1
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Wang T, Chen X, Wang K, Ju J, Yu X, Yu W, Liu C, Wang Y. Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes Dis 2024; 11:747-759. [PMID: 37692487 PMCID: PMC10491875 DOI: 10.1016/j.gendis.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 09/12/2023] Open
Abstract
In the mammalian heart, cardiomyocytes are forced to withdraw from the cell cycle shortly after birth, limiting the ability of the heart to regenerate and repair. The development of multimodal regulation of cardiac proliferation has verified that pre-existing cardiomyocyte proliferation is an essential driver of cardiac renewal. With the continuous development of genetic lineage tracking technology, it has been revealed that cell cycle activity produces polyploid cardiomyocytes during the embryonic, juvenile, and adult stages of cardiogenesis, but newly formed mononucleated diploid cardiomyocytes also elevated sporadically during myocardial infarction. It implied that adult cardiomyocytes have a weak regenerative capacity under the condition of ischemia injury, which offers hope for the clinical treatment of myocardial infarction. However, the regeneration frequency and source of cardiomyocytes are still low, and the mechanism of regulating cardiomyocyte proliferation remains further explained. It is noteworthy to explore what force triggers endogenous cardiomyocyte proliferation and heart regeneration. Here, we focused on summarizing the recent research progress of emerging endogenous key modulators and crosstalk with other signaling pathways and furnished valuable insights into the internal mechanism of heart regeneration. In addition, myocardial transcription factors, non-coding RNAs, cyclins, and cell cycle-dependent kinases are involved in the multimodal regulation of pre-existing cardiomyocyte proliferation. Ultimately, awakening the myocardial proliferation endogenous modulator and regeneration pathways may be the final battlefield for the regenerative therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| |
Collapse
|
3
|
Wang AYL, Chang YC, Chen KH, Loh CYY. Potential Application of Modified mRNA in Cardiac Regeneration. Cell Transplant 2024; 33:9636897241248956. [PMID: 38715279 PMCID: PMC11080755 DOI: 10.1177/09636897241248956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Heart failure remains the leading cause of human death worldwide. After a heart attack, the formation of scar tissue due to the massive death of cardiomyocytes leads to heart failure and sudden death in most cases. In addition, the regenerative ability of the adult heart is limited after injury, partly due to cell-cycle arrest in cardiomyocytes. In the current post-COVID-19 era, urgently authorized modified mRNA (modRNA) vaccines have been widely used to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, modRNA-based protein replacement may act as an alternative strategy for improving heart disease. It is a safe, effective, transient, low-immunogenic, and integration-free strategy for in vivo protein expression, in addition to recombinant protein and stem-cell regenerative therapies. In this review, we provide a summary of various cardiac factors that have been utilized with the modRNA method to enhance cardiovascular regeneration, cardiomyocyte proliferation, fibrosis inhibition, and apoptosis inhibition. We further discuss other cardiac factors, modRNA delivery methods, and injection methods using the modRNA approach to explore their application potential in heart disease. Factors for promoting cardiomyocyte proliferation such as a cocktail of three genes comprising FoxM1, Id1, and Jnk3-shRNA (FIJs), gp130, and melatonin have potential to be applied in the modRNA approach. We also discuss the current challenges with respect to modRNA-based cardiac regenerative medicine that need to be overcome to apply this approach to heart disease. This review provides a short description for investigators interested in the development of alternative cardiac regenerative medicines using the modRNA platform.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | |
Collapse
|
4
|
Bhatti JS, Khullar N, Vijayvergiya R, Navik U, Bhatti GK, Reddy PH. Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens. Ageing Res Rev 2023; 86:101882. [PMID: 36780957 DOI: 10.1016/j.arr.2023.101882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Rajesh Vijayvergiya
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Zuppo DA, Missinato MA, Santana-Santos L, Li G, Benos PV, Tsang M. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury. Development 2023; 150:dev201163. [PMID: 36846912 PMCID: PMC10108034 DOI: 10.1242/dev.201163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The regenerative capacity of the mammalian heart is poor, with one potential reason being that adult cardiomyocytes cannot proliferate at sufficient levels to replace lost tissue. During development and neonatal stages, cardiomyocytes can successfully divide under injury conditions; however, as these cells mature their ability to proliferate is lost. Therefore, understanding the regulatory programs that can induce post-mitotic cardiomyocytes into a proliferative state is essential to enhance cardiac regeneration. Here, we report that the forkhead transcription factor Foxm1 is required for cardiomyocyte proliferation after injury through transcriptional regulation of cell cycle genes. Transcriptomic analysis of injured zebrafish hearts revealed that foxm1 expression is increased in border zone cardiomyocytes. Decreased cardiomyocyte proliferation and expression of cell cycle genes in foxm1 mutant hearts was observed, suggesting it is required for cell cycle checkpoints. Subsequent analysis of a candidate Foxm1 target gene, cenpf, revealed that this microtubule and kinetochore binding protein is also required for cardiac regeneration. Moreover, cenpf mutants show increased cardiomyocyte binucleation. Thus, foxm1 and cenpf are required for cardiomyocytes to complete mitosis during zebrafish cardiac regeneration.
