1
|
Huang B, Cao D, Yuan X, Xiong Y, Chen B, Wang Y, Niu X, Tian R, Huang H. USP7 deubiquitinates KRAS and promotes non-small cell lung cancer. Cell Rep 2024; 43:114917. [PMID: 39499616 DOI: 10.1016/j.celrep.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
RAS oncogenic mutations are pivotal drivers of tumorigenesis. Ubiquitination modulates RAS functions, including activation, stability, and localization. While several E3 ligases regulate RAS ubiquitination, RAS deubiquitination remains less understood. Our study reveals that ubiquitin-specific protease 7 (USP7) directly deubiquitinates KRAS, stabilizing it and promoting the proliferation of non-small cell lung cancer (NSCLC) cells. Mechanistically, USP7 binds KRAS via its TRAF domain and removes the K48-linked polyubiquitin chains from residue K147. In addition, USP7 also stabilizes oncogenic KRAS mutants through deubiquitination. In lung cancer tissues, high USP7 expression is positively correlated with KRAS and is associated with lower patient survival rates. Moreover, USP7 inhibitors suppress NSCLC cell proliferation, particularly in cells resistant to the KRAS-G12C inhibitor AMG510. In conclusion, our findings identify USP7 as a key deubiquitinase regulating RAS stability, and targeting USP7 is a promising strategy to counteract KRAS inhibitor resistance in NSCLC.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Xiao Yuan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Bingzhang Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; College of Chemistry, Jilin University, Changchun 130023, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
2
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
3
|
Liu ZY, Zhang YW, Zhuang HX, Ou YJ, Jiang QY, Li PF, He YM, Ren Y, Mao XL. Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer. Acta Pharmacol Sin 2024:10.1038/s41401-024-01366-w. [PMID: 39198663 DOI: 10.1038/s41401-024-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zi-Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Xia Zhuang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Jie Ou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Yun Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping-Fei Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xin-Liang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Wang J, Liu Y, Wu D, Tian C, Gao J, Yang Q, Hong X, Gu F, Zhang K, Hu Y, Xu S, Liu L, Zeng Y. OTUB1 Targets CHK1 for Deubiquitination and Stabilization to Facilitate Lung Cancer Progression and Radioresistance. Int J Radiat Oncol Biol Phys 2024; 119:1222-1233. [PMID: 38266782 DOI: 10.1016/j.ijrobp.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Radioresistance of lung cancer poses a significant challenge when it comes to the treatment of advanced, recurrent, and metastatic cases. Ovarian tumor domain ubiquitin aldehyde binding 1 (OTUB1) is a key member of the deubiquitinase OTU superfamily. This protein is involved in various cellular functions, including cell proliferation, iron death, lipid metabolism, and cytokine secretion as well as immune response processes. However, its specific role and molecular mechanism in lung cancer radioresistance remain to be clarified. METHODS AND MATERIALS The expression levels of OTUB1 in paired lung cancer tissues were determined by immunohistochemistry. In vitro and in vivo experiments were conducted to investigate the impact of OTUB1 on the growth and proliferation of lung cancer. Coimmunoprecipitation and Western blotting techniques were performed to examine the interaction between OTUB1 and CHK1. The DNA damage response was measured by comet tailing and immunofluorescence staining. KEGG pathways and Gene Ontology terms were analyzed based on RNA sequencing. RESULTS Our findings reveal a high frequency of OTUB1 overexpression, which is associated with an unfavorable prognosis in patients with lung cancer. Through comprehensive investigations, we demonstrate that OTUB1 depletion impairs the process of DNA damage repair and overcomes radioresistance. In terms of the underlying mechanism, our study uncovers that OTUB1 deubiquitinates and stabilizes CHK1, which enhances CHK1 stability, thereby regulating DNA damage and repair. Additionally, we identify CHK1 as the primary downstream effector responsible for mediating the functional effects exerted by OTUB1 specifically in lung cancer. Importantly, OTUB1 has the potential to be a valuable marker for improving the efficacy of radiation therapy for lung adenocarcinoma. CONCLUSIONS These findings unveil a novel role for OTUB1 in enhancing radioresistance by deubiquitination and stabilization of the expression of CHK1 in lung cancer and indicate that targeting OTUB1 holds great potential as an effective therapeutic approach for enhancing the efficacy of radiation therapy in lung cancer.
Collapse
Affiliation(s)
- Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Di Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Jiaqi Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Liao Y, Liang J, Wang Y, Li A, Liu W, Zhong B, Wang K, Zhou D, Guo T, Guo J, Yu X, Jiang N. Target deubiquitinase OTUB1 as a therapeatic strategy for BLCA via β-catenin/necroptosis signal pathway. Int J Biol Sci 2024; 20:3784-3801. [PMID: 39113709 PMCID: PMC11302878 DOI: 10.7150/ijbs.94013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/28/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitination, a prevalent and highly dynamic reversible post-translational modification, is tightly regulated by the deubiquitinating enzymes (DUBs) superfamily. Among them, OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 1 (OTUB1) stands out as a critical member of the OTU deubiquitinating family, playing a pivotal role as a tumor regulator across various cancers. However, its specific involvement in BLCA (BLCA) and its clinical significance have remained ambiguous. This study aimed to elucidate the biofunctions of OTUB1 in BLCA and its implications for clinical prognosis. Our investigation revealed heightened OTUB1 expression in BLCA, correlating with unfavorable clinical outcomes. Through in vivo and in vitro experiments, we demonstrated that increased OTUB1 levels promote BLCA tumorigenesis and progression, along with conferring resistance to cisplatin treatment. Notably, we established a comprehensive network involving OTUB1, β-catenin, necroptosis, and BLCA, delineating their regulatory interplay. Mechanistically, we uncovered that OTUB1 exerts its influence by deubiquitinating and stabilizing β-catenin, leading to its nuclear translocation. Subsequently, nuclear β-catenin enhances the transcriptional activity of c-myc and cyclin D1 while suppressing the expression of RIPK3 and MLKL, thereby fostering BLCA progression and cisplatin resistance. Importantly, our clinical data suggest that the OTUB1/β-catenin/RIPK3/MLKL axis holds promise as a potential biomarker for BLCA.
Collapse
Affiliation(s)
- Yihao Liao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Urology, The First College of Clinical Medical Science, China Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, 100000, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - An Li
- Department of respiratory medicine, Chinese PLA general hospital, Beijing, China
| | - Wenbo Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Boqiang Zhong
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Keke Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tao Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xi Yu
- Department of Anesthesia, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
6
|
Magits W, Steklov M, Jang H, Sewduth RN, Florentin A, Lechat B, Sheryazdanova A, Zhang M, Simicek M, Prag G, Nussinov R, Sablina A. K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins. EMBO J 2024; 43:2862-2877. [PMID: 38858602 PMCID: PMC11251195 DOI: 10.1038/s44318-024-00146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Raj N Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Amir Florentin
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Benoit Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | | | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Michal Simicek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Gali Prag
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Majumder S, Srivastava M, Alam P, Saha S, Kumari R, Chand AK, Asthana S, Sen S, Maiti TK. Hotspot site microenvironment in the deubiquitinase OTUB1 drives its stability and aggregation. J Biol Chem 2024; 300:107315. [PMID: 38663827 PMCID: PMC11154711 DOI: 10.1016/j.jbc.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.
