1
|
Camblor Blasco A, Devesa A, Nieto Roca L, Gómez-Talavera S, Lumpuy-Castillo J, Pello Lázaro AM, Llanos Jiménez L, Sánchez González J, Lorenzo Ó, Tuñón J, Ibáñez B, Aceña Á. Effect of Diflunisal in Patients with Transthyretin Cardiomyopathy: A Pilot Study. J Clin Med 2024; 13:5032. [PMID: 39274245 PMCID: PMC11396251 DOI: 10.3390/jcm13175032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Background: ATTR-CM is becoming more prevalent, and disease-modifying therapy has been investigated in recent years with promising results. Diflunisal has shown TTR-stabilizing properties assessed by biomarkers and echocardiography, but there are no trials addressing the evolution of morphological changes with CMR. Methods and Results: AMILCA-DIFLU is an exploratory pilot study prospective, single-center, non-randomized, open-label clinical trial. Patients diagnosed with ATTR-CM underwent clinical, functional, biochemical and imaging assessment before and one year after diflunisal therapy initiation. Of the twelve ATTR-CM patients included, only nine patients completed treatment and study protocol in 12 months. To increase the sample size, we included seven real-world patients with one year of diflunisal treatment. Among the group of patients who completed treatment, diflunisal therapy did not show improvement in cardiac disease status as assessed by many cardiac and inflammatory biomarkers, 6MWT and CMR parameters after one year of treatment. However, a non-significant trend towards stabilization of CMR parameters such as LVEF, ECV and T2 at one year was found. When comparing the group of patients who completed diflunisal therapy and those who did not, a significant decrease in the distance performed in the 6MWT was found in the group of patients who completed treatment at one year (-14 ± 81.8 vs. -173 ± 122.2; p = 0.032). Diflunisal was overall well tolerated, showing only a statistically significant worsening in renal function in the group of diflunisal-treatment patients with no clinical relevance or need for treatment discontinuation. Conclusions: In patients with ATTR-CM, treatment with diflunisal was overall well tolerated and tended to stabilize or slow down amyloid cardiac disease progression assessed by CMR parameters, cardiac and inflammatory biomarkers and functional capacity.
Collapse
Affiliation(s)
- Andrea Camblor Blasco
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Mount Sinai Fuster Heart Hospital, New York, NY 10029, USA
| | - Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Mount Sinai Fuster Heart Hospital, New York, NY 10029, USA
| | - Luis Nieto Roca
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Sandra Gómez-Talavera
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Ana María Pello Lázaro
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
| | - Lucía Llanos Jiménez
- Clinical Research Unit, Fundación Jiménez Díaz University Hospital, FJD Health Research Institute, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Jose Tuñón
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Borja Ibáñez
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Álvaro Aceña
- Department of Cardiology, IIS-Fundación Jiménez Díaz University Hospital-Quiron Salud, 28040 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Li Y, Tao L, Xin J, Dai Y, Chen X, Zou J, Wang R, Wang B, Liu Z. Development and experimental verification of a prognosis model for disulfidptosis-associated genes in HNSCC. Medicine (Baltimore) 2024; 103:e37308. [PMID: 38518012 PMCID: PMC10957022 DOI: 10.1097/md.0000000000037308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/24/2024] Open
Abstract
Disulfidptosis is a newly discovered cell death pattern that has been less studied in head and neck squamous carcinoma (HNSCC). Exploring the molecular features of different subtypes of HNSCC based on disulfidptosis-associated genes (DAGs) is important for HNSCC. In addition, immunotherapy plays a pivotal role in the treatment of HNSCC. Exploring the sensitivity of immunotherapies and developing predictive models is essential for HNSCC. We analyzed the expression and mutational status of DAGs in 790 HNSCC patients and correlated the dates with clinical prognosis. HNSCC patients were divided into 2 groups based on their DAG expression. The relationship between DAGs, risk genes, and the immune microenvironment was analyzed using the CIBERSORT algorithm. A disulfidptosis risk model was constructed based on 5 risk genes using the LASSO COX method. To facilitate the clinical applicability of the proposed risk model, we constructed column line plots and performed stem cell correlation analysis and antitumor drug sensitivity analysis. Two different disulfidptosis-associated clusters were identified using consistent unsupervised clustering analysis. Correlations between multilayer DAG alterations and clinical characteristics and prognosis were observed. Then, a well-performing disulfidptosis-associated risk model (DAG score) was developed to predict the prognosis of HNSCC patients. We divided patients into high-risk and low-risk groups based on the DAG score and found that patients in the low-risk group were more likely to survive than those in the high-risk group (P < .05). A high DAG score implies higher immune cell infiltration and increased mutational burden. Also, univariate and multivariate Cox regression analyses revealed that the DAG score was an independent prognostic predictor for patients with HNSCC. Subsequently, a highly accurate predictive model was developed to facilitate the clinical application of DAG scores, showing good predictive and calibration power. Overall, we present a comprehensive overview of the DAG profile in HNSCC and develop a new risk model for the therapeutic status and prognosis of patients with HNSCC. Our findings highlight the potential clinical significance of DAG and suggest that disulfidptosis may be a potential therapeutic target for patients with HNSCC.