Collapse
Affiliation(s)
- Daniel A. Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Maria A. Missinato
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Avidity Biosciences, 10578 Science Center Dr. Suite 125, San Diego, CA 92121, USA
| | - Lucas Santana-Santos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Guang Li
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Cheng YY, Gregorich Z, Prajnamitra RP, Lundy DJ, Ma TY, Huang YH, Lee YC, Ruan SC, Lin JH, Lin PJ, Kuo CW, Chen P, Yan YT, Tian R, Kamp TJ, Hsieh PC. Metabolic Changes Associated With Cardiomyocyte Dedifferentiation Enable Adult Mammalian Cardiac Regeneration. Circulation 2022; 146:1950-1967. [PMID: 36420731 PMCID: PMC9808601 DOI: 10.1161/circulationaha.122.061960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac regeneration after injury is limited by the low proliferative capacity of adult mammalian cardiomyocytes (CMs). However, certain animals readily regenerate lost myocardium through a process involving dedifferentiation, which unlocks their proliferative capacities. METHODS We bred mice with inducible, CM-specific expression of the Yamanaka factors, enabling adult CM reprogramming and dedifferentiation in vivo. RESULTS Two days after induction, adult CMs presented a dedifferentiated phenotype and increased proliferation in vivo. Microarray analysis revealed that upregulation of ketogenesis was central to this process. Adeno-associated virus-driven HMGCS2 overexpression induced ketogenesis in adult CMs and recapitulated CM dedifferentiation and proliferation observed during partial reprogramming. This same phenomenon was found to occur after myocardial infarction, specifically in the border zone tissue, and HMGCS2 knockout mice showed impaired cardiac function and response to injury. Finally, we showed that exogenous HMGCS2 rescues cardiac function after ischemic injury. CONCLUSIONS Our data demonstrate the importance of HMGCS2-induced ketogenesis as a means to regulate metabolic response to CM injury, thus allowing cell dedifferentiation and proliferation as a regenerative response.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Zachery Gregorich
- Department of Medicine and Stem Cell and Regenerative Medicine Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - David J. Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ting-Yun Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsuan Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jen-Hao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Timothy J. Kamp
- Department of Medicine and Stem Cell and Regenerative Medicine Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick C.H. Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Medicine and Stem Cell and Regenerative Medicine Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
7
|
Ouchi Y, Sahu SK, Izpisua Belmonte JC. FOXM1 delays senescence and extends lifespan. NATURE AGING 2022; 2:373-374. [PMID: 37118068 DOI: 10.1038/s43587-022-00222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
8
|
Cui B, Zheng Y, Gao X, Zhang L, Li B, Chen J, Zhou X, Cai M, Sun W, Zhang Y, Chang K, Xu J, Zhu F, Luo Y, Sun T, Qian J, Sun N. Therapeutic application of chick early amniotic fluid: effective rescue of acute myocardial ischemic injury by intravenous administration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:9. [PMID: 35362769 PMCID: PMC8975954 DOI: 10.1186/s13619-022-00110-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Myocardial regeneration has been considered a promising option for the treatment of adult myocardial injuries. Previously, a chick early amniotic fluid (ceAF) preparation was shown to contain growth-related factors that promoted embryonic growth and cellular proliferation, though the nature of the components within ceAF were not fully defined. Here we tested whether this ceAF preparation is similarly effective in the promotion of myocardial regeneration, which could provide an alternative therapeutic for intervening myocardial injury. In this study, a myocardial ischemic injury model was established in adult mice and pigs by multiple research entities, and we were able to show that ceAF can efficiently rescue damaged cardiac tissues and markedly improve cardiac function in both experimental models through intravenous administration. ceAF administration increased cell proliferation and improved angiogenesis, likely via down-regulation of Hippo-YAP signaling. Our data suggest that ceAF administration can effectively rescue ischemic heart injury, providing the key functional information for the further development of ceAF for use in attenuating myocardial injury.