Collapse
Affiliation(s)
- Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
8
|
Wang T, Tong J, Zhang X, Wang Z, Xu L, Pan P, Hou T. Structure-based virtual screening of novel USP5 inhibitors targeting the zinc finger ubiquitin-binding domain. Comput Biol Med 2024; 174:108397. [PMID: 38603896 DOI: 10.1016/j.compbiomed.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The equilibrium of cellular protein levels is pivotal for maintaining normal physiological functions. USP5 belongs to the deubiquitination enzyme (DUBs) family, controlling protein degradation and preserving cellular protein homeostasis. Aberrant expression of USP5 is implicated in a variety of diseases, including cancer, neurodegenerative diseases, and inflammatory diseases. In this paper, a multi-level virtual screening (VS) approach was employed to target the zinc finger ubiquitin-binding domain (ZnF-UBD) of USP5, leading to the identification of a highly promising candidate compound 0456-0049. Molecular dynamics (MD) simulations were then employed to assess the stability of complex binding and predict hotspot residues in interactions. The results indicated that the candidate stably binds to the ZnF-UBD of USP5 through crucial interactions with residues ARG221, TRP209, GLY220, ASN207, TYR261, TYR259, and MET266. Binding free energy calculations, along with umbrella sampling (US) simulations, underscored a superior binding affinity of the candidate relative to known inhibitors. Moreover, US simulations revealed conformational changes of USP5 during ligand dissociation. These insights provide a valuable foundation for the development of novel inhibitors targeting USP5.
Collapse
Affiliation(s)
- Tianhao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Xing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310058, Zhejiang, PR China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
9
|
Damianou A, Liang Z, Lassen F, Vendrell I, Vere G, Hester S, Charles PD, Pinto-Fernandez A, Santos A, Fischer R, Kessler BM. Oncogenic mutations of KRAS modulate its turnover by the CUL3/LZTR1 E3 ligase complex. Life Sci Alliance 2024; 7:e202302245. [PMID: 38453365 PMCID: PMC10921066 DOI: 10.26508/lsa.202302245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.
Collapse
Affiliation(s)
- Andreas Damianou
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zhu Liang
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederik Lassen
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Svenja Hester
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D Charles
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adan Pinto-Fernandez
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alberto Santos
- https://ror.org/052gg0110 Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Center for Health Data Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roman Fischer
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- https://ror.org/052gg0110 Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- https://ror.org/052gg0110 Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Huang XD, Du L, Cheng XC, Lu YX, Liu QW, Wang YW, Liao YJ, Lin DD, Xiao FJ. OTUB1/NDUFS2 axis promotes pancreatic tumorigenesis through protecting against mitochondrial cell death. Cell Death Discov 2024; 10:190. [PMID: 38653740 DOI: 10.1038/s41420-024-01948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Xiao-Dong Huang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China
| | - Li Du
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiao-Chen Cheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yu-Xin Lu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qiao-Wei Liu
- Department of Oncology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yi-Wu Wang
- Department of Disease Control and Prevention, Chinese PLA The 96601 Military Hospital, Huangshan, 242700, Anhui, PR China
| | - Ya-Jin Liao
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, Hunan, PR China.
| | - Dong-Dong Lin
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, PR China.
| | - Feng-Jun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
11
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Nussinov R, Jang H. Direct K-Ras Inhibitors to Treat Cancers: Progress, New Insights, and Approaches to Treat Resistance. Annu Rev Pharmacol Toxicol 2024; 64:231-253. [PMID: 37524384 DOI: 10.1146/annurev-pharmtox-022823-113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
| |
Collapse
|
13
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Jin S, Tsunematsu T, Horiguchi T, Mouri Y, Shao W, Miyoshi K, Hagita H, Sarubo M, Fujiwara N, Qi G, Ishimaru N, Kudo Y. Involvement of the OTUB1-YAP1 axis in driving malignant behaviors of head and neck squamous cell carcinoma. Cancer Med 2023; 12:22156-22169. [PMID: 37986681 PMCID: PMC10757095 DOI: 10.1002/cam4.6735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Comprehending the molecular mechanisms underlying head and neck squamous cell carcinoma (HNSCC) is vital for the development of effective treatment strategies. Deubiquitinating enzymes (DUBs), which regulate ubiquitin-dependent pathways, are potential targets for cancer therapy because of their structural advantages. Here we aimed to identify a potential target for HNSCC treatment among DUBs. METHODS A screening process was conducted using RNA sequencing data and clinical information from HNSCC patients in the TCGA database. A panel of 88 DUBs was analyzed to identify those associated with poor prognosis. Subsequently, HNSCC cells were modified to overexpress specific DUBs, and their effects on cell proliferation and invasion were evaluated. In vivo experiments were performed to validate the findings. RESULTS In HNSCC patients, USP10, USP14, OTUB1, and STAMBP among the screened DUBs were associated with a poor prognosis. Among them, OTUB1 showed the most aggressive characteristics in both in vitro and in vivo experiments. Additionally, OTUB1 regulated the stability and nuclear localization of YAP1, a substrate involved in cell proliferation and invasion. Notably, OTUB1 expression exhibited a positive correlation with the HNSCC-YAP score in HNSCC cells. CONCLUSIONS This study highlights the critical role of OTUB1 in HNSCC progression via modulating YAP1. Targeting the OTUB1-YAP1 axis holds promise as a potential therapeutic strategy for HNSCC treatment.
Collapse
Affiliation(s)
- Shengjian Jin
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Takaaki Tsunematsu
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Taigo Horiguchi
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yasuhiro Mouri
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Wenhua Shao
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Keiko Miyoshi
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hiroko Hagita
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Motoharu Sarubo
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Natsumi Fujiwara
- Department of Oral Healthcare ManagementTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental RegulationGuilin Medical UniversityGuilinChina
| | - Naozumi Ishimaru
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yasusei Kudo
- Department of Oral BioscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| |
Collapse
|
15
|
Kelesoglu N, Kori M, Yilmaz BK, Duru OA, Arga KY. Differential co-expression network analysis elucidated genes associated with sensitivity to farnesyltransferase inhibitor and prognosis of acute myeloid leukemia. Cancer Med 2023; 12:22420-22436. [PMID: 38069522 PMCID: PMC10757125 DOI: 10.1002/cam4.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease and the most common form of acute leukemia with a poor prognosis. Due to its complexity, the disease requires the identification of biomarkers for reliable prognosis. To identify potential disease genes that regulate patient prognosis, we used differential co-expression network analysis and transcriptomics data from relapsed, refractory, and previously untreated AML patients based on their response to treatment in the present study. In addition, we combined functional genomics and transcriptomics data to identify novel and therapeutically potential systems biomarkers for patients who do or do not respond to treatment. As a result, we constructed co-expression networks for response and non-response cases and identified a highly interconnected group of genes consisting of SECISBP2L, MAN1A2, PRPF31, VASP, and SNAPC1 in the response network and a group consisting of PHTF2, SLC11A2, PDLIM5, OTUB1, and KLRD1 in the non-response network, both of which showed high prognostic performance with hazard ratios of 4.12 and 3.66, respectively. Remarkably, ETS1, GATA2, AR, YBX1, and FOXP3 were found to be important transcription factors in both networks. The prognostic indicators reported here could be considered as a resource for identifying tumorigenesis and chemoresistance to farnesyltransferase inhibitor. They could help identify important research directions for the development of new prognostic and therapeutic techniques for AML.
