1
|
Niwa S, Watanabe T, Chiba K. The FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins. J Cell Sci 2024; 137:jcs262017. [PMID: 39239883 DOI: 10.1242/jcs.262017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
KIF1A/UNC-104 proteins, which are members of the kinesin superfamily of motor proteins, play a pivotal role in the axonal transport of synaptic vesicles and their precursors. Drosophila melanogaster UNC-104 (DmUNC-104) is a relatively recently discovered Drosophila kinesin. Although some point mutations that disrupt synapse formation have been identified, the biochemical properties of the DmUNC-104 protein have not been investigated. Here, we prepared recombinant full-length DmUNC-104 protein and determined its biochemical features. We analyzed the effect of a previously identified missense mutation in the forkhead-associated (FHA) domain, called bristly (bris). The bris mutation strongly promoted the dimerization of DmUNC-104 protein, whereas wild-type DmUNC-104 was a mixture of monomers and dimers. We further tested the G618R mutation near the FHA domain, which was previously shown to disrupt the autoinhibition of Caenorhabditis elegans UNC-104. The biochemical properties of the G618R mutant recapitulated those of the bris mutant. Finally, we found that disease-associated mutations also promote the dimerization of DmUNC-104. Collectively, our results suggest that the FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins, and that abnormal dimerization of KIF1A might be linked to human diseases.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taisei Watanabe
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
2
|
Iguchi R, Kita T, Watanabe T, Chiba K, Niwa S. Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics. J Cell Sci 2024; 137:jcs261783. [PMID: 39279507 DOI: 10.1242/jcs.261783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.
Collapse
Affiliation(s)
- Rei Iguchi
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tomoki Kita
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taisei Watanabe
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| |
Collapse
|
3
|
Cozzi M, Magri S, Tedesco B, Patelli G, Ferrari V, Casarotto E, Chierichetti M, Pramaggiore P, Cornaggia L, Piccolella M, Galbiati M, Rusmini P, Crippa V, Mandrioli J, Pareyson D, Pisciotta C, D'Arrigo S, Ratti A, Nanetti L, Mariotti C, Sarto E, Pensato V, Gellera C, Di Bella D, Cristofani RM, Taroni F, Poletti A. Altered molecular and cellular mechanisms in KIF5A-associated neurodegenerative or neurodevelopmental disorders. Cell Death Dis 2024; 15:692. [PMID: 39333504 PMCID: PMC11437142 DOI: 10.1038/s41419-024-07096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Mutations targeting distinct domains of the neuron-specific kinesin KIF5A associate with different neurodegenerative/neurodevelopmental disorders, but the molecular bases of this clinical heterogeneity are unknown. We characterised five key mutants covering the whole spectrum of KIF5A-related phenotypes: spastic paraplegia (SPG, R17Q and R280C), Charcot-Marie-Tooth disease (CMT, R864*), amyotrophic lateral sclerosis (ALS, N999Vfs*40), and neonatal intractable myoclonus (NEIMY, C975Vfs*73) KIF5A mutants. CMT-R864*-KIF5A and ALS-N999Vfs*40-KIF5A showed impaired autoinhibition and peripheral localisation accompanied by altered mitochondrial distribution, suggesting transport competence disruption. ALS-N999Vfs*40-KIF5A formed SQSTM1/p62-positive inclusions sequestering WT-KIF5A, indicating a gain of toxic function. SPG-R17Q-KIF5A and ALS-N999Vfs*40-KIF5A evidenced a shorter half-life compared to WT-KIF5A, and proteasomal blockage determined their accumulation into detergent-insoluble inclusions. Interestingly, SPG-R280C-KIF5A and ALS-N999Vfs*40-KIF5A both competed for degradation with proteasomal substrates. Finally, NEIMY-C975Vfs*73-KIF5A displayed a similar, but more severe aberrant behaviour compared to ALS-N999Vfs*40-KIF5A; these two mutants share an abnormal tail but cause disorders on the opposite end of KIF5A-linked phenotypic spectrum. Thus, our observations support the pathogenicity of novel KIF5A mutants, highlight abnormalities of recurrent variants, and demonstrate that both unique and shared mechanisms underpin KIF5A-related diseases.