Collapse
Affiliation(s)
- Baiping Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yufan Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Gao
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Lihong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Borui Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia Chen
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyan Zhou
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Cai
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenrui Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Keejong Chang
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Jiayi Xu
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China
| | - Fuyin Zhu
- Shanghai Mincal Medical Research Co. Ltd., Large Animal Research Center, Shanghai, 201201, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang, 310009, Hangzhou, China.
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China.
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China.
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Internal Medicine, Huashan Hospital West Campus, Fudan University, Shanghai, 200032, China.
| | - Jin Qian
- Zhejiang Hygeian Cells BioMedical Co. Ltd, Zhejiang, 310019, Hangzhou, China.
- Stem Cell Application Research Center, the Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 310019, Hangzhou, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Alam P, Maliken BD, Jones SM, Ivey MJ, Wu Z, Wang Y, Kanisicak O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int J Mol Sci 2021; 22:ijms222313104. [PMID: 34884909 PMCID: PMC8658114 DOI: 10.3390/ijms222313104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Bryan D. Maliken
- Harrington Physician-Scientist Pathway, Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA;
| | - Shannon M. Jones
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
- Correspondence: ; Tel.: +1-513-558-2029; Fax: +1-513-584-3892
| |
Collapse
|
10
|
Yokura-Yamada Y, Araki M, Maeda M. Ectopic expression of Id1 or Id3 inhibits transcription of the GATA-4 gene in P19CL6 cells under differentiation condition. Drug Discov Ther 2021; 15:189-196. [PMID: 34421098 DOI: 10.5582/ddt.2021.01069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitor of DNA binding (Id) is a dominant negative form of the E-box binding basic-helix-loop-helix (bHLH) transcription factor since it is devoid of the basic region required for DNA binding and forms an inactive hetero dimer with bHLH proteins. The E-box sequence located in the promoter region of the GATA-binding protein 4 (GATA-4) gene is essential for transcriptional activation in P19CL6 cells. These cells differentiate into cardiomyocytes and start to express GATA-4, which further triggers cardiac-specific gene expression. In this study, expression plasmids for Ids tagged with human influenza hemagglutinin (HA)-FLAG were constructed and introduced into P19CL6 cells. The stable clones expressing the recombinant Id proteins (Id1 or Id3) were isolated. The GATA-4 gene expression in these clones under differentiation condition in the presence of 1% dimethyl sulfoxide (DMSO) was repressed, with concomitant abolishment of the transcription of α-myosin heavy chain (α-MHC), which is a component of cardiac myofibrils. Thus, the increased expression of Id protein could affect GATA-4 gene expression and negatively regulate the differentiation of P19CL6 cells.
Collapse
Affiliation(s)
- Yumei Yokura-Yamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Wang W, Hu YF, Pang M, Chang N, Yu C, Li Q, Xiong JW, Peng Y, Zhang R. BMP and Notch Signaling Pathways differentially regulate Cardiomyocyte Proliferation during Ventricle Regeneration. Int J Biol Sci 2021; 17:2157-2166. [PMID: 34239346 PMCID: PMC8241734 DOI: 10.7150/ijbs.59648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.