Collapse
Affiliation(s)
| | - Medi Kori
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
- Department of Biochemistry, Faculty of MedicineMarmara UniversityIstanbulTürkiye
| | - Ozlem Ates Duru
- Department of Nutrition and Dietetics, School of Health SciencesNişantaşı UniversityIstanbulTürkiye
- Department of Chemical Engineering, Faculty of EngineeringBolu Abant İzzet Baysal UniversityBoluTürkiye
| | - Kazim Yalcin Arga
- Department of BioengineeringMarmara UniversityIstanbulTürkiye
- Genetic and Metabolic Diseases Research and Investigation CenterMarmara UniversityIstanbulTürkiye
| |
Collapse
|
16
|
Shang L, Du Y, Zhao Y, Zhang Y, Liu C. The Interaction of OTUB1 and TRAF3 Mediates NLRP3 Inflammasome Activity to Regulate TGF-β1-induced BEAS-2B Cell Injury. Appl Biochem Biotechnol 2023; 195:7060-7074. [PMID: 36976509 DOI: 10.1007/s12010-023-04434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Asthma is a frequently chronic respiratory disease with inflammation and remodeling in the airway. OTUB1 has been reported to be associated with pulmonary diseases. However, the role and potential mechanism of OTUB1 in asthma remain unclear. The expressions of OTUB1 in the bronchial mucosal tissues of asthmatic children and TGF-β1-induced BEAS-2B cells were determined. The biological behaviors were assessed in an asthma in vitro model using a loss-function approach. The contents of inflammatory cytokines were detected by ELISA kits. The related protein expressions were performed using western blot assay. Besides, the interaction between OTUB1 and TRAF3 was detected by Co-IP and ubiquitination assays. Our results showed that OTUB1 level was increased in asthmatic bronchial mucosal tissues and TGF-β1-induced BEAS-2B cells. OTUB1 knockdown promoted proliferation, inhibited apoptosis and EMT of TGF-β1-treated cells. The inhibition of OTUB1 attenuated the TGF-β1-induced inflammation and remodeling. Furthermore, OTUB1 knockdown inhibited the deubiquitination of TRAF3 and further suppressed the activation of NLRP3 inflammasome. The overexpression of TRAF3 or NLRP3 reversed the positive role of OTUB1 knockdown in TGF-β1-induced cells injury. Collectively, OTUB1 deubiquitinates TRAF3 to activate NLRP3 inflammasome, thereby leading to inflammation and remodeling of TGF-β1-induced cells, and further promoting the pathogenesis of asthma.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yujie Du
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yali Zhao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yongqing Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Cuicui Liu
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
17
|
Aboushousha R, van der Velden J, Hamilton N, Peng Z, MacPherson M, Erickson C, White S, Wouters EFM, Reynaert NL, Seward DJ, Li J, Janssen-Heininger YMW. Glutaredoxin attenuates glutathione levels via deglutathionylation of Otub1 and subsequent destabilization of system x C. SCIENCE ADVANCES 2023; 9:eadi5192. [PMID: 37703360 PMCID: PMC10499329 DOI: 10.1126/sciadv.adi5192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Glutathione (GSH) is a critical component of the cellular redox system that combats oxidative stress. The glutamate-cystine antiporter, system xC-, is a key player in GSH synthesis that allows for the uptake of cystine, the rate-limiting building block of GSH. It is unclear whether GSH or GSH-dependent protein oxidation [protein S-glutathionylation (PSSG)] regulates the activity of system xC-. We demonstrate that an environment of enhanced PSSG promotes GSH increases via a system xC--dependent mechanism. Absence of the deglutathionylase, glutaredoxin (GLRX), augmented SLC7A11 protein and led to significant increases of GSH content. S-glutathionylation of C23 or C204 of the deubiquitinase OTUB1 promoted interaction with the E2-conjugating enzyme UBCH5A, leading to diminished ubiquitination and proteasomal degradation of SLC7A11 and augmentation of GSH, effects that were reversed by GLRX. These findings demonstrate an intricate link between GLRX and GSH via S-glutathionylation of OTUB1 and system xC- and illuminate a previously unknown feed-forward regulatory mechanism whereby enhanced GSH protein oxidation augments cellular GSH.
Collapse
Affiliation(s)
- Reem Aboushousha
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicholas Hamilton
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Zhihua Peng
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Cuixia Erickson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sheryl White
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, NUTRIM School of nutrition and translational research in metabolism, Maastricht University Medical Center, Maastricht, Netherlands
- Ludwig Boltzmann Institute for Lung Research, Vienna, Austria
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of nutrition and translational research in metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - David J. Seward
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jianing Li
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
18
|
Zhao Y, Ruan J, Li Z, Su X, Chen K, Lin Y, Cai Y, Wang P, Liu B, Schlüter D, Liang G, Wang X. OTUB1 inhibits breast cancer by non-canonically stabilizing CCN6. Clin Transl Med 2023; 13:e1385. [PMID: 37608493 PMCID: PMC10444971 DOI: 10.1002/ctm2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Ruan
- Department of PathologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Zhongding Li
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Su
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Kangmin Chen
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yimin Lin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yuepiao Cai
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Peng Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Baohua Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| | - Xu Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
19
|
Sheryazdanova A, Amoedo ND, Dufour S, Impens F, Rossignol R, Sablina A. The deubiquitinase OTUB1 governs lung cancer cell fitness by modulating proteostasis of OXPHOS proteins. Biochim Biophys Acta Mol Basis Dis 2023:166767. [PMID: 37245529 DOI: 10.1016/j.bbadis.2023.166767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Aerobic glycolysis is a hallmark of cancer development, but this dogma has been challenged by reports showing a key role of oxidative phosphorylation (OXPHOS) in cancer cell survival. It has been proposed that increased levels of intramitochondrial proteins in cancer cells are associated with high OXPHOS activity and increased sensitivity to OXPHOS inhibitors. However, the molecular mechanisms leading to the high expression of OXPHOS proteins in cancer cells remain unknown. Multiple proteomics studies have detected the ubiquitination of intramitochondrial proteins, suggesting the contribution of the ubiquitin system to the proteostatic regulation of OXPHOS proteins. Here, we identified the ubiquitin hydrolase OTUB1 as a regulator of the mitochondrial metabolic machinery essential for lung cancer cell survival. Mitochondria-localized OTUB1 modulates respiration by inhibiting K48-linked ubiquitination and turnover of OXPHOS proteins. An increase in OTUB1 expression is commonly observed in one-third of non-small-cell lung carcinomas and is associated with high OXPHOS signatures. Moreover, OTUB1 expression highly correlates with the sensitivity of lung cancer cells to mitochondrial inhibitors.
Collapse
Affiliation(s)
- Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium
| | - Nivea Dias Amoedo
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Sara Dufour
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Rodrigue Rossignol
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium.
| |
Collapse
|
20
|
Chen J, Bolhuis DL, Laggner C, Kong D, Yu L, Wang X, Emanuele MJ, Brown NG, Liu P. AtomNet-Aided OTUD7B Inhibitor Discovery and Validation. Cancers (Basel) 2023; 15:517. [PMID: 36672466 PMCID: PMC9856706 DOI: 10.3390/cancers15020517] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Protein deubiquitinases play critical pathophysiological roles in cancer. Among all deubiquitinases, an oncogenic function for OTUD7B has been established in genetic NSCLC murine models. However, few deubiquitinase inhibitors have been developed due to technical challenges. Here, we report a putative small molecule OTUD7B inhibitor obtained from an AI-aided screen of a 4 million compound library. We validated the effects of the OTUD7B inhibitor (7Bi) in reducing Akt-pS473 signals in multiple NSCLC and HEK293 cells by blocking OTUD7B-governed GβL deubiquitination in cells, as well as inhibiting OTUD7B-mediated cleavage of K11-linked di-ub in an in vitro enzyme assay. Furthermore, we report in leukemia cells, either genetic depletion or 7Bi-mediated pharmacological inhibition of OTUD7B reduces Akt-pS473 via inhibiting the OTUD7B/GβL signaling axis. Together, our study identifies the first putative OTUD7B inhibitor showing activities both in cells and in vitro, with promising applications as a therapeutic agent in treating cancer with OTUD7B overexpression.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L. Bolhuis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Deyu Kong
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Baietti MF, Sewduth RN. Novel Therapeutic Approaches Targeting Post-Translational Modifications in Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15010206. [PMID: 36678835 PMCID: PMC9865455 DOI: 10.3390/pharmaceutics15010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide. It consists of two different subtypes: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Despite novel therapeutic options such as immunotherapy, only 20% of lung cancer patients survive the disease after five years. This low survival rate is due to acquired drug resistance and severe off-target effects caused by currently used therapies. Identification and development of novel and targeted therapeutic approaches are urgently required to improve the standard of care for lung cancer patients. Here, we describe the recent development of novel drug-delivery approaches, such as adenovirus, lipid nanoparticles, and PROTACs, that have been tested in clinical trials and experimentally in the context of fundamental research. These different options show that it is now possible to target protein kinases, phosphatases, ubiquitin ligases, or protein modifications directly in lung cancer to block disease progression. Furthermore, the recent acceptance of RNA vaccines using lipid nanoparticles has further revealed therapeutic options that could be combined with chemo-/immunotherapies to improve current lung cancer therapies. This review aims to compare recent advances in the pharmaceutical research field for the development of technologies targeting post-translational modifications or protein modifiers involved in the tumorigenesis of lung cancer.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- TRACE, Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: (M.F.B.); (R.N.S.)