Collapse
Affiliation(s)
- Marta Cozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Barbara Tedesco
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Guglielmo Patelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Veronica Ferrari
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Casarotto
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marta Chierichetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Pramaggiore
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Laura Cornaggia
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Piccolella
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Mariarita Galbiati
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Rusmini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Valeria Crippa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Centre for Neuroscience and Neurotechnology (CfNN), 41125, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054, Segrate, Italy
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Riccardo M Cristofani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
4
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
5
|
Guerra San Juan I, Brunner J, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611684. [PMID: 39314491 PMCID: PMC11418931 DOI: 10.1101/2024.09.06.611684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by KIF5A mutations. We generated KIF5A null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints in vitro. The absence of KIF5A resulted in reduced neurite complexity in young motor neurons (DIV14) and significant defects in axonal regeneration capacity at all developmental stages. KIF5A loss did not affect neurofilament transport but resulted in decreased mitochondria motility and anterograde speed at DIV42. More prominently, KIF5A depletion strongly reduced anterograde transport of SFPQ-associated RNA granules in DIV42 motor neuron axons. We conclude that KIF5A most prominently functions in human motor neurons to promote axonal regrowth after injury as well as to anterogradely transport mitochondria and, to a larger extent, SFPQ-associated RNA granules in a time-dependent manner.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jessie Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Layalle S, Aimond F, Brugioti V, Guissart C, Raoul C, Soustelle L. The ALS-associated KIF5A P986L variant is not pathogenic for Drosophila motoneurons. Sci Rep 2024; 14:19540. [PMID: 39174694 PMCID: PMC11341546 DOI: 10.1038/s41598-024-70543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by the death of motoneurons. Several mutations in the KIF5A gene have been identified in patients with ALS. Some mutations affect the splicing sites of exon 27 leading to its deletion (Δ27 mutation). KIF5A Δ27 is aggregation-prone and pathogenic for motoneurons due to a toxic gain of function. Another mutation found to be enriched in ALS patients is a proline/leucine substitution at position 986 (P986L mutation). Bioinformatic analyses strongly suggest that this variant is benign. Our study aims to conduct functional studies in Drosophila to classify the KIF5A P986L variant. When expressed in motoneurons, KIF5A P986L does not modify the morphology of larval NMJ or the synaptic transmission. In addition, KIF5A P986L is uniformly distributed in axons and does not disturb mitochondria distribution. Locomotion at larval and adult stages is not affected by KIF5A P986L. Finally, both KIF5A WT and P986L expression in adult motoneurons extend median lifespan compared to control flies. Altogether, our data show that the KIF5A P986L variant is not pathogenic for motoneurons and may represent a hypomorphic allele, although it is not causative for ALS.