Collapse
Affiliation(s)
- Wenyuan Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ye-Fan Hu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meijun Pang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yuanyuan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Kisby T, de Lázaro I, Stylianou M, Cossu G, Kostarelos K. Transient reprogramming of postnatal cardiomyocytes to a dedifferentiated state. PLoS One 2021; 16:e0251054. [PMID: 33951105 PMCID: PMC8099115 DOI: 10.1371/journal.pone.0251054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
In contrast to mammals, lower vertebrates are capable of extraordinary myocardial regeneration thanks to the ability of their cardiomyocytes to undergo transient dedifferentiation and proliferation. Somatic cells can be temporarily reprogrammed to a proliferative, dedifferentiated state through forced expression of Oct3/4, Sox2, Klf4 and c-Myc (OSKM). Here, we aimed to induce transient reprogramming of mammalian cardiomyocytes in vitro utilising an OSKM-encoding non-integrating vector. Reprogramming factor expression in postnatal rat and mouse cardiomyocytes triggered rapid but limited cell dedifferentiation. Concomitantly, a significant increase in cell viability, cell cycle related gene expression and Ki67 positive cells was observed consistent with an enhanced cell cycle activation. The transient nature of this partial reprogramming was confirmed as cardiomyocyte-specific cell morphology, gene expression and contractile activity were spontaneously recovered by day 15 after viral transduction. This study provides the first evidence that adenoviral OSKM delivery can induce partial reprogramming of postnatal cardiomyocytes. Therefore, adenoviral mediated transient reprogramming could be a novel and feasible strategy to recapitulate the regenerative mechanisms of lower vertebrates.
Collapse
Affiliation(s)
- Thomas Kisby
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Irene de Lázaro
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Maria Stylianou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), UAB Campus Bellaterra, Barcelona, Spain
| |
Collapse
|
13
|
Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020; 9:cells9081802. [PMID: 32751228 PMCID: PMC7464089 DOI: 10.3390/cells9081802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
JNK is a protein kinase, which induces transactivation of c-jun. The three isoforms of JNK, JNK1, JNK2, and JNK3, are encoded by three distinct genes. JNK1 and JNK2 are expressed ubiquitously throughout the body. By contrast, the expression of JNK3 is limited and observed mainly in the brain, heart, and testes. Concerning the biological properties of JNKs, the contribution of upstream regulators and scaffold proteins plays an important role in the activation of JNKs. Since JNK signaling has been described as a form of stress-response signaling, the contribution of JNK3 to pathophysiological events, such as stress response or cell death including apoptosis, has been well studied. However, JNK3 also regulates the physiological functions of neurons and non-neuronal cells, such as development, regeneration, and differentiation/reprogramming. In this review, we shed light on the physiological functions of JNK3. In addition, we summarize recent advances in the knowledge regarding interactions between JNK3 and cellular reprogramming.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
- Correspondence:
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| |
Collapse
|
14
|
A Cdh1-FoxM1-Apc axis controls muscle development and regeneration. Cell Death Dis 2020; 11:180. [PMID: 32152291 PMCID: PMC7062904 DOI: 10.1038/s41419-020-2375-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Forkhead box M1 (FoxM1) transcriptional factor has a principal role in regulating cell proliferation, self-renewal, and tumorigenesis. However, whether FoxM1 regulates endogenous muscle development and regeneration remains unclear. Here we found that loss of FoxM1 in muscle satellite cells (SCs) resulted in muscle atrophy and defective muscle regeneration. FoxM1 functioned as a direct transcription activator of adenomatous polyposis coli (Apc), preventing hyperactivation of wnt/β-catenin signaling during muscle regeneration. FoxM1 overexpression in SCs promoted myogenesis but impaired muscle regeneration as a result of spontaneous activation and exhaustion of SCs by transcriptional regulation of Cyclin B1 (Ccnb1). The E3 ubiquitin ligase Cdh1 (also termed Fzr1) was required for FoxM1 ubiquitylation and subsequent degradation. Loss of Cdh1 promoted quiescent SCs to enter into the cell cycle and the SC pool was depleted by serial muscle injuries. Haploinsufficiency of FoxM1 ameliorated muscle regeneration of Cdh1 knock-out mice. These data demonstrate that the Cdh1–FoxM1–Apc axis functions as a key regulator of muscle development and regeneration.