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: (M.F.B.); (R.N.S.)
| |
Collapse
|
22
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
23
|
Cheng T, Shan G, Yang H, Gu J, Lu C, Xu F, Ge D. Development of a ferroptosis-based model to predict prognosis, tumor microenvironment, and drug response for lung adenocarcinoma with weighted genes co-expression network analysis. Front Pharmacol 2022; 13:1072589. [PMID: 36467089 PMCID: PMC9712758 DOI: 10.3389/fphar.2022.1072589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 08/17/2023] Open
Abstract
Objective: The goal of this study was to create a risk model based on the ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients' prognosis and to investigate the potential underlying mechanisms. Material and Methods: A cohort of 482 LUAD patients from the TCGA database was used to develop the prognostic model. We picked the module genes from the ferroptosis gene set using weighted genes co-expression network analysis (WGCNA). The least absolute shrinkage and selection operator (LASSO) and univariate cox regression were used to screen the hub genes. Finally, the multivariate Cox analysis constructed a risk prediction score model. Three other cohorts of LUAD patients from the GEO database were included to validate the prediction ability of our model. Furthermore, the differentially expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed. Results: An eight-gene-based prognostic model, including PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients from the TCGA database were classified into the high-RS and low-RS groups. The high-RS group was characterized by poor overall survival (OS) and less immune infiltration. Based on clinical traits, we separated the patients into various subgroups, and RS had remarkable prediction performance in each subgroup. The RS distribution analysis demonstrated that the RS was significantly associated with the stage of the LUAD patients. According to the study of immune cell infiltration in both groups, patients in the high-RS group had a lower abundance of immune cells, and less infiltration was associated with worse survival. Besides, we discovered that the high-RS group might not respond well to immune checkpoint inhibitors when we analyzed the gene expression of immune checkpoints. However, drug sensitivity analysis suggested that high-RS groups were more sensitive to common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib. Conclusion: We constructed a novel and reliable ferroptosis-related model for LUAD patients, which was associated with prognosis, immune cell infiltration, and drug sensitivity, aiming to shed new light on the cancer biology and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Ling X, Lu J, Wang X, Liu L, Liu L, Wang Y, Sun Y, Ren C, Lu C, Yu Z. Ovarian tumorB1-mediated heat shock transcription factor 1 deubiquitination is critical for glycolysis and development of endometriosis. iScience 2022; 25:105363. [PMID: 36339263 PMCID: PMC9626688 DOI: 10.1016/j.isci.2022.105363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Endometriosis is a common chronic condition characterized by abnormal growth of the endometrium outside the uterus. Heat shock transcription factor 1 (HSF1) is a significant regulator of the proteotoxic stress response and plays an essential role in developing endometriosis. However, the mechanisms regulating HSF1 protein stability in endometriosis remain unclear. Here, we demonstrate that OTUB1 interacts with HSF1 and promotes HSF1 protein stability through deubiquitination. In addition, OTUB1 enhances glycolysis and epithelial-mesenchymal transition of endometriosis cells, leading to promote proliferation, migration, and invasion of endometriosis cells. The progression of endometriosis is inhibited in an OTUB1-knockout mouse model. In summary, OTUB1 promotes the development of endometriosis by up-regulating HSF1. OTUB1/HSF1 axis may become a new therapeutic target for endometriosis. OTUB1 interacts with HSF1 and promotes HSF1 protein stability via deubiquitination OTUB1 enhances glycolysis and EMT of endometriosis cells Knockdown of OTUB1 inhibits the development of endometriotic tissue in vivo OTUB1/HSF1 axis may become a new therapeutic target for endometriosis
Collapse
|
25
|
Tan L, Shan H, Han C, Zhang Z, Shen J, Zhang X, Xiang H, Lu K, Qi C, Li Y, Zhuang G, Chen G, Tan L. Discovery of Potent OTUB1/USP8 Dual Inhibitors Targeting Proteostasis in Non-Small-Cell Lung Cancer. J Med Chem 2022; 65:13645-13659. [PMID: 36221183 DOI: 10.1021/acs.jmedchem.2c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deubiquitinating enzymes (DUBs) are key regulatory components of the ubiquitination system. Many DUBs have been revealed to play key roles in normal physiology and diseases. However, only very limited DUB members have well-characterized inhibitors. OTUB1 and USP8 are two DUBs reported to promote both immune evasion and tumorigenesis in tumor models, yet their targeted inhibitors are in the early stages of development. Here, we describe the lead identification and optimization of an OTUB1/USP8 dual inhibitor, 61, which exhibits highly potent and selective inhibition of both targets with subnanomolar IC50s in vitro. By inhibiting both DUBs, 61 phenocopies the double knockdown of OTUB1/USP8 and exerts pronounced antiproliferative effects in H1975 and other non-small-cell lung cancer (NSCLC) cell lines. Moreover, 61 efficaciously mitigates tumor growth in vivo. Collectively, our results provide a useful tool for pharmacological perturbation of OTUB1/USP8 and introduce a promising therapeutic strategy of dual DUB inhibition for treating NSCLC.
Collapse
Affiliation(s)
- Lingli Tan
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
26
|
Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29:1864-1873. [PMID: 35296795 PMCID: PMC9433372 DOI: 10.1038/s41418-022-00971-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
MYC as a transcriptional factor plays a crucial role in breast cancer progression. However, the mechanisms underlying MYC deubiquitination in breast cancer are not well defined. Here, we report that OTUB1 is responsible for MYC deubiquitination. OTUB1 could directly deubiquitinate MYC at K323 site, which blocks MYC protein degradation. Moreover, OTUB1 mediated MYC protein stability is also confirmed in OTUB1-knockout mice. Stabilized MYC by OTUB1 promotes its transcriptional activity and induces HK2 expression, which leads to enhance aerobic glycolysis. Therefore, OTUB1 promotes breast tumorigenesis in vivo and in vitro via blocking MYC protein degradation. Taken together, our data identify OTUB1 as a new deubiquitination enzyme for MYC protein degradation, which provides a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
27
|
Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Dis 2022; 8:292. [PMID: 35715413 PMCID: PMC9205893 DOI: 10.1038/s41420-022-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a critical biological process in post-translational modification of proteins and involves multiple signaling pathways in protein metabolism, apoptosis, DNA damage, cell-cycle progression, and cancer development. Deubiquitinase, a specific enzyme that regulates the ubiquitination process, is also thought to be closely associated with the development and progression of various cancers. In this article, we systematically review the emerging role of the deubiquitinase ubiquitin-specific peptidase 11 (USP11) in many cancer-related pathways. The results show that USP11 promotes or inhibits the progression and chemoresistance of different cancers, including colorectal, breast, ovarian, and hepatocellular carcinomas, via deubiquitinating several critical proteins of cancer-related pathways. We initially summarize the role of USP11 in different cancers and further discuss the possibility of USP11 as a therapeutic strategy.