Collapse
Affiliation(s)
- Sophie Layalle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| | - Franck Aimond
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Véronique Brugioti
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
| | - Claire Guissart
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- Service de Biochimie et Biologie Moléculaire, CHU Nîmes, Université Montpellier, Nîmes, France
| | - Cédric Raoul
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France
- ALS Reference Center, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Laurent Soustelle
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Liu X, Rao L, Qiu W, Berger F, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Nat Commun 2024; 15:6564. [PMID: 39095439 PMCID: PMC11297315 DOI: 10.1038/s41467-024-50990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. In this study, we investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA. Our findings reveal that both motors are non-processive, producing single load-dependent power strokes per MT encounter, with estimated load-free power strokes of ~30 and ~35 nm, respectively. Each homodimeric motor generates forces of ~0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Notably, the cooperative activity among multiple motors leads to increased MT-sliding velocities. These results quantitatively elucidate the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weihong Qiu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, CH, Utrecht, The Netherlands
| | - Florian Berger
- Department of Biochemistry & Biophysics and Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2024. [PMID: 39056295 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Bernard E, Cluse F, Bohic A, Hermier M, Raoul C, Leblanc P, Guissart C. A Novel De Novo Missense Mutation in KIF1A Associated with Young-Onset Upper-Limb Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:8170. [PMID: 39125740 PMCID: PMC11311656 DOI: 10.3390/ijms25158170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
We investigate the etiology of amyotrophic lateral sclerosis (ALS) in a 35-year-old woman presenting with progressive weakness in her left upper limb. Prior to sequencing, a comprehensive neurological work-up was performed, including neurological examination, electrophysiology, biomarker assessment, and brain and spinal cord MRI. Six months before evaluation, the patient experienced weakness and atrophy in her left hand, accompanied by brisk reflexes and Hoffman sign in the same arm. Electroneuromyography revealed lower motor neuron involvement in three body regions. Neurofilament light chains were elevated in her cerebrospinal fluid. Brain imaging showed asymmetrical T2 hyperintensity of the corticospinal tracts and T2 linear hypointensity of the precentral gyri. Trio genome sequencing identified a likely pathogenic de novo variant in the KIF1A gene (NM_001244008.2): c.574A>G, p.(Ile192Val). Pathogenic variants in KIF1A have been associated with a wide range of neurological manifestations called KIF1A-associated neurological diseases (KAND). This report describes a likely pathogenic de novo variant in KIF1A associated with ALS, expanding the phenotypic spectrum of KAND and our understanding of the pathophysiology of ALS.
Collapse
Affiliation(s)
- Emilien Bernard
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, CEDEX 08, 69373 Lyon, France;
| | - Florent Cluse
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
| | - Adrien Bohic
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France; (F.C.); (A.B.)
| | - Marc Hermier
- Department of Neuroradiology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677 Bron, France;
| | - Cédric Raoul
- INM, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (C.R.); (C.G.)
- ALS Reference Center, Université de Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Pascal Leblanc
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, CEDEX 08, 69373 Lyon, France;
| | - Claire Guissart
- INM, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (C.R.); (C.G.)
- GCS AURAGEN, 69003 Lyon, France
- Service de Biochimie et Biologie Moléculaire, CHU Nîmes, Université de Montpellier, Place du Professeur Robert Debré, 30029 Nîmes, France
| |
Collapse
|
10
|
Xie C, Chen G, Li M, Huang P, Chen Z, Lei K, Li D, Wang Y, Cleetus A, Mohamed MA, Sonar P, Feng W, Ökten Z, Ou G. Neurons dispose of hyperactive kinesin into glial cells for clearance. EMBO J 2024; 43:2606-2635. [PMID: 38806659 PMCID: PMC11217292 DOI: 10.1038/s44318-024-00118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Collapse
Affiliation(s)
- Chao Xie
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kexin Lei
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhe Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Augustine Cleetus
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Mohamed Aa Mohamed
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Punam Sonar
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zeynep Ökten
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory for Membrane Biology, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Page ML, Aguzzoli Heberle B, Brandon JA, Wadsworth ME, Gordon LA, Nations KA, Ebbert MTW. Surveying the landscape of RNA isoform diversity and expression across 9 GTEx tissues using long-read sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579945. [PMID: 38405825 PMCID: PMC10888753 DOI: 10.1101/2024.02.13.579945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Even though alternative RNA splicing was discovered nearly 50 years ago (1977), we still understand very little about most isoforms arising from a single gene, including in which tissues they are expressed and if their functions differ. Human gene annotations suggest remarkable transcriptional complexity, with approximately 252,798 distinct RNA isoform annotations from 62,710 gene bodies (Ensembl v109; 2023), emphasizing the need to understand their biological effects. For example, 256 gene bodies