Collapse
|
15
|
Regulatory Mechanisms of Mitochondrial Function and Cardiac Aging. Int J Mol Sci 2020; 21:ijms21041359. [PMID: 32085438 PMCID: PMC7072955 DOI: 10.3390/ijms21041359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVDs), the major cause of death worldwide. Cardiac myocytes, which hold the most abundant mitochondrial population, are terminally differentiated cells with diminished regenerative capacity in the adult. Cardiomyocyte mitochondrial dysfunction is a characteristic feature of the aging heart and one out of the nine features of cellular aging. Aging and cardiac pathologies are also associated with increased senescence in the heart. However, the cause and consequences of cardiac senescence during aging or in cardiac pathologies are mostly unrecognized. Further, despite recent advancement in anti-senescence therapy, the targeted cell type and the effect on cardiac structure and function have been largely overlooked. The unique cellular composition of the heart, and especially the functional properties of cardiomyocytes, need to be considered when designing therapeutics to target cardiac aging. Here we review recent findings regarding key factors regulating cell senescence, mitochondrial health as well as cardiomyocyte rejuvenation.
Collapse
|
16
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
17
|
Zu G, Guo J, Zhou T, Che N, Liu B, Wang D, Zhang X. The transcription factor FoxM1 activates Nurr1 to promote intestinal regeneration after ischemia/reperfusion injury. Exp Mol Med 2019; 51:1-12. [PMID: 31704909 PMCID: PMC6841953 DOI: 10.1038/s12276-019-0343-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
FoxM1 is involved in the regeneration of several organs after injury and expressed in the intestinal mucosa. The intrinsic mechanism of FoxM1 activity in the mucosa after intestinal ischemia/reperfusion (I/R) injury has not been reported. Therefore, we investigated the role of FoxM1 in mediating intestinal mucosa regeneration after I/R injury. Expression of FoxM1 and the proliferation of intestinal mucosa epithelial cells were examined in rats with intestinal I/R injury and an IEC-6 cell hypoxia/reperfusion (H/R) model. The effects of FoxM1 inhibition or activation on intestinal epithelial cell proliferation were measured. FoxM1 expression was consistent with the proliferation of intestinal epithelial cells in the intestinal mucosa after I/R injury. Inhibition of FoxM1 expression led to the downregulation of Ki-67 expression mediated by the inhibited expression of Nurr1, and FoxM1 overexpression promoted IEC-6 cell proliferation after H/R injury through activating Nurr1 expression. Furthermore, FoxM1 directly promoted the transcription of Nurr1 by directly binding the promoter of Nurr1. Further investigation showed low expression levels of FoxM1, Nurr1, and Ki-67 in the intestinal epithelium of patients with intestinal ischemic injury. FoxM1 acts as a critical regulator of intestinal regeneration after I/R injury by directly promoting the transcription of Nurr1. The FoxM1/Nurr1 signaling pathway represents a promising therapeutic target for intestinal I/R injury and related clinical diseases. A signaling pathway that promotes the regeneration of intestinal cells in rats represents a promising therapeutic target for treating intestinal injury in humans. A team led by Guo Zu and Jing Guo from Dalian Medical University in China investigated the role of a regulatory protein called FoxM1 in repairing intestinal damage after a period of inadequate blood flow to the tissues of the gastrointestinal tract. They showed in rat models that FoxM1 promoted the proliferation of intestinal cells after injury by activating other proteins in a particular signaling pathway. Looking at tissue samples from five people who experienced intestinal injury as a result of restricted blood flow, the researchers detected low expression levels of FoxM1 and its downstream signaling intermediaries. Boosting the activity of those proteins could help promote healing and regeneration.
Collapse
Affiliation(s)
- Guo Zu
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 116033, Dalian, China.