Collapse
|
28
|
Liang X, Hu C, Han M, Liu C, Sun X, Yu K, Gu H, Zhang J. Solasonine Inhibits Pancreatic Cancer Progression With Involvement of Ferroptosis Induction. Front Oncol 2022; 12:834729. [PMID: 35494004 PMCID: PMC9039314 DOI: 10.3389/fonc.2022.834729] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly fatal malignant tumor of the digestive system. It is characterized by early metastasis and high mortality rates. Solasonine, a steroidal alkaloid, is derived from Solanum nigrum L., a natural herb. Solasonine is associated with excellent anti-tumor effects, however, its effects on pancreatic cancer have not been fully established. Pancreatic cancer cells (PANC-1 and CFPAC-1) were used to verify the in vitro and in vivo effects of solasonine. Metabolomics were used to evaluate its underlying mechanisms. Solasonine promoted PANC-1 and CFPAC-1 cell apoptosis while inhibiting their proliferation, migration and invasion. Mouse xenograft models and metastasis models of ANC-1 and CFPAC-1 confirmed that solasonine blocked tumor formation and metastasis. Metabolomics confirmed the effects of solasonine on glutathione metabolism and SLC7A11-mediated ferroptosis. Furthermore, Co-Immunoprecipitation and Duolink®in situ PLA confirmed that OTUB1, a deubiquitylating enzyme, interacted with SLC7A11 and solasonine to enhance ubiquitinated degradation of SLC7A11 in PANC-1 and CFPAC-1 cells. Besides, molecular docking confirmed that solasonine directly bound TFAP2A and suppressed its protein levels. Bioinformatics and luciferase assays revealed that TFAP2A binds the OTUB1 promoter region, thereby promoting its transcription. In summary, solasonine inhibits the TFAP2A/OTUB1 SLC7A11 axis to activate ferroptosis and suppress pancreatic cancer cell progression.
Collapse
Affiliation(s)
- Xiaoqiang Liang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mian Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congying Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xun Sun
- Gastrointestinal surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kui Yu
- General surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honggang Gu
- Hepatobiliary surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhe Zhang
- Hepatobiliary surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Ye D, Wang S, Wang X, Lin Y, Huang Y, Chi P. Overexpression of OTU domain-containing ubiquitin aldehyde-binding protein 1 exacerbates colorectal cancer malignancy by inhibiting protein degradation of β-Catenin via Ubiquitin-proteasome pathway. Bioengineered 2022; 13:9106-9116. [PMID: 35354355 PMCID: PMC9161894 DOI: 10.1080/21655979.2022.2057897] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although major advances were achieved in colorectal cancer (CRC) therapy, major concerns still remain on proper control of cancer metastasis and chemo-resistance in order to achieve satisfactory general treatment response. Previous studies suggested that OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1) serves as regulator of gene ubiquitination and participates in the pathogenesis of multiple malignancies. Therefore, to discover its molecular mechanism in CRC tumor growth and metastasis will contribute in CRC treatment strategy development. Clinical tissues and CRC cancer cell lines were utilized to evaluate OTUB1 expression pattern. Functional tests including cellular proliferation, migration and invasion, as well as chemo-resistance, etc., were evaluated to investigate the role of OTUB1/β-catenin regulatory pathway on CRC malignant biological behaviors. Both CRC tumor tissues and CRC cell lines exhibited promoted OTUB1 expression level. Subsequent experiments further suggested that OTUB1 promoted CRC malignancy by enhancing protein stability of β-catenin, via inhibition of its protein degradation by UPP pathway, which indicated its crucial role in enhancement of CRC tumor cellular proliferative and chemo-resistant capabilities. This study reported that OTUB1 exhibited novel pro-survival and pro-metastatic function by interaction of β-Catenin via Ubiquitin-proteasome pathway. Our research indicated that OTUB1/β-Catenin regulatory axis might be potential druggable target for CRC cancer patients’ treatment.
Collapse
Affiliation(s)
- Daoxiong Ye
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Sisi Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaojie Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yu Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Ying Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Pan Chi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
30
|
Ouyang S, Zeng Z, Liu Z, Zhang Z, Sun J, Wang X, Ma M, Ye X, Yu J, Kang W. OTUB2 regulates KRT80 stability via deubiquitination and promotes tumour proliferation in gastric cancer. Cell Death Discov 2022; 8:45. [PMID: 35110531 PMCID: PMC8810928 DOI: 10.1038/s41420-022-00839-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/09/2022] Open
Abstract
OTUB2 is a deubiquitinating enzyme that contributes to tumor progression. However, the expression of OTUB2 and its prognostic importance in gastric cancer remain unclear. The expression of OTUB2 and KRT80 in GC tissues was investigated using western blotting, qRT-PCR, multiple immunofluorescence staining, and immunohistochemistry. For survival studies, Kaplan-Meier analysis with the log-rank test was used. The role of OTUB2 during GC proliferation was investigated using in vivo and in vitro assays. OTUB2 was found to be overexpressed in GC tissues and to act as an oncogene, which was linked to patients' poor prognosis. Knockdown of OTUB2 inhibited the proliferative capacity of GC cells in vitro and in vivo, although the proliferative capacity was restored upon re-supplementation with KRT80. OTUB2 mechanically stabilized KRT80 by deubiquitinating and shielding it from proteasome-mediated degradation through Lys-48 and Lys-63. Furthermore, by activating the Akt signaling pathway, OTUB2 and KRT80 facilitated GC proliferation. In summary, OTUB2 regulates KRT80 stability via deubiquitination promoting proliferation in GC via activation of the Akt signaling pathway, implying that OTUB2 could be a novel prognostic marker.