Collapse
Affiliation(s)
- Yushen Li
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Lu Tao
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiajun Xin
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yifei Dai
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Xiantao Chen
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiatong Zou
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Bowei Wang
- The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| |
Collapse
|
4
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
5
|
Mantonico MV, De Leo F, Quilici G, Colley LS, De Marchis F, Crippa M, Mezzapelle R, Schulte T, Zucchelli C, Pastorello C, Carmeno C, Caprioglio F, Ricagno S, Giachin G, Ghitti M, Bianchi ME, Musco G. The acidic intrinsically disordered region of the inflammatory mediator HMGB1 mediates fuzzy interactions with CXCL12. Nat Commun 2024; 15:1201. [PMID: 38331917 PMCID: PMC10853541 DOI: 10.1038/s41467-024-45505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Chemokine heterodimers activate or dampen their cognate receptors during inflammation. The CXCL12 chemokine forms with the fully reduced (fr) alarmin HMGB1 a physiologically relevant heterocomplex (frHMGB1•CXCL12) that synergically promotes the inflammatory response elicited by the G-protein coupled receptor CXCR4. The molecular details of complex formation were still elusive. Here we show by an integrated structural approach that frHMGB1•CXCL12 is a fuzzy heterocomplex. Unlike previous assumptions, frHMGB1 and CXCL12 form a dynamic equimolar assembly, with structured and unstructured frHMGB1 regions recognizing the CXCL12 dimerization surface. We uncover an unexpected role of the acidic intrinsically disordered region (IDR) of HMGB1 in heterocomplex formation and its binding to CXCR4 on the cell surface. Our work shows that the interaction of frHMGB1 with CXCL12 diverges from the classical rigid heterophilic chemokines dimerization. Simultaneous interference with multiple interactions within frHMGB1•CXCL12 might offer pharmacological strategies against inflammatory conditions.
Collapse
Affiliation(s)
- Malisa Vittoria Mantonico
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Experimental Therapeutics Program, IFOM ETS - The AIRC Institute of Molecular Oncology and AIRC, Fondazione AIRC per la Ricerca sul Cancro ETS, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Liam Sean Colley
- HMGBiotech S.r.l., 20133, Milan, Italy
- School of Medicine and Surgery, Università Milano-Bicocca, 20126, Milan, Italy
| | - Francesco De Marchis
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Crippa
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rosanna Mezzapelle
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Pastorello
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Camilla Carmeno
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Caprioglio
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131, Padova, Italy
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Marco Emilio Bianchi
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
6
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Zhou G, Xie D, Fan R, Yang Z, Du J, Mai S, Xie L, Wang Q, Mai T, Han Y, Lai F. Comparison of Pulmonary and Extrapulmonary Models of Sepsis-Associated Acute Lung Injury. Physiol Res 2023; 72:741-752. [PMID: 38215061 PMCID: PMC10805253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/09/2023] [Indexed: 01/14/2024] Open
Abstract
To compare different rat models of sepsis at different time points, based on pulmonary or extrapulmonary injury mechanisms, to identify a model which is more stable and reproducible to cause sepsis-associated acute lung injury (ALI). Adult male Sprague-Dawley rats were subjected to (1) cecal ligation and puncture (CLP) with single (CLP1 group) or two repeated through-and-through punctures (CLP2 group); (2) tail vein injection with lipopolysaccharide (LPS) of 10mg/kg (IV-LPS10 group) or 20 mg/kg (IV-LPS20 group); (3) intratracheal instillation with LPS of 10mg/kg (IT-LPS10 group) or 20mg/kg (IT-LPS20 group). Each of the model groups had a sham group. 7-day survival rates of each group were observed (n=15 for each group). Moreover, three time points were set for additional experimental studying in each model group: 4 hours, 24 hours and 48 hours after modeling (every time point, n=8 for each group). Rats were sacrificed to collect BALF and lung tissue samples at different time points for detection of IL-6, TNF-alpha, total protein concentration in BALF and MPO activity, HMGB1 protein expression in lung tissues, as well as the histopathological changes of lung tissues. More than 50 % of the rats died within 7 days in each model group, except for the IT-LPS10 group. In contrast, the mortality rates in the two IV-LPS groups as well as the IT-LPS20 group were significantly higher than that in IT-LPS10 group. Rats received LPS by intratracheal instillation exhibited evident histopathological changes and inflammatory exudation in the lung, but there was no evidence of lung injury in CLP and IV-LPS groups. Rat model of intratracheal instillation with LPS proved to be a more stable and reproducible animal model to cause sepsis-associated ALI than the extrapulmonary models of sepsis.
