 to promote cilia import of glutamylase TTLL5 and TTLL6. Hypoglutamylation caused by a deficient ARL13B-RAB11-FIP5 trafficking pathway shows no effect on ciliogenesis, but promotes cilia disassembly and, importantly, impairs cilia signaling by disrupting the proper anchoring of sensory receptors and trafficking of signaling molecules. Remarkably, depletion of deglutamylase CCP5, the predominant cilia deglutamylase, effectively restores hypoglutamylation-induced cilia defects. Our study reveals a paradigm that tubulin polyglutamylation is a major contributor for cilia signaling and suggests a potential therapeutic strategy by targeting polyglutamylation machinery to promote ciliary targeting of signaling machineries and correct signaling defects in ciliopathies.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tao Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Allen Hodge
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julia Torline
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA.
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Martinez-Fernandez De La Camara C, Nanda A, Salvetti AP, Fischer MD, MacLaren RE. Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opin Orphan Drugs 2018; 6:167-177. [PMID: 30057863 PMCID: PMC6059358 DOI: 10.1080/21678707.2018.1444476] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION X-linked retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene is the most common form of recessive RP. The phenotype is characterised by its severity and rapid disease progression. Gene therapy using adeno-associated viral vectors is currently the most promising therapeutic approach. However, the construction of a stable vector encoding the full-length RPGR transcript has previously proven to be a limiting step towards gene therapy clinical trials. Recently however, a codon optimised version of RPGR has been shown to increase the stability and fidelity of the sequence, conferring a therapeutic effect in murine and canine animal models. AREAS COVERED This manuscript reviews the natural history of X-linked retinitis pigmentosa and the research performed from the discovery of the causative gene, RPGR, to the preclinical testing of potential therapies that have led to the initiation of three clinical trials. EXPERT OPINION X-linked retinitis pigmentosa is an amenable disease to be treated by gene therapy. Codon optimisation has overcome the challenge of designing an RPGR vector without mutations, and with a therapeutic effect in different animal models. With the RPGR gene therapy clinical trials still in the early stages, the confirmation of the safety, tolerability and potency of the therapy is still ongoing.
Collapse
Affiliation(s)
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Anna Paola Salvetti
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Sacco Hospital, University of Milan, Milano, Italy
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Centre for Ophthalmology Tübingen, University Eye Hospital, Tübingen, Germany
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
19
|
Jenkins BV, Saunders HAJ, Record HL, Johnson-Schlitz DM, Wildonger J. Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 2017; 130:4120-4131. [PMID: 29122984 PMCID: PMC5769580 DOI: 10.1242/jcs.210203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Microtubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules. However, the cellular role of microtubule acetylation remains controversial. To resolve how microtubule acetylation might affect neuronal morphogenesis, we mutated endogenous α-tubulin in vivo using a new Drosophila strain that facilitates the rapid knock-in of designer αTub84B alleles (the predominant α-tubulin-encoding gene in flies). Leveraging our new strain, we found that microtubule acetylation, as well as polyglutamylation and (de)tyrosination, is not essential for survival. However, we found that dendrite branch refinement in sensory neurons relies on α-tubulin K40. Mutagenesis of K40 reveals moderate yet significant changes in dendritic lysosome transport, microtubule polymerization and Futsch protein distribution in dendrites but not in axons. Our studies point to an unappreciated role for α-tubulin K40 and acetylation in dendrite morphogenesis. While our results are consistent with the idea that acetylation tunes microtubule function within neurons, they also suggest there may be an acetylation-independent requirement for α-tubulin K40. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Neurons are enriched in post-translationally modified microtubules. Targeted mutagenesis of endogenous α-tubulin in flies reveals that dendrite branch refinement is altered by acetylation-blocking mutations.
Collapse
Affiliation(s)
- Brian V Jenkins
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet A J Saunders
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helena L Record
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
Aiken J, Buscaglia G, Bates EA, Moore JK. The α-Tubulin gene TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend. J Dev Biol 2017; 5. [PMID: 29057214 PMCID: PMC5648057 DOI: 10.3390/jdb5030008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules are dynamic cytoskeletal polymers that mediate numerous, essential functions such as axon and dendrite growth and neuron migration throughout brain development. In recent years, sequencing has revealed dominant mutations that disrupt the tubulin protein building blocks of microtubules. These tubulin mutations lead to a spectrum of devastating brain malformations, complex neurological and physical phenotypes, and even fatality. The most common tubulin gene mutated is the α-tubulin gene TUBA1A, which is the most prevalent α-tubulin gene expressed in post-mitotic neurons. The normal role of TUBA1A during neuronal maturation, and how mutations alter its function to produce the phenotypes observed in patients, remains unclear. This review synthesizes current knowledge of TUBA1A function and expression during brain development, and the brain malformations caused by mutations in TUBA1A.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-6198; Fax: +1-303-724-3420
| |
Collapse
|
21
|
Natarajan K, Gadadhar S, Souphron J, Magiera MM, Janke C. Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns. EMBO Rep 2017; 18:1013-1026. [PMID: 28483842 DOI: 10.15252/embr.201643751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications of tubulin currently emerge as key regulators of microtubule functions. Polyglutamylation generates a variety of modification patterns that are essential for controlling microtubule functions in different cell types and organelles, and deregulation of these patterns has been linked to ciliopathies, cancer and neurodegeneration. How the different glutamylating enzymes determine precise modification patterns has so far remained elusive. Using computational modelling, molecular dynamics simulations and mutational analyses we now show how the carboxy-terminal tails of tubulin bind into the active sites of glutamylases. Our models suggest that the glutamylation sites on α- and β-tubulins are determined by the positioning of the tails within the catalytic pocket. Moreover, we found that the binding modes of α- and β-tubulin tails are highly similar, implying that most enzymes could potentially modify both, α- and β-tubulin. This supports a model in which the binding of the enzymes to the entire microtubule lattice, but not the specificity of the C-terminal tubulin tails to their active sites, determines the catalytic specificities of glutamylases.
Collapse
Affiliation(s)
- Kathiresan Natarajan
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France .,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Judith Souphron
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Maria M Magiera
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France.,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| | - Carsten Janke
- Institut Curie, CNRS, UMR 3348, PSL Research University, Orsay, France .,CNRS, UMR 3348, Universite Paris Sud, Universite Paris-Saclay, Orsay, France
| |
Collapse
|