Collapse
Affiliation(s)
- Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
31
|
Liao Y, Yang M, Wang K, Wang Y, Zhong B, Jiang N. Deubiquitinating enzyme OTUB1 in immunity and cancer: Good player or bad actor? Cancer Lett 2022; 526:248-258. [PMID: 34875341 DOI: 10.1016/j.canlet.2021.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) is the most important element of the deubiquitinase OTU superfamily, which has been identified as an essential regulator of diverse physiological processes, such as DNA damage repair and cytokines secretion. Recently, we found that the pro-carcinogenesis role of OTUB1 and the relationship between OTUB1 and immune response have gradually become the research hot-spot. OTUB1 regulates NK/CD8 T cell activation, autoimmune diseases, PD-L1 mediated immune evasion, viral or bacterial infection related immune response and the occurrence and progression of various cancers via deubiquitinating and stabilizing related proteins. This review provides a comprehensive description about the role and regulatory axis of OTUB1. We can explore the balance between immune response and defense via regulating the level of OTUB1, and targeting OTUB1 might restrain the progression of cancers. This review highlights the experimental evidence that OTUB1 is a feasible and potential therapeutic target against various cancers progression and immune diseases or disorder.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150000, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
32
|
Lee BS, Kang SU, Huang M, Kim YS, Lee YS, Park JY, Kim CH. OTUB1 knockdown promotes apoptosis in melanoma cells by upregulating TRAIL expression. BMB Rep 2021. [PMID: 34488924 PMCID: PMC8728537 DOI: 10.5483/bmbrep.2021.54.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Mei Huang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| |
Collapse
|
33
|
Zhao X, Zhou M, Yang Y, Luo M. The ubiquitin hydrolase OTUB1 promotes glioma cell stemness via suppressing ferroptosis through stabilizing SLC7A11 protein. Bioengineered 2021; 12:12636-12645. [PMID: 34927544 PMCID: PMC8810032 DOI: 10.1080/21655979.2021.2011633] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin hydrolase OTUB1 has been elucidated to be highly expressed in tumors, however, its roles in glioma progression are still confusing. Here, via analyzing several online datasets, OTUB1 expression was shown to be remarkably increased in glioma tissues compared to that in the adjacent tissues, and predicted a poor overall survival of glioma patients. Then OTUB1 was knocked down in glioma cells and it was found that OTUB1 knockdown significantly reduced glioma cell stemness by detecting sphere-formation ability, stemness marker expression, and ALDH activity. Mechanistic experiments revealed that OTUB1 stabilized SLC7A11 protein via directly interacting with SLC7A11, which is a key suppressor of ferripotosis. Indeed, OTUB1 knockdown triggered ferroptosis dependent on SLC7A11 expression. Notably, ectopic expression of SLC7A11 attenuated the inhibition of OTUB1 knockdown on the stemenss of glioma cells. Finally, we found a positive correlation between OTUB1 and SLC7A11 expression in clinical samples. Taken together, this work identifies a novel OTUB1/SLC7A11 axis contributing to glioma cell stemness.
Collapse
Affiliation(s)
- Xinde Zhao
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ming Zhou
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Yang
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Minjie Luo
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Kim S, Park K, Oh JM, Kim H. RNF126 is a positive regulator of TRAF3 ubiquitination. Biosci Biotechnol Biochem 2021; 85:2420-2428. [PMID: 34643674 DOI: 10.1093/bbb/zbab177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Ubiquitination and deubiquitination of signaling molecules are critical regulatory mechanisms in various biological contexts such as inflammatory signaling and the DNA damage response. Thus, finely tuned regulation of protein ubiquitination is essential for maintaining cellular homeostasis. Here, we showed that the RING finger protein RNF126 interacts with TRAF3 and promotes its K63-linked polyubiquitination, which is a crucial step in the TRAF3-dependent antiviral response. We found that RNF126 also interacts with OTUB1, a deubiquitinating enzyme that negatively regulates K63-linked ubiquitination of TRAF3. RNF126 promotes ubiquitination of OTUB1, leading to reduced deubiquitinating activity toward TRAF3. Moreover, RNF126 promotes ubiquitination of OTUB1 on cysteine 91, which is reportedly required for its catalytic activity. Taken together, our results suggest that RNF126 positively regulates the antiviral response by directly promoting K63-linked polyubiquitination of TRAF3 and by reducing OTUB1 activity.
Collapse
Affiliation(s)
- Soomi Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kibeom Park
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan, Republic of Korea
| |
Collapse
|
35
|
Ruiz-Serrano A, Monné Rodríguez JM, Günter J, Sherman SPM, Jucht AE, Fluechter P, Volkova YL, Pfundstein S, Pellegrini G, Wagner CA, Schneider C, Wenger RH, Scholz CC. OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control. FASEB J 2021; 35:e22039. [PMID: 34793600 DOI: 10.1096/fj.202100346r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
OTUB1 is one of the most highly expressed deubiquitinases, counter-regulating the two most abundant ubiquitin chain types. OTUB1 expression is linked to the development and progression of lung cancer and idiopathic pulmonary fibrosis in humans. However, the physiological function of OTUB1 is unknown. Here, we show that constitutive whole-body Otub1 deletion in mice leads to perinatal lethality by asphyxiation. Analysis of (single-cell) RNA sequencing and proteome data demonstrated that OTUB1 is expressed in all lung cell types with a particularly high expression during late-stage lung development (E16.5, E18.5). At E18.5, the lungs of animals with Otub1 deletion presented with increased cell proliferation that decreased saccular air space and prevented inhalation. Flow cytometry-based analysis of E18.5 lung tissue revealed that Otub1 deletion increased proliferation of major lung parenchymal and mesenchymal/other non-hematopoietic cell types. Adult mice with conditional whole-body Otub1 deletion (wbOtub1del/del ) also displayed increased lung cell proliferation in addition to hyperventilation and failure to adapt the respiratory pattern to hypoxia. On the molecular level, Otub1 deletion enhanced mTOR signaling in embryonic and adult lung tissues. Based on these results, we propose that OTUB1 is a negative regulator of mTOR signaling with essential functions for lung cell proliferation, lung development, adult lung tissue homeostasis, and respiratory regulation.
Collapse
Affiliation(s)
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | | | - Pascal Fluechter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| |
Collapse
|
36
|
Xie P, Chao Q, Mao J, Liu Y, Fang J, Xie J, Zhen J, Ding Y, Fu B, Ke Y, Huang D. The deubiquitinase OTUB1 fosters papillary thyroid carcinoma growth through EYA1 stabilization. J Cell Mol Med 2021; 25:10980-10989. [PMID: 34773364 PMCID: PMC8642681 DOI: 10.1111/jcmm.17020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Abstract
Deubiquitinating enzyme OTU domain‐containing ubiquitin aldehyde‐binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1‐derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Chao
- Second College of Clinical Medicine, Zunyi Medical University, Zhuhai, China
| | - Jiuang Mao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jiayu Fang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Xie
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Xu R, Lu T, Zhao J, Li Q, Wang J, Peng B, Liu J, Zhang P, Qu L, Chang X, Yao L, Zhang L. Identification of ubiquitinated substrate proteins and their gene expression patterns in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1692. [PMID: 34988201 PMCID: PMC8667112 DOI: 10.21037/atm-21-5645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Background Lung cancer is a malignant disease with the highest cancer-related mortality rate. In lung adenocarcinoma (LUAD), protein ubiquitination can regulate multiple biological processes. A LUAD ubiquitylome analysis has not yet been reported. Methods We used for the first time ion mobility into liquid chromatography-mass spectrometry to perform accurate and reliable ubiquitylome and proteomic analysis of clinical LUAD and normal tissues and combined it with transcriptome data obtained from public databases. Ubiquitinated protein substrates and their gene expression pattern landscapes in LUAD were identified using bioinformatics methods. Results Our data revealed a ubiquitination landscape in LUAD and identified characteristic protein ubiquitination motifs. We found that the ubiquitinated peptide motifs in LUAD were completely different from those of previously published lung squamous cell carcinoma (LUSC). Moreover, we identified two gene expression patterns of ubiquitinated proteins and revealed that survival differences between these patterns may be correlated with the tumor immune infiltrating microenvironment. Finally, we constructed a prognostic predictive model to quantify the relationship between expression patterns and survival. We found a relationship between the patient-applied model score and multiple drug sensitivity. Therefore, our model can serve as a guide for LUAD clinical treatment. Conclusions Our work addresses the lack of ubiquitylome studies in LUAD and provides new perspectives for subsequent research and clinical treatment.
Collapse
Affiliation(s)
- Ran Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jian Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lidong Qu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lingqi Yao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Zhang J, Jiang X, Yin J, Dou S, Xie X, Liu T, Wang Y, Wang S, Zhou X, Zhang D, Jiang H. RNF141 interacts with KRAS to promote colorectal cancer progression. Oncogene 2021; 40:5829-5842. [PMID: 34345014 PMCID: PMC8484013 DOI: 10.1038/s41388-021-01877-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
RING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.