Collapse
Affiliation(s)
- G Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou G, Xie D, Fan R, Yang Z, Du J, Mai S, Xie L, Wang Q, Mai T, Han Y, Lai F. Comparison of Pulmonary and Extrapulmonary Models of Sepsis-Associated Acute Lung Injury. Physiol Res 2023; 72:741-752. [PMID: 38215061 PMCID: PMC10805253 DOI: 10.33549/physiolres.935123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/09/2023] [Indexed: 11/01/2024] Open
Abstract
To compare different rat models of sepsis at different time points, based on pulmonary or extrapulmonary injury mechanisms, to identify a model which is more stable and reproducible to cause sepsis-associated acute lung injury (ALI). Adult male Sprague-Dawley rats were subjected to (1) cecal ligation and puncture (CLP) with single (CLP1 group) or two repeated through-and-through punctures (CLP2 group); (2) tail vein injection with lipopolysaccharide (LPS) of 10mg/kg (IV-LPS10 group) or 20 mg/kg (IV-LPS20 group); (3) intratracheal instillation with LPS of 10mg/kg (IT-LPS10 group) or 20mg/kg (IT-LPS20 group). Each of the model groups had a sham group. 7-day survival rates of each group were observed (n=15 for each group). Moreover, three time points were set for additional experimental studying in each model group: 4 hours, 24 hours and 48 hours after modeling (every time point, n=8 for each group). Rats were sacrificed to collect BALF and lung tissue samples at different time points for detection of IL-6, TNF-alpha, total protein concentration in BALF and MPO activity, HMGB1 protein expression in lung tissues, as well as the histopathological changes of lung tissues. More than 50 % of the rats died within 7 days in each model group, except for the IT-LPS10 group. In contrast, the mortality rates in the two IV-LPS groups as well as the IT-LPS20 group were significantly higher than that in IT-LPS10 group. Rats received LPS by intratracheal instillation exhibited evident histopathological changes and inflammatory exudation in the lung, but there was no evidence of lung injury in CLP and IV-LPS groups. Rat model of intratracheal instillation with LPS proved to be a more stable and reproducible animal model to cause sepsis-associated ALI than the extrapulmonary models of sepsis.
Collapse
Affiliation(s)
- G Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Du S, Zhang X, Jia Y, Peng P, Kong Q, Jiang S, Li Y, Li C, Ding Z, Liu L. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics 2023; 13:3856-3871. [PMID: 37441587 PMCID: PMC10334822 DOI: 10.7150/thno.82607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Liver ischemia-reperfusion (LI/R) injury is characterized by two interconnected phases: local ischemia that causes hepatic cell damage to release damage-associated molecular pattern (DAMPs), and DAMPs that recruit immune cells to elicit inflammatory cascade for further injury of hepatocytes. High-mobility group box 1 (HMGB1) is a representative DAMP. Studies in macrophages demonstrated that HMGB1 is secreted after lactylation during sepsis. However, whether lactylation mediates HMGB1 secretion from hepatocytes after LI/R is known. Heat shock protein A12A (HSPA12A) is an atypical member of HSP70 family. Methods: Gene expression was examined by microarray analysis and immunoblotting. The hepatic injury was analyzed using released ALT and AST activities assays. Hepatic macrophage chemotaxis was evaluated by Transwell chemotaxis assays. Inflammatory mediators were evaluated by immunoblotting. HMGB1 secretion was examined in exosomes or serum. HMGB1 lactylation was determined using immunoprecipitation and immunoblotting. Results: Here, we report that LI/R decreased HSPA12A expression in hepatocytes, while hepatocyte-specific HSPA12A overexpression attenuated LI/R-induced hepatic dysfunction and mortality of mice. We also noticed that hepatocyte HSPA12A overexpression suppressed macrophage chemotaxis to LI/R-exposed livers in vivo and to hypoxia/reoxygenation (H/R)-exposed hepatocytes in vitro. The LI/R-increased serum HMGB1 levels of mice and the H/R-increased HMGB1 lactylation and secretion levels of hepatocytes were also inhibited by hepatocyte HSPA12A overexpression. By contrast, HSPA12A knockout in hepatocytes promoted not only H/R-induced HMGB1 lactylation and secretion of hepatocytes but also the effects of H/R-hepatocytes on macrophage chemotaxis and inflammatory activation, while all these deleterious effects of HSPA12A knockout were reversed following hepatocyte HMGB1 knockdown. Further molecular analyses showed that HSPA12A overexpression reduced glycolysis-generated lactate, thus decreasing HMGB1 lactylation and secretion from hepatocytes, thereby inhibiting not only macrophage chemotaxis but also the subsequent inflammatory cascade, which ultimately protecting against LI/R injury. Conclusion: Taken together, these findings suggest that hepatocyte HSPA12A is a novel regulator that protects livers from LI/R injury by suppressing glycolysis-mediated HMGB1 lactylation and secretion from hepatocytes to inhibit macrophage chemotaxis and inflammatory activation. Therefore, targeting hepatocyte HSPA12A may have therapeutic potential in the management of LI/R injury in patients.