have ≥50 annotated isoforms and 30 have ≥100, where one protein-coding gene (MAPK10) even has 192 distinct RNA isoform annotations. Whether such isoform diversity results from biological redundancy or spurious alternative splicing (i.e., noise), or whether individual isoforms have specialized functions (even if subtle) remains a mystery for most genes. Recent studies by Aguzzoli-Heberle et al., Leung et al., and Glinos et al. demonstrated long-read RNAseq enables improved RNA isoform quantification for essentially any tissue, cell type, or biological condition (e.g., disease, development, aging, etc.), making it possible to better assess individual isoform expression and function. While each study provided important discoveries related to RNA isoform diversity, deeper exploration is needed. We sought to quantify and characterize real isoform usage across tissues (compared to annotations). We used long-read RNAseq data from 58 GTEx samples across nine tissues (three brain, two heart, muscle, lung, liver, and cultured fibroblasts) generated by Glinos et al. and found considerable isoform diversity within and across tissues. Cerebellar hemisphere was the most transcriptionally complex tissue (22,522 distinct isoforms; 3,726 unique); liver was least diverse (12,435 distinct isoforms; 1,039 unique). We highlight gene clusters exhibiting high tissue-specific isoform diversity per tissue (e.g., TPM1 expresses 19 in heart's atrial appendage). We also validated 447 of the 700 new isoforms discovered by Aguzzoli-Heberle et al. and found that 88 were expressed in all nine tissues, while 58 were specific to a single tissue. This study represents a broad survey of the RNA isoform landscape, demonstrating isoform diversity across nine tissues and emphasizes the need to better understand how individual isoforms from a single gene body contribute to human health and disease.
Collapse
Affiliation(s)
- Madeline L. Page
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark E. Wadsworth
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Lacey A. Gordon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
12
|
Brenner D, Sieverding K, Srinidhi J, Zellner S, Secker C, Yilmaz R, Dyckow J, Amr S, Ponomarenko A, Tunaboylu E, Douahem Y, Schlag JS, Rodríguez Martínez L, Kislinger G, Niemann C, Nalbach K, Ruf WP, Uhl J, Hollenbeck J, Schirmer L, Catanese A, Lobsiger CS, Danzer KM, Yilmazer-Hanke D, Münch C, Koch P, Freischmidt A, Fetting M, Behrends C, Parlato R, Weishaupt JH. A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice. J Exp Med 2024; 221:e20221190. [PMID: 38517332 PMCID: PMC10959724 DOI: 10.1084/jem.20221190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.
Collapse
Affiliation(s)
- David Brenner
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jahnavi Srinidhi
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Susanne Zellner
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüstem Yilmaz
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Julia Dyckow
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Shady Amr
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Ponomarenko
- Department of Neurology, University of Ulm, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Esra Tunaboylu
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Yasmin Douahem
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Joana S. Schlag
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucía Rodríguez Martínez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cornelia Niemann
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | | | - Jonathan Uhl
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Johanna Hollenbeck
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucas Schirmer
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christian S. Lobsiger
- Institut du Cerveau—Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, Centre National de la Recherche Scientifique, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Karin M. Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy Unit, University of Ulm, Ulm, Germany
| | - Christian Münch
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Philipp Koch
- University of Heidelberg/Medical Faculty Mannheim, Central Institute of Mental Health, Mannheim, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Martina Fetting
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christian Behrends
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Rosanna Parlato
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Carrington G, Fatima U, Caramujo I, Lewis T, Casas-Mao D, Peckham M. A multiscale approach reveals the molecular architecture of the autoinhibited kinesin KIF5A. J Biol Chem 2024; 300:105713. [PMID: 38309508 PMCID: PMC10907169 DOI: 10.1016/j.jbc.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition. Mutations in KIF5A cause neuronal diseases and could affect autoinhibition, as reported for a mutation that skips exon 27, altering its C-terminal sequence. Here, we combined negative-stain electron microscopy, crosslinking mass spectrometry (XL-MS) and AlphaFold2 structure prediction to determine the molecular architecture of the full-length autoinhibited KIF5A homodimer, in the absence of light chains. We show that KIF5A forms a compact, bent conformation, through a bend between coiled-coils 2 and 3, around P687. XL-MS of WT KIF5A revealed extensive interactions between residues in the motor, between coiled-coil 1 and the motor, between coiled-coils 1 and 2, with coiled-coils 3 and 4, and the proximal region of the C-terminal tail and the motor in the autoinhibited state, but not between the distal C-terminal region and the rest of the molecule. While negative-stain electron microscopy of exon-27 KIF5A splice mutant showed the presence of autoinhibited molecules, XL-MS analysis suggested that its autoinhibited state is more labile. Our model offers a conceptual framework for understanding how mutations within the motor and stalk domain may affect motor activity.