Collapse
Affiliation(s)
- Jiuna Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
- Department of Gastroenterology, The Affiliated Hospital of Hebei Engineering University, Handan, P. R. China
| | - Xiaoyu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Shiying Dou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Xiaoli Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Ting Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Yijun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Shuling Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Dongxuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China
| | - Huiqing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, P. R. China.
| |
Collapse
|
39
|
Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol 2021; 71:180-192. [PMID: 34365229 DOI: 10.1016/j.sbi.2021.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, USA
| |
Collapse
|
40
|
Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, Yang B, Lu JJ, Zhu H. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin 2021; 42:1201-1211. [PMID: 33087838 PMCID: PMC8285426 DOI: 10.1038/s41401-020-00542-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
Aberrant activation of the RAS superfamily is one of the critical factors in carcinogenesis. Among them, KRAS is the most frequently mutated one which has inspired extensive studies for developing approaches to intervention. Although the cognition toward KRAS remains far from complete, mounting evidence suggests that a variety of post-translational modifications regulate its activation and localization. In this review, we summarize the regulatory mode of post-translational modifications on KRAS including prenylation, post-prenylation, palmitoylation, ubiquitination, phosphorylation, SUMOylation, acetylation, nitrosylation, etc. We also highlight the recent studies targeting these modifications having exhibited potent anti-tumor activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Jie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021; 8:707439. [PMID: 34307463 PMCID: PMC8295990 DOI: 10.3389/fmolb.2021.707439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.
Collapse
Affiliation(s)
- Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Doshun Ito
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Venkat R. Chirasani
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
42
|
Mulas F, Wang X, Song S, Nishanth G, Yi W, Brunn A, Larsen PK, Isermann B, Kalinke U, Barragan A, Naumann M, Deckert M, Schlüter D. The deubiquitinase OTUB1 augments NF-κB-dependent immune responses in dendritic cells in infection and inflammation by stabilizing UBC13. Cell Mol Immunol 2021; 18:1512-1527. [PMID: 32024978 PMCID: PMC8167118 DOI: 10.1038/s41423-020-0362-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/01/2020] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells (DCs) are indispensable for defense against pathogens but may also contribute to immunopathology. Activation of DCs upon the sensing of pathogens by Toll-like receptors (TLRs) is largely mediated by pattern recognition receptor/nuclear factor-κB (NF-κB) signaling and depends on the appropriate ubiquitination of the respective signaling molecules. However, the ubiquitinating and deubiquitinating enzymes involved and their interactions are only incompletely understood. Here, we reveal that the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) is upregulated in DCs upon murine Toxoplasma gondii infection and lipopolysaccharide challenge. Stimulation of DCs with the TLR11/12 ligand T. gondii profilin and the TLR4 ligand lipopolysaccharide induced an increase in NF-κB activation in OTUB1-competent cells, resulting in elevated interleukin-6 (IL-6), IL-12, and tumor necrosis factor (TNF) production, which was also observed upon the specific stimulation of TLR2, TLR3, TLR7, and TLR9. Mechanistically, OTUB1 promoted NF-κB activity in DCs by K48-linked deubiquitination and stabilization of the E2-conjugating enzyme UBC13, resulting in increased K63-linked ubiquitination of IRAK1 (IL-1 receptor-associated kinase 1) and TRAF6 (TNF receptor-associated factor 6). Consequently, DC-specific deletion of OTUB1 impaired the production of cytokines, in particular IL-12, by DCs over the first 2 days of T. gondii infection, resulting in the diminished production of protective interferon-γ (IFN-γ) by natural killer cells, impaired control of parasite replication, and, finally, death from chronic T. encephalitis, all of which could be prevented by low-dose IL-12 treatment in the first 3 days of infection. In contrast, impaired OTUB1-deficient DC activation and cytokine production by OTUB1-deficient DCs protected mice from lipopolysaccharide-induced immunopathology. Collectively, these findings identify OTUB1 as a potent novel regulator of DCs during infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Floriana Mulas
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Shanshan Song
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Wenjing Yi
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
| | - Berend Isermann
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, 30625, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, 30625, Hannover, Germany
| | - Antonio Barragan
- Department of Molecular Biosciences, Stockholm University, 10691, Stockholm, Sweden
| | - Michael Naumann
- Institute for Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
43
|
Zhang HH, Li C, Ren JW, Liu L, Du XH, Gao J, Liu T, Li SZ. OTUB1 facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. Cancer Sci 2021; 112:2199-2209. [PMID: 33686769 PMCID: PMC8177800 DOI: 10.1111/cas.14876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) plays an important role in carcinogenesis, but the functional role and mechanism of UPR‐associated bladder carcinogenesis remain to be characterized. Upon UPR activation, ATF6α is activated to upregulate the transcription of UPR target genes. Although the mechanism of ATF6 activation has been studied extensively, the negative regulation of ATF6 stabilization is not well understood. Here, we report that the deubiquitinase otubain 1 (OTUB1) facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. OTUB1 expression is raised in bladder cancer patients. Genetic ablation of OTUB1 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. Mechanistically, luciferase pathway screening showed that ATF6 signaling was clearly activated compared with other pathways. OTUB1 was found to activate ATF6 signaling by inhibiting its ubiquitylation, thereby remodeling the stressed cells through transcriptional regulation. Our results show that high OTUB1 expression promotes bladder cancer progression by stabilizing ATF6 and that OTUB1 is a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Chao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Lian Liu
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shang-Ze Li
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Zhu Q, Fu Y, Li L, Liu CH, Zhang L. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev 2021; 67:101303. [PMID: 33609777 DOI: 10.1016/j.arr.2021.101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins Otubain1 (OTUB1) and Otubain2 (OTUB2) were initially identified as OTU deubiquitinases (DUBs). Recently, Otubains have emerged as essential regulators of diverse physiological processes, such as immune signaling and DNA damage response. Dysregulation of those processes is likely to increase the risk in multiple aspects of aging-related diseases, including cancers, neurodegenerative disorders, chronic kidney diseases, bone dysplasia and pulmonary fibrosis. Consistently, Otubains are aberrantly expressed in cancers and have been identified to be both tumor suppressors and tumor promoters in different types of cancers. Therefore, the regulatory mechanism of the activity and expression of Otubains is very important for better understanding of Otubains-associated biological networks and human diseases. This review provides a comprehensive description of functions and regulatory axis of Otubains, highlighting experimental evidences indicating Otubains as potential therapeutic targets against aging-related disorders.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
45
|
Shu L, Wang D, Saba NF, Chen ZG. A Historic Perspective and Overview of H-Ras Structure, Oncogenicity, and Targeting. Mol Cancer Ther 2021; 19:999-1007. [PMID: 32241873 DOI: 10.1158/1535-7163.mct-19-0660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
H-Ras is a unique isoform of the Ras GTPase family, one of the most prominently mutated oncogene families across the cancer landscape. Relative to other isoforms, though, mutations of H-Ras account for the smallest proportion of mutant Ras cancers. Yet, in recent years, there have been renewed efforts to study this isoform, especially as certain H-Ras-driven cancers, like those of the head and neck, have become more prominent. Important advances have therefore been made not only in the understanding of H-Ras structural biology but also in approaches designed to inhibit and impair its signaling activity. In this review, we outline historic and present initiatives to elucidate the mechanisms of H-Ras-dependent tumorigenesis as well as highlight ongoing developments in the quest to target this critical oncogene.