Collapse
Affiliation(s)
- Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yunxiao Jia
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peipei Peng
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Surong Jiang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Blanchet X, Weber C, von Hundelshausen P. Chemokine Heteromers and Their Impact on Cellular Function-A Conceptual Framework. Int J Mol Sci 2023; 24:10925. [PMID: 37446102 DOI: 10.3390/ijms241310925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoattractant cytokines or chemokines are proteins involved in numerous biological activities. Their essential role consists of the formation of gradient and (immune) cell recruitment. Chemokine biology and its related signaling system is more complex than simple ligand-receptor interactions. Beside interactions with their cognate and/or atypical chemokine receptors, and glycosaminoglycans (GAGs), chemokines form complexes with themselves as homo-oligomers, heteromers and also with other soluble effector proteins, including the atypical chemokine MIF, carbohydrate-binding proteins (galectins), damage-associated molecular patterns (DAMPs) or with chemokine-binding proteins such as evasins. Likewise, nucleic acids have been described as binding targets for the tetrameric form of CXCL4. The dynamic balance between monomeric and dimeric structures, as well as interactions with GAGs, modulate the concentrations of free chemokines available along with the nature of the gradient. Dimerization of chemokines changes the canonical monomeric fold into two main dimeric structures, namely CC- and CXC-type dimers. Recent studies highlighted that chemokine dimer formation is a frequent event that could occur under pathophysiological conditions. The structural changes dictated by chemokine dimerization confer additional biological activities, e.g., biased signaling. The present review will provide a short overview of the known functionality of chemokines together with the consequences of the interactions engaged by the chemokines with other proteins. Finally, we will present potential therapeutic tools targeting the chemokine multimeric structures that could modulate their biological functions.
Collapse
Affiliation(s)
- Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| |
Collapse
|
11
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
12
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Chen S, Tang W, Yu G, Tang Z, Liu E. CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection. J Microbiol 2023; 61:461-469. [PMID: 36781697 DOI: 10.1007/s12275-023-00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 02/15/2023]
Abstract
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.
Collapse
Affiliation(s)
- Sisi Chen
- Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Wei Tang
- Respiratory Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610073, People's Republic of China
| | - Guangyuan Yu
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Zhengzhen Tang
- Department of Pediatrics, The Third Affiliated Hospital Medical University (the First People's Hospital of Zunyi), Zunyi, 563000, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
14
|
Su T, Li C, Zhang Y, Yue L, Chen Y, Qian X, Shi S. Upregulation of HMGB1 promotes vascular dysfunction in the soft palate of patients with obstructive sleep apnea via the TLR4/NF-κB/VEGF pathway. FEBS Open Bio 2023; 13:246-256. [PMID: 36479843 PMCID: PMC9900083 DOI: 10.1002/2211-5463.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by the collapse of the soft palate in the upper airway, resulting in chronic intermittent hypoxia during sleep. Therefore, an understanding of the molecular mechanisms underlying pathophysiological dysfunction of the soft palate in OSA is necessary for the development of new therapeutic strategies. In the present study, we observed that high mobility group protein box 1 (HMGB1) was released by a large infiltration of macrophages in the soft palate of OSA patients. The toll-like receptor 4/nuclear factor kappa B pathway was observed to be activated by the release of HMGB1, and this was accompanied by an increased expression of pro-inflammatory factors, including tumor necrosis factor-α and interleukin-6. Importantly, increased expression of toll-like receptor 4 was observed in endothelial cells, contributing to upregulation of the angiogenesis-related factors vascular endothelial-derived growth factor and matrix metalloproteinase 9. Moreover, we confirmed the effect of the HMGB1-mediated toll-like receptor 4/nuclear factor kappa B pathway on cell proliferation and angiogenesis in an in vitro cell model of human umbilical vein endothelial cells. We conclude that HMGB1 may be a potential therapeutic target for preventing angiogenesis and pathology in OSA.