Collapse
Affiliation(s)
- Glenn Carrington
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Uzrama Fatima
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Ines Caramujo
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Tarek Lewis
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David Casas-Mao
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Chiba K, Niwa S. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Curr Opin Cell Biol 2024; 86:102301. [PMID: 38096601 DOI: 10.1016/j.ceb.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
15
|
Soustelle L, Aimond F, López-Andrés C, Brugioti V, Raoul C, Layalle S. ALS-Associated KIF5A Mutation Causes Locomotor Deficits Associated with Cytoplasmic Inclusions, Alterations of Neuromuscular Junctions, and Motor Neuron Loss. J Neurosci 2023; 43:8058-8072. [PMID: 37748861 PMCID: PMC10669773 DOI: 10.1523/jneurosci.0562-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Recently, genome-wide association studies identified KIF5A as a new ALS-causing gene. KIF5A encodes a protein of the kinesin-1 family, allowing the anterograde transport of cargos along the microtubule rails in neurons. In ALS patients, mutations in the KIF5A gene induce exon 27 skipping, resulting in a mutated protein with a new C-terminal region (KIF5A Δ27). To understand how KIF5A Δ27 underpins the disease, we developed an ALS-associated KIF5A Drosophila model. When selectively expressed in motor neurons, KIF5A Δ27 alters larval locomotion as well as morphology and synaptic transmission at neuromuscular junctions in both males and females. We show that the distribution of mitochondria and synaptic vesicles is profoundly disturbed by KIF5A Δ27 expression. That is consistent with the numerous KIF5A Δ27-containing inclusions observed in motor neuron soma and axons. Moreover, KIF5A Δ27 expression leads to motor neuron death and reduces life expectancy. Our in vivo model reveals that a toxic gain of function underlies the pathogenicity of ALS-linked KIF5A mutant.SIGNIFICANCE STATEMENT Understanding how a mutation identified in patients with amyotrophic lateral sclerosis (ALS) causes the disease and the loss of motor neurons is crucial to fight against this disease. To this end, we have created a Drosophila model based on the motor neuron expression of the KIF5A mutant gene, recently identified in ALS patients. KIF5A encodes a kinesin that allows the anterograde transport of cargos. This model recapitulates the main features of ALS, including alterations of locomotion, synaptic neurotransmission, and morphology at neuromuscular junctions, as well as motor neuron death. KIF5A mutant is found in cytoplasmic inclusions, and its pathogenicity is because of a toxic gain of function.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| | - Franck Aimond
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| | - Cristina López-Andrés
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| | - Véronique Brugioti
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| | - Cédric Raoul
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| | - Sophie Layalle
- Institute for Neurosciences Montpellier, Université Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34091, France
| |
Collapse
|
16
|
Pino MG, Rich KA, Hall NJ, Jones ML, Fox A, Musier-Forsyth K, Kolb SJ. Heterogeneous splicing patterns resulting from KIF5A variants associated with amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:3166-3180. [PMID: 37593923 DOI: 10.1093/hmg/ddad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Single-nucleotide variants (SNVs) in the gene encoding Kinesin Family Member 5A (KIF5A), a neuronal motor protein involved in anterograde transport along microtubules, have been associated with amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive and fatal neurodegenerative disease that primarily affects the motor neurons. Numerous ALS-associated KIF5A SNVs are clustered near the splice-site junctions of the penultimate exon 27 and are predicted to alter the carboxy-terminal (C-term) cargo-binding domain of KIF5A. Mis-splicing of exon 27, resulting in exon exclusion, is proposed to be the mechanism by which these SNVs cause ALS. Whether all SNVs proximal to exon 27 result in exon exclusion is unclear. To address this question, we designed an in vitro minigene splicing assay in human embryonic kidney 293 cells, which revealed heterogeneous site-specific effects on splicing: only 5' splice-site (5'ss) SNVs resulted in exon skipping. We also quantified splicing in select clustered, regularly interspaced, short