Collapse
Affiliation(s)
- Lihua Shu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
46
|
Xu Y, Xu M, Tong J, Tang X, Chen J, Chen X, Zhang Z, Cao B, Stewart AK, Moran MF, Wu D, Mao X. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood 2021; 137:1478-1490. [PMID: 32842143 DOI: 10.1182/blood.2020005199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), but how to achieve it is still elusive. In the present study, we found the Otub1/c-Maf axis could be a potential target. Otub1, an OTU family deubiquitinase, was found to interact with c-Maf by mass spectrometry. Otub1 abrogates c-Maf K48-linked polyubiquitination, thus preventing its degradation and enhancing its transcriptional activity. Specifically, this deubiquitinating activity depends on its Lys71 and the N terminus but is independent of UBE2O, a known E2 of c-Maf. Otub1 promotes MM cell survival and MM tumor growth. In contrast, silence of Otub1 leads to c-Maf degradation and c-Maf-expressing MM cell apoptosis. Therefore, the Otub1/c-Maf axis could be a therapeutic target of MM. In order to explore this concept, we performed a c-Maf recognition element-driven luciferase-based screen against US Food and Drug Administration-approved drugs and natural products, from which the generic cardiac glycoside lanatoside C (LanC) is found to prevent c-Maf deubiquitination and induces its degradation by disrupting the interaction of Otub1 and c-Maf. Consequently, LanC inhibits c-Maf transcriptional activity, induces c-Maf-expressing MM cell apoptosis, and suppresses MM growth and prolongs overall survival of model mice, but without apparent toxicity. Therefore, the present study identifies Otub1 as a novel deubiquitinase of c-Maf and establishes that the Otub1/c-Maf axis is a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yujia Xu
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jiefei Tong
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xuehan Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | | | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Inhibition of Nonfunctional Ras. Cell Chem Biol 2021; 28:121-133. [PMID: 33440168 PMCID: PMC7897307 DOI: 10.1016/j.chembiol.2020.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Intuitively, functional states should be targeted; not nonfunctional ones. So why could drugging the inactive K-Ras4BG12Cwork-but drugging the inactive kinase will likely not? The reason is the distinct oncogenic mechanisms. Kinase driver mutations work by stabilizing the active state and/or destabilizing the inactive state. Either way, oncogenic kinases are mostly in the active state. Ras driver mutations work by quelling its deactivation mechanisms, GTP hydrolysis, and nucleotide exchange. Covalent inhibitors that bind to the inactive GDP-bound K-Ras4BG12C conformation can thus work. By contrast, in kinases, allosteric inhibitors work by altering the active-site conformation to favor orthosteric drugs. From the translational standpoint this distinction is vital: it expedites effective pharmaceutical development and extends the drug classification based on the mechanism of action. Collectively, here we postulate that drug action relates to blocking the mechanism of activation, not to whether the protein is in the active or inactive state.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
48
|
Zhao CX, Zeng CM, Wang K, He QJ, Yang B, Zhou FF, Zhu H. Ubiquitin-proteasome system-targeted therapy for uveal melanoma: what is the evidence? Acta Pharmacol Sin 2021; 42:179-188. [PMID: 32601365 DOI: 10.1038/s41401-020-0441-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Uveal melanoma (UM) is a rare ocular tumor. The loss of BRCA1-associated protein 1 (BAP1) and the aberrant activation of G protein subunit alpha q (GNAQ)/G protein subunit alpha 11 (GNA11) contribute to the frequent metastasis of UM. Thus far, limited molecular-targeted therapies have been developed for the clinical treatment of UM. However, an increasing number of studies have revealed the close relationship between the ubiquitin proteasome system (UPS) and the malignancy of UM. UPS consists of a three-enzyme cascade, i.e. ubiquitin-activating enzymes (E1s); ubiquitin-conjugating enzymes (E2s); and ubiquitin-protein ligases (E3s), as well as 26S proteasome and deubiquitinases (DUBs), which work coordinately to dictate the fate of intracellular proteins through regulating ubiquitination, thus influencing cell viability. Due to the critical role of UPS in tumors, we here provide an overview of the crosstalk between UPS and the malignancy of UM, discuss the current UPS-targeted therapies in UM and highlight its potential in developing novel regimens for UM.
Collapse
|
49
|
Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ 2020; 28:1773-1789. [PMID: 33328570 DOI: 10.1038/s41418-020-00700-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of programmed death ligand 1 (PD-L1) helps tumor cells escape from immune surveillance, and therapeutic antibodies targeting PD-1/PD-L1 have shown better patient outcomes only in several types of malignancies. Recent studies suggest that the clinical efficacy of anti-PD-1/PD-L1 treatments is associated with PD-L1 levels; however, the underlying mechanism of high PD-L1 protein levels in cancers is not well defined. Here, we report that the deubiquitinase OTUB1 positively regulates PD-L1 stability and mediates cancer immune responses through the PD-1/PD-L1 axis. Mechanistically, we demonstrate that OTUB1 interacts with and removes K48-linked ubiquitin chains from the PD-L1 intracellular domain in a manner dependent on its deubiquitinase activity to hinder the degradation of PD-L1 through the ERAD pathway. Functionally, depletion of OTUB1 markedly decreases PD-L1 abundance, reduces PD-1 protein binding to the tumor cell surface, and causes increased tumor cell sensitivity to human peripheral blood mononuclear cells (PBMCs)-mediated cytotoxicity. Meanwhile, OTUB1 ablation-induced PD-L1 destabilization facilitates more CD8+ T cells infiltration and increases the level of IFN-γ in serum to enhance antitumor immunity in mice, and the tumor growth suppression by OTUB1 silencing could be reversed by PD-L1 overexpression. Furthermore, we observe a significant correlation between PD-L1 abundance and OTUB1 expression in human breast carcinoma. Our study reveals OTUB1 as a deubiquitinating enzyme that influences cancer immunosuppression via regulation of PD-L1 stability and may be a potential therapeutic target for cancer immunotherapy.
Collapse
|
50
|
Zhou K, Mai H, Zheng S, Cai W, Yang X, Chen Z, Zhan B. OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in renal cell carcinoma. Cell Biosci 2020; 10:50. [PMID: 32257108 PMCID: PMC7106863 DOI: 10.1186/s13578-020-00408-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background OTUB1 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding proteins)-mediated deubiquitination of FOXM1 (Forkhead box M1) participates in carcinogenesis of various tumors. We aim to investigate the effect and mechanism of OTUB1/FOXM1 on RCC (renal cell carcinoma) progression. Expression levels of OTUB1 in RCC tissues and cell lines were examined by qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. Cell proliferation was measured with CCK8 (Cell Counting Kit-8) and colony formation assays. Wound healing and transwell assays were used to determine cell migration and invasion, respectively. The effect of OTUB1 on FOXM1 ubiquitination was examined by Immunoprecipitation. Western blot was used to uncover the underlying mechanism. In vivo subcutaneous xenotransplanted tumor model combined with immunohistochemistry and western blot were used to examine the tumorigenic function of OTUB1. Results OTUB1 was up-regulated in RCC tissues and cell lines, and was associated with poor prognosis of RCC patients. Knockdown of OTUB1 inhibited cell viability and proliferation, as well as migration and invasion of RCC cells. Mechanistically, knockdown of OTUB1 down-regulated FOXM1 expression by promoting its ubiquitination. Down-regulation of FOXM1 inhibited ECT2 (epithelial cell transforming 2)-mediated Rho signaling. Moreover, the inhibition of RCC progression caused by OTUB1 knockdown was reversed by FOXM1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that knockdown of OTUB1 could suppress in vivo RCC growth via down-regulation of FOXM1-mediated ECT2 expression. Conclusions OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in RCC, providing a new potential therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Kai Zhou
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Haixing Mai
- 2Department of Urology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Song Zheng
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Weizhong Cai
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Xu Yang
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Zhenlin Chen
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| | - Bin Zhan
- 1Department of Urology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001 Fujian China
| |
Collapse
|