Collapse
Affiliation(s)
- Tiantian Su
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Cong Li
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yu Zhang
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Lei Yue
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yuqin Chen
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Xiaoqiong Qian
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Song Shi
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
15
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
16
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
17
|
De Leo F, Rossi A, De Marchis F, Cigana C, Melessike M, Quilici G, De Fino I, Mantonico MV, Fabris C, Bragonzi A, Bianchi ME, Musco G. Pamoic acid is an inhibitor of HMGB1·CXCL12 elicited chemotaxis and reduces inflammation in murine models of Pseudomonas aeruginosa pneumonia. Mol Med 2022; 28:108. [PMID: 36071400 PMCID: PMC9449960 DOI: 10.1186/s10020-022-00535-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND High-mobility group box 1 protein (HMGB1) is an ubiquitous nuclear protein that once released in the extracellular space acts as a Damage Associated Molecular Pattern and promotes inflammation. HMGB1 is significantly elevated during Pseudomonas aeruginosa infections and has a clinical relevance in respiratory diseases such as Cystic Fibrosis (CF). Salicylates are HMGB1 inhibitors. To address pharmacological inhibition of HMGB1 with small molecules, we explored the therapeutic potential of pamoic acid (PAM), a salicylate with limited ability to cross epithelial barriers. METHODS PAM binding to HMGB1 and CXCL12 was tested by Nuclear Magnetic Resonance Spectroscopy using chemical shift perturbation methods, and inhibition of HMGB1·CXCL12-dependent chemotaxis was investigated by cell migration experiments. Aerosol delivery of PAM, with single or repeated administrations, was tested in murine models of acute and chronic P. aeruginosa pulmonary infection in C57Bl/6NCrlBR mice. PAM efficacy was evaluated by read-outs including weight loss, bacterial load and inflammatory response in lung and bronco-alveolar lavage fluid. RESULTS Our data and three-dimensional models show that PAM is a direct ligand of both HMGB1 and CXCL12. We also showed that PAM is able to interfere with heterocomplex formation and the related chemotaxis in vitro. Importantly, PAM treatment by aerosol was effective in reducing acute and chronic airway murine inflammation and damage induced by P. aeruginosa. The results indicated that PAM reduces leukocyte recruitment in the airways, in particular neutrophils, suggesting an impaired in vivo chemotaxis. This was associated with decreased myeloperoxidase and neutrophil elastase levels. Modestly increased bacterial burdens were recorded with single administration of PAM in acute infection; however, repeated administration in chronic infection did not affect bacterial burdens, indicating that the interference of PAM with the immune system has a limited risk of pulmonary exacerbation. CONCLUSIONS This work established the efficacy of treating inflammation in chronic respiratory diseases, including bacterial infections, by topical delivery in the lung of PAM, an inhibitor of HMGB1.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Alice Rossi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Medede Melessike
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Malisa Vittoria Mantonico
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Chantal Fabris
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Marco Emilio Bianchi
- School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy. .,Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Zhao J, Li Z, Puri R, Liu K, Nunez I, Chen L, Zheng S. Molecular profiling of individual FDA-approved clinical drugs identifies modulators of nonsense-mediated mRNA decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:304-318. [PMID: 35024243 PMCID: PMC8718828 DOI: 10.1016/j.omtn.2021.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) degrades transcripts with premature stop codons. Given the prevalence of nonsense single nucleotide polymorphisms (SNPs) in the general population, it is urgent to catalog the effects of clinically approved drugs on NMD activity: any interference could alter the expression of nonsense SNPs, inadvertently inducing adverse effects. This risk is higher for patients with disease-causing nonsense mutations or an illness linked to dysregulated nonsense transcripts. On the other hand, hundreds of disorders are affected by cellular NMD efficiency and may benefit from NMD-modulatory drugs. Here, we profiled individual FDA-approved drugs for their impact on cellular NMD efficiency using a sensitive method that directly probes multiple endogenous NMD targets for a robust readout of NMD modulation. We found most FDA-approved drugs cause unremarkable effects on NMD, while many elicit clear transcriptional responses. Besides several potential mild NMD modulators, the anticancer drug homoharringtonine (HHT or omacetaxine mepesuccinate) consistently upregulates various endogenous NMD substrates in a dose-dependent manner in multiple cell types. We further showed translation inhibition mediates HHT's NMD effect. In summary, many FDA drugs induce transcriptional changes, and a few impact global NMD, and direct measurement of endogenous NMD substrate expression is robust to monitor cellular NMD.
Collapse
Affiliation(s)
- Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Ruchira Puri
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Kelvin Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Israel Nunez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| |
Collapse
|
19
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
20
|
Sgrignani J, Cecchinato V, Fassi EMA, D'Agostino G, Garofalo M, Danelon G, Pedotti M, Simonelli L, Varani L, Grazioso G, Uguccioni M, Cavalli A. Systematic Development of Peptide Inhibitors Targeting the CXCL12/HMGB1 Interaction. J Med Chem 2021; 64:13439-13450. [PMID: 34510899 DOI: 10.1021/acs.jmedchem.1c00852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During inflammatory reactions, the production and release of chemotactic factors guide the recruitment of selective leukocyte subpopulations. The alarmin HMGB1 and the chemokine CXCL12, both released in the microenvironment, can form a heterocomplex, which exclusively acts on the chemokine receptor CXCR4, enhancing cell migration, and in some pathological conditions such as rheumatoid arthritis exacerbates the immune response. An excessive cell influx at the inflammatory site can be diminished by disrupting the heterocomplex. Here, we report the computationally driven identification of the first peptide (HBP08) binding HMGB1 and selectively inhibiting the activity of the CXCL12/HMGB1 heterocomplex. Furthermore, HBP08 binds HMGB1 with the highest affinity reported so far (Kd of 0.8 ± 0.4 μM). The identification of this peptide represents an important step toward the development of innovative pharmacological tools for the treatment of severe chronic inflammatory conditions characterized by an uncontrolled immune response.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Circulating HMGB1 is elevated in veterans with Gulf War Illness and triggers the persistent pro-inflammatory microglia phenotype in male C57Bl/6J mice. Transl Psychiatry 2021; 11:390. [PMID: 34253711 PMCID: PMC8275600 DOI: 10.1038/s41398-021-01517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved. Ex vivo serum analysis revealed an augmented pro-inflammatory response to LPS when microglia cells were cultured with the 7-day LPS serum, indicating the presence of bioactive circulating factors that prime the microglial pro-inflammatory response. Elevated circulating HMGB1 levels were identified in the mouse serum 7 days after LPS administration and in the serum of veterans with GWI. Tail vein injection of rHMGB1 in male C57Bl/6 J mice elevated TNFα mRNA levels in the liver, hippocampus, and cortex, demonstrating HMGB1-induced peripheral and CNS effects. Microglia isolated at 7 days after LPS injection revealed a unique transcriptional profile of 17 genes when compared to the acute 3 H LPS response, 6 of which were also upregulated in the midbrain by rHMGB1, highlighting a distinct signature of the persistent pro-inflammatory microglia phenotype. These findings indicate that circulating HMGB1 is elevated in GWI, regulates the microglial neuroimmune response, and drives chronic neuroinflammation that persists long after the initial instigating peripheral stimulus.