palindromic repeats-edited human stem cells, differentiated to motor neurons, and in neuronal tissues from a 5'ss SNV knock-in mouse, which showed the same result. Moreover, the survival of representative 3' splice site, 5'ss, and truncated C-term variant KIF5A (v-KIF5A) motor neurons was severely reduced compared with wild-type motor neurons, and overt morphological changes were apparent. While the total KIF5A mRNA levels were comparable across the cell lines, the total KIF5A protein levels were decreased for v-KIF5A lines, suggesting an impairment of protein synthesis or stability. Thus, despite the heterogeneous effect on ribonucleic acid splicing, KIF5A SNVs similarly reduce the availability of the KIF5A protein, leading to axonal transport defects and motor neuron pathology.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Nicholas J Hall
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Meredith L Jones
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
17
|
Cochard A, Safieddine A, Combe P, Benassy M, Weil D, Gueroui Z. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization. EMBO J 2023; 42:e114106. [PMID: 37724036 PMCID: PMC10577640 DOI: 10.15252/embj.2023114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.
Collapse
Affiliation(s)
- Audrey Cochard
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Pauline Combe
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| | - Marie‐Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Zoher Gueroui
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| |
Collapse
|
18
|
Niwa S, Chiba K. Generation of recombinant and chickenized scFv versions of an anti-kinesin monoclonal antibody H2. Cytoskeleton (Hoboken) 2023; 80:356-366. [PMID: 37036074 DOI: 10.1002/cm.21756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Kinesin-1, a motor protein composed of the kinesin heavy chain (KHC) and the kinesin light chain (KLC), is essential for proper cellular morphogenesis and function. A monoclonal antibody (mAb) called H2 recognizes the KHC in a broad range of species and is one of the most widely used mAbs in cytoskeletal motor research. Here, we present vectors that express recombinant H2 in mammalian cells. We show the recombinant H2 performs as well as the hybridoma-derived H2 in both western blotting and immunofluorescence assays. Additionally, the recombinant H2 can detect all three human KHC isotypes (KIF5A, KIF5B, and KIF5C) and amyotrophic lateral sclerosis-associated KIF5A aggregates in cells. In addition, we developed a chickenized version of the H2 mAb's single chain variable fragment, which can be used in immunofluorescence microscopy and expands the potential applications of H2. Overall, our results demonstrate that recombinant H2 is a useful tool for studying the functions of KHCs.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Aoba-Ku, Sendai, Miyagi, 980-0845, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Aoba-Ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
19
|
Szebényi K, Barrio-Hernandez I, Gibbons GM, Biasetti L, Troakes C, Beltrao P, Lakatos A. A human proteogenomic-cellular framework identifies KIF5A as a modulator of astrocyte process integrity with relevance to ALS. Commun Biol 2023; 6:678. [PMID: 37386082 PMCID: PMC10310856 DOI: 10.1038/s42003-023-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Genome-wide association studies identified several disease-causing mutations in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the contribution of genetic variants to pathway disturbances and their cell type-specific variations, especially in glia, is poorly understood. We integrated ALS GWAS-linked gene networks with human astrocyte-specific multi-omics datasets to elucidate pathognomonic signatures. It predicts that KIF5A, a motor protein kinesin-1 heavy-chain isoform, previously detected only in neurons, can also potentiate disease pathways in astrocytes. Using postmortem tissue and super-resolution structured illumination microscopy in cell-based perturbation platforms, we provide evidence that KIF5A is present in astrocyte processes and its deficiency disrupts structural integrity and mitochondrial transport. We show that this may underly cytoskeletal and trafficking changes in SOD1 ALS astrocytes characterised by low KIF5A levels, which can be rescued by c-Jun N-terminal Kinase-1 (JNK1), a kinesin transport regulator. Altogether, our pipeline reveals a mechanism controlling astrocyte process integrity, a pre-requisite for synapse maintenance and suggests a targetable loss-of-function in ALS.