Collapse
|
22
|
Troisi M, Klein M, Smith AC, Moorhead G, Kebede Y, Huang R, Parker E, Herrada H, Wade E, Smith S, Broome P, Halsell J, Estevez L, Bell AJ. Conformation and protein interactions of intramolecular DNA and phosphorothioate four-way junctions. Exp Biol Med (Maywood) 2020; 246:707-717. [PMID: 33342281 DOI: 10.1177/1535370220973970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The objectives of this study are to evaluate the structure and protein recognition features of branched DNA four-way junctions in an effort to explore the therapeutic potential of these molecules. The classic immobile DNA 4WJ, J1, is used as a matrix to design novel intramolecular junctions including natural and phosphorothioate bonds. Here we have inserted H2-type mini-hairpins into the helical termini of the arms of J1 to generate four novel intramolecular four-way junctions. Hairpins are inserted to reduce end fraying and effectively eliminate potential nuclease binding sites. We compare the structure and protein recognition features of J1 with four intramolecular four-way junctions: i-J1, i-J1(PS1), i-J1(PS2) and i-J1(PS3). Circular dichroism studies suggest that the secondary structure of each intramolecular 4WJ is composed predominantly of B-form helices. Thermal unfolding studies indicate that intramolecular four-way junctions are significantly more stable than J1. The Tm values of the hairpin four-way junctions are 25.2° to 32.2°C higher than the control, J1. With respect to protein recognition, gel shift assays reveal that the DNA-binding proteins HMGBb1 and HMGB1 bind the hairpin four-way junctions with affinity levels similar to control, J1. To evaluate nuclease resistance, four-way junctions are incubated with DNase I, exonuclease III (Exo III) and T5 exonuclease (T5 Exo). The enzymes probe nucleic acid cleavage that occurs non-specifically (DNase I) and in a 5'→3' (T5 Exo) and 3'→5' direction (Exo III). The nuclease digestion assays clearly show that the intramolecular four-way junctions possess significantly higher nuclease resistance than the control, J1.
Collapse
Affiliation(s)
- Maria Troisi
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Mitchell Klein
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Andrew C Smith
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Gaston Moorhead
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Yonatan Kebede
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Raymond Huang
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Elliott Parker
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Hector Herrada
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Elizabeth Wade
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Samara Smith
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Payson Broome
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Jonah Halsell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Louis Estevez
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Anthony J Bell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| |
Collapse
|
23
|
De Leo F, Quilici G, De Marchis F, Mantonico MV, Bianchi ME, Musco G. Discovery of 5,5'-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Front Chem 2020; 8:598710. [PMID: 33324614 PMCID: PMC7726319 DOI: 10.3389/fchem.2020.598710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is a key molecule that both triggers and sustains inflammation following infection or injury, and is involved in a large number of pathologies, including cancer. HMGB1 participates in the recruitment of inflammatory cells, forming a heterocomplex with the chemokine CXCL12 (HMGB1·CXCL12), thereby activating the G-protein coupled receptor CXCR4. Thus, identification of molecules that disrupt this heterocomplex can offer novel pharmacological opportunities to treat inflammation-related diseases. To identify new HMGB1·CXCL12 inhibitors we have performed a study on the ligandability of the single HMG boxes of HMGB1 followed by a virtual screening campaign on both HMG boxes using Zbc Drugs and three different docking programs (Glide, AutoDock Vina, and AutoDock 4.2.6). The best poses in terms of scoring functions, visual inspection, and predicted ADME properties were further filtered according to a pharmacophore model based on known HMGB1 binders and clustered according to their structures. Eight compounds representative of the clusters were tested for HMGB1 binding by NMR. We identified 5,5'-methylenedi-2,3-cresotic acid (2a) as a binder of both HMGB1 and CXCL12; 2a also targets the HMGB1·CXCL12 heterocomplex. In cell migration assays 2a inhibited the chemotactic activity of HMGB1·CXCL12 with IC50 in the subnanomolar range, the best documented up to now. These results pave the way for future structure activity relationship studies to optimize the pharmacological targeting of HMGB1·CXCL12 for anti-inflammatory purposes.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giacomo Quilici
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco De Marchis
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Malisa Vittoria Mantonico
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Emilio Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
24
|
Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, Carbone M, Yang H. HMGB1 as a therapeutic target in disease. J Cell Physiol 2020; 236:3406-3419. [PMID: 33107103 DOI: 10.1002/jcp.30125] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
Abstract
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Jiaming Xue
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Joelle S Suarez
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Michael Minaai
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Shuangjing Li
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.,Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Giovanni Gaudino
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York, USA
| | - Michele Carbone
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Haining Yang
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
25
|
Lan J, Luo H, Wu R, Wang J, Zhou B, Zhang Y, Jiang Y, Xu J. Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2020; 40:2922-2940. [PMID: 32998518 DOI: 10.1161/atvbaha.120.315151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In patients with peripheral artery disease, blockages in arterioles <1 mm cannot be treated surgically, and there are currently few effective medicines. Studies have shown that inflammation in ischemic tissue is related to injury recovery and angiogenesis, but insufficient attention has been paid to this area. Studies have suggested that HMGB1 (high mobility group protein 1), which is released by ischemic tissue, promotes angiogenesis, but the mechanism is not entirely clear. In this study, we tested the internalization of HMGB1 in endothelial cells and investigated a novel proangiogenic pathway. Approach and Results: Using green fluorescent protein-tagged HMGB1 to stimulate endothelial cells, we demonstrated HMGB1 internalization via dynamin and RAGE (receptor for advanced glycation end products)-dependent signaling. Using a fluorescence assay, we detected internalized protein fusion to lysosomes, followed by activation of CatB (cathepsin B) and CatL (cathepsin L). The latter promoted the release of VEGF (vascular endothelial growth factor)-A and endoglin and upregulated the capacities of cell migration, proliferation, and tube formation in endothelial cells. We identified that the cytokine-induced fragment-a key functional domain in HMGB1-mediates the internalization and angiogenic function of HMGB1. We further confirmed that HMGB1 internalization also occurs in vivo in endothelial cells and promotes angiogenesis in mouse femoral artery ligation. CONCLUSIONS In this study, we identified a novel pathway of HMGB1 internalization-induced angiogenesis in endothelial cells. This finding sheds light on the regulatory role of inflammatory factors in angiogenesis through cell internalization and opens a new door to understand the relationship between inflammation and angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Jiaoli Lan
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rong Wu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Biying Zhou
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yun Zhang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failured Research, Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000Res 2020; 9:1166. [PMID: 33204411 PMCID: PMC7610171 DOI: 10.12688/f1000research.26359.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 01/18/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan H. Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
27
|
Bianchi ME, Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front Immunol 2020; 11:2109. [PMID: 32983169 PMCID: PMC7484992 DOI: 10.3389/fimmu.2020.02109] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic cells. This review focuses on recent reports pointing to its pivotal role in tissue regeneration and stem cell activation, and discusses the connection to the known role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways. Moreover, cell migration and cell proliferation appear to be downstream of the same signaling pathways. A deeper understanding of the complex signaling originating from CXCR4 is needed to exploit the opportunities to repair damaged organs safely and effectively.
Collapse
Affiliation(s)
- Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Ferrara M, Chialli G, Ferreira LM, Ruggieri E, Careccia G, Preti A, Piccirillo R, Bianchi ME, Sitia G, Venereau E. Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions. Front Immunol 2020; 11:1122. [PMID: 32670275 PMCID: PMC7326777 DOI: 10.3389/fimmu.2020.01122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Acute inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens or cell damage, and is essential for immune defense and proper healing. However, unresolved inflammation can lead to chronic disorders, including cancer and fibrosis. The High Mobility Group Box 1 (HMGB1) protein is a Damage-Associated Molecular Pattern (DAMP) molecule that orchestrates key events in inflammation by switching among mutually exclusive redox states. Fully reduced HMGB1 (frHMGB1) supports immune cell recruitment and tissue regeneration, while the isoform containing a disulphide bond (dsHMGB1) promotes secretion of inflammatory mediators by immune cells. Although it has been suggested that the tissue itself determines the redox state of the extracellular space and of released HMGB1, the dynamics of HMGB1 oxidation in health and disease are unknown. In the present work, we analyzed the expression of HMGB1 redox isoforms in different inflammatory conditions in skeletal muscle, from acute injury to muscle wasting, in tumor microenvironment, in spleen, and in liver after drug intoxication. Our results reveal that the redox modulation of HMGB1 is tissue-specific, with high expression of dsHMGB1 in normal spleen and liver and very low in muscle, where it appears after acute damage. Similarly, dsHMGB1 is highly expressed in the tumor microenvironment while it is absent in cachectic muscles from the same tumor-bearing mice. These findings emphasize the accurate and dynamic regulation of HMGB1 redox state, with the presence of dsHMGB1 tightly associated with leukocyte infiltration. Accordingly, we identified circulating, infiltrating, and resident leukocytes as reservoirs and transporters of dsHMGB1 in tissue and tumor microenvironment, demonstrating that the redox state of HMGB1 is controlled at both tissue and cell levels. Overall, our data point out that HMGB1 oxidation is a timely and spatially regulated process in physiological and pathological conditions. This precise modulation might play key roles to finetune inflammatory and regenerative processes.