Collapse
Affiliation(s)
- Kornélia Szebényi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | | | - George M Gibbons
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK
| | - Luca Biasetti
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Pedro Beltrao
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| |
Collapse
|
20
|
Rich KA, Pino MG, Yalvac ME, Fox A, Harris H, Balch MHH, Arnold WD, Kolb SJ. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol Dis 2023; 182:106148. [PMID: 37164288 PMCID: PMC10874102 DOI: 10.1016/j.nbd.2023.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Kinesin family member 5A (KIF5A) is an essential, neuron-specific microtubule-associated motor protein responsible for the anterograde axonal transport of various cellular cargos. Loss of function variants in the N-terminal, microtubule-binding domain are associated with hereditary spastic paraplegia and hereditary motor neuropathy. These variants result in a loss of the ability of the mutant protein to process along microtubules. Contrastingly, gain of function splice-site variants in the C-terminal, cargo-binding domain of KIF5A are associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving death of upper and lower motor neurons, ultimately leading to degradation of the motor unit (MU; an alpha motor neuron and all the myofibers it innervates) and death. These ALS-associated variants result in loss of autoinhibition, increased procession of the mutant protein along microtubules, and altered cargo binding. To study the molecular and cellular consequences of ALS-associated variants in vivo, we introduced the murine homolog of an ALS-associated KIF5A variant into C57BL/6 mice using CRISPR-Cas9 gene editing which produced mutant Kif5a mRNA and protein in neuronal tissues of heterozygous (Kif5a+/c.3005+1G>A; HET) and homozygous (Kif5ac.3005+1G>A/c.3005+1G>A; HOM) mice. HET and HOM mice appeared normal in behavioral and electrophysiological (compound muscle action potential [CMAP] and MU number estimation [MUNE]) outcome measures at one year of age. When subjected to sciatic nerve injury, HET and HOM mice have delayed and incomplete recovery of the MUNE compared to wildtype (WT) mice suggesting an impairment in MU repair. Moreover, aged mutant Kif5a mice (aged two years) had reduced MUNE independent of injury, and exacerbation of the delayed and incomplete recovery after injury compared to aged WT mice. These data suggest that ALS-associated variants may result in an impairment of the MU to respond to biological challenges such as injury and aging, leading to a failure of MU repair and maintenance. In this report, we present the behavioral, electrophysiological and pathological characterization of mice harboring an ALS-associated Kif5a variant to understand the functional consequences of KIF5A C-terminal variants in vivo.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maria H H Balch
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri, MO, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Liu X, Rao L, Qiu W, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544415. [PMID: 37333225 PMCID: PMC10274885 DOI: 10.1101/2023.06.09.544415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. We investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA, revealing that both motors function as non-processive motors under load, producing single power strokes per MT encounter. Each homodimeric motor generates forces of ∼0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Importantly, cooperative activity among multiple motors leads to increased MT-sliding velocities. Our findings deepen our understanding of the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
|
22
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front Neurosci 2023; 17:1170996. [PMID: 37250416 PMCID: PMC10213321 DOI: 10.3389/fnins.2023.1170996] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord. The causes of ALS are not fully understood. About 10% of ALS cases were associated with genetic factors. Since the discovery of the first familial ALS pathogenic gene SOD1 in 1993 and with the technology advancement, now over 40 ALS genes have been found. Recent studies have identified ALS related genes including ANXA11, ARPP21, CAV1, C21ORF2, CCNF, DNAJC7, GLT8D1, KIF5A, NEK1, SPTLC1, TIA1, and WDR7. These genetic discoveries contribute to a better understanding of ALS and show the potential to aid the development of better ALS treatments. Besides, several genes appear to be associated with other neurological disorders, such as CCNF and ANXA11 linked to FTD. With the deepening understanding of the classic ALS genes, rapid progress has been made in gene therapies. In this review, we summarize the latest progress on classical ALS genes and clinical trials for these gene therapies, as well as recent findings on newly discovered ALS genes.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - LiPing Guan