Collapse
Affiliation(s)
- Michele Ferrara
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ginevra Chialli
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Ruggieri
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgia Careccia
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Marco Emilio Bianchi
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
29
|
Han Y, Yang L, Liu X, Feng Y, Pang Z, Lin Y. HMGB1/CXCL12-Mediated Immunity and Th17 Cells Might Underlie Highly Suspected Autoimmune Epilepsy in Elderly Individuals. Neuropsychiatr Dis Treat 2020; 16:1285-1293. [PMID: 32547032 PMCID: PMC7245462 DOI: 10.2147/ndt.s242766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Late-onset epilepsy due to autoimmune dysfunction has been reported. However, definitive diagnosis requires positive antibody results. As a result, patients with negative antibody results, but presenting with classical manifestation of autoimmune epilepsy, may be managed as suspected cases. In this study, we aim to isolate and profile the concentration of cytokines/chemokines in the cerebrospinal fluid (CSF) and the serum to ascertain if they could act as alternative diagnostic biomarkers. PATIENTS AND METHODS Twenty patients aged ≥50 years were considered in this study. Ten patients were diagnosed with suspected autoimmune epilepsy (sAE) based on clinic manifestation, electroencephalogram, magnetic resonance imaging, and with negative antibody results of the serum and the CSF. The equivalent control group exhibited neurological disorders due to non-inflammatory pathologies. Serum and CSF were analyzed for cytokines/chemokines concentration, including interleukin (IL)-6, IL-10, IL-17, chemokine (C-X-C motif) ligand (CXCL)12 and CXCL13, as well as high-mobility group box protein 1 (HMGB1) and B cell activation factor (BAFF)). RESULTS The CSF levels of IL-6, IL-17, HMGB1, and CXCL12 were significantly higher in the sAE group than in the control group. There was no difference in the CSF levels of IL-10, CXCL13 and BAFF. The serum levels of HMGB1 and CXCL12 were elevated in the sAE group compared with the control group, and there was no statistical difference in the serum levels of IL-6, IL-10, IL-17, CXCL13, and BAFF between the two groups. CONCLUSION Our study shows that cytokines/chemokines may act as alternative biomarkers for diagnosis of sAE. The activation of both HMGB1/CXCL12-mediated immunity and T helper cells 17 (Th17) cells may be playing a central role in the pathogenesis of sAE. We suggest that cytokines/chemokines be treated as adjuvant biomarkers, instead of solely relying on antibody screening test. However, a larger cohort in a prospective approach is required to validate our findings.
Collapse
Affiliation(s)
- Yuxiang Han
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| | - Liling Yang
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| | - Xiaoyun Liu
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| | - Yabo Feng
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| | - Zaiying Pang
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| | - Youting Lin
- Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, People's Republic of China
| |
Collapse
|
30
|
Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019; 17:886-894. [PMID: 31333815 PMCID: PMC6617219 DOI: 10.1016/j.csbj.2019.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.
Collapse
Key Words
- CXCL12
- CXCL12, C-X-C motif chemokine 12
- CXCR4, C-X-C chemokine receptor type 4
- Conformational ensemble
- HMGB1
- HMGB1, High-mobility Group Box 1
- MD, Molecular dynamics
- Molecular dynamics
- Protein-protein docking
- RMSD, Root mean square deviation
- RoG, Radius of gyration
- SASA, Solvent accessible surface area
- TLR2 or TLR4, Toll-like Receptor 2 or 4
- ds-HMGB1, Disulfide High-mobility Group Box 1
- fr-HMGB1, Full reduced High-mobility Group Box 1
Collapse
Affiliation(s)
- Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,University of Lausanne (UNIL), CH-1015, Lausanne, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Humanitas University, Department of Biomedical Sciences, 20090, Pieve Emanuele, Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
31
|
Mendonça Gorgulho C, Murthy P, Liotta L, Espina V, Lotze MT. Different measures of HMGB1 location in cancer immunology. Methods Enzymol 2019; 629:195-217. [DOI: 10.1016/bs.mie.2019.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|