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Fatoki TH, Chukwuejim S, Udenigwe CC, Aluko RE. In Silico Exploration of Metabolically Active Peptides as Potential Therapeutic Agents against Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5828. [PMID: 36982902 PMCID: PMC10058213 DOI: 10.3390/ijms24065828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is regarded as a fatal neurodegenerative disease that is featured by progressive damage of the upper and lower motor neurons. To date, over 45 genes have been found to be connected with ALS pathology. The aim of this work was to computationally identify unique sets of protein hydrolysate peptides that could serve as therapeutic agents against ALS. Computational methods which include target prediction, protein-protein interaction, and peptide-protein molecular docking were used. The results showed that the network of critical ALS-associated genes consists of ATG16L2, SCFD1, VAC15, VEGFA, KEAP1, KIF5A, FIG4, TUBA4A, SIGMAR1, SETX, ANXA11, HNRNPL, NEK1, C9orf72, VCP, RPSA, ATP5B, and SOD1 together with predicted kinases such as AKT1, CDK4, DNAPK, MAPK14, and ERK2 in addition to transcription factors such as MYC, RELA, ZMIZ1, EGR1, TRIM28, and FOXA2. The identified molecular targets of the peptides that support multi-metabolic components in ALS pathogenesis include cyclooxygenase-2, angiotensin I-converting enzyme, dipeptidyl peptidase IV, X-linked inhibitor of apoptosis protein 3, and endothelin receptor ET-A. Overall, the results showed that AGL, APL, AVK, IIW, PVI, and VAY peptides are promising candidates for further study. Future work would be needed to validate the therapeutic properties of these hydrolysate peptides by in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Toluwase Hezekiah Fatoki
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
| | - Stanley Chukwuejim
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chibuike C. Udenigwe
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
26
|
Giovannelli I, Higginbottom A, Kirby J, Azzouz M, Shaw PJ. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:39-52. [PMID: 36481799 DOI: 10.1038/s41582-022-00751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. ALS causes death, usually within 2-5 years of diagnosis. Riluzole, the only drug currently approved in Europe for the treatment of this condition, offers only a modest benefit, increasing survival by 3 months on average. Recent advances in our understanding of causative or disease-modifying genetic variants and in the development of genetic therapy strategies present exciting new therapeutic opportunities for ALS. In addition, the approval of adeno-associated virus-mediated delivery of functional copies of the SMN1 gene to treat spinal muscular atrophy represents an important therapeutic milestone and demonstrates the potential of gene replacement therapies for motor neuron disorders. In this Review, we describe the current landscape of genetic therapies in ALS, highlighting achievements and critical challenges. In particular, we discuss opportunities for gene replacement therapy in subgroups of people with ALS, and we describe loss-of-function mutations that are known to contribute to the pathophysiology of ALS and could represent novel targets for gene replacement therapies.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
27
|
Weijman JF, Yadav SKN, Surridge KJ, Cross JA, Borucu U, Mantell J, Woolfson DN, Schaffitzel C, Dodding MP. Molecular architecture of the autoinhibited kinesin-1 lambda particle. SCIENCE ADVANCES 2022; 8:eabp9660. [PMID: 36112680 PMCID: PMC9481135 DOI: 10.1126/sciadv.abp9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.
Collapse
Affiliation(s)
- Johannes F. Weijman
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Katherine J. Surridge
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jessica A. Cross
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P. Dodding
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
28
|
Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep 2022; 23:e54234. [PMID: 35735139 DOI: 10.15252/embr.202154234] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | | | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Isabel Loss
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Liang Shi
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Philipp Koch
- Hector Institute of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|