| | - Jing Guo
- Institute of Integrative Medicine, Dalian Medical University, 116044, Dalian, China
| | - Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Ningwei Che
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 116027, Dalian, China
| | - Baiying Liu
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 116033, Dalian, China
| | - Dong Wang
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 116033, Dalian, China
| | - Xiangwen Zhang
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 116033, Dalian, China
| |
Collapse
|
18
|
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci 2019; 26:87. [PMID: 31660969 PMCID: PMC6819403 DOI: 10.1186/s12929-019-0578-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yueh-Ting Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Cardiovascular Surgery Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Zuppo DA, Tsang M. Zebrafish heart regeneration: Factors that stimulate cardiomyocyte proliferation. Semin Cell Dev Biol 2019; 100:3-10. [PMID: 31563389 DOI: 10.1016/j.semcdb.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Myocardial infarctions (MI) remain a leading cause of global morbidity and mortality, and a reason for this is the inability of adult, mammalian cardiomyocytes to divide post-MI. Recent studies demonstrate a limited population of cardiomyocytes retain their proliferative capacity and understanding how endogenous cardiomyocytes can be stimulated to re-enter the cell cycle is a focus of current research. In this review we discuss the history of zebrafish cardiac regeneration and highlight how different models reveal the molecular pathways important in driving cardiomyocyte proliferation after injury. Understanding the molecules that regulate cell cycle re-entry can provide insights into promoting cardiac repair in humans.
Collapse
Affiliation(s)
- D A Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - M Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ, Hsieh PC. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Am J Cancer Res 2019; 9:6550-6567. [PMID: 31588235 PMCID: PMC6771230 DOI: 10.7150/thno.35218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 01/03/2023] Open
Abstract
Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.
Collapse
|
21
|
Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization. Clin Sci (Lond) 2019; 133:1229-1253. [PMID: 31175264 DOI: 10.1042/cs20180560] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
One great achievement in medical practice is the reduction in acute mortality of myocardial infarction due to identifying risk factors, antiplatelet therapy, optimized hospitalization and acute percutaneous coronary intervention. Yet, the prevalence of heart failure is increasing presenting a major socio-economic burden. Thus, there is a great need for novel therapies that can reverse damage inflicted to the heart. In recent years, data have accumulated suggesting that induction of cardiomyocyte proliferation might be a future option for cardiac regeneration. Here, we review the relevant literature since September 2015 concluding that it remains a challenge to verify that a therapy induces indeed cardiomyocyte proliferation. Most importantly, it is unclear that the detected increase in cardiomyocyte cell cycle activity is required for an associated improved function. In addition, we review the literature regarding the evidence that binucleated and polyploid mononucleated cardiomyocytes can divide, and put this in context to other cell types. Our analysis shows that there is significant evidence that binucleated cardiomyocytes can divide. Yet, it remains elusive whether also polyploid mononucleated cardiomyocytes can divide, how efficient proliferation of binucleated cardiomyocytes can be induced, what mechanism regulates cell cycle progression in these cells, and what fate and physiological properties the daughter cells have. In summary, we propose to standardize and independently validate cardiac regeneration studies, encourage the field to study the proliferative potential of binucleated and polyploid mononucleated cardiomyocytes, and to determine whether induction of polyploidization can enhance cardiac function post-injury.
Collapse
|
22
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
23
|
Qin X, Gao S, Yang Y, Wu L, Wang L. microRNA-25 promotes cardiomyocytes proliferation and migration via targeting Bim. J Cell Physiol 2019; 234:22103-22115. [PMID: 31058341 DOI: 10.1002/jcp.28773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are pleiotropic players in cardiac development. Recent evidence have suggested miRNAs as promisingly therapeutic targets for cardiac regeneration. This study aimed to reveal the potential effects of miR-25 on cardiomyocytes proliferation and migration. Sprague-Dawley rats received left coronary occlusion surgery to induce an in vivo model of myocardial ischemia/reperfusion (I/R) injury. Expression changes of miR-25 and Bim were tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. Besides, primary neonatal and adult cardiomyocytes were transfected by the antisense oligonucleotides or mimic specific for miR-25, and then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Boyden chamber, and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay were respectively used to determine cardiomyocytes growth and migration. Binding effects of miR-25 on the 3'-untranslated region (3'-UTR) of Bim was assessed by dual-luciferase reporter assay. We found that miR-25 was low expressed, whereas Bim was highly expressed in I/R injury model and hypoxia-stimulated cardiomyocytes. Downregulation of miR-25 in neonatal and adult cardiomyocytes markedly reduced cell proliferation and migration, but promoted apoptosis. Consistently, downregulation of miR-25 decreased the expression of cyclin E2, cyclin D1, and CDK4, and increased the expression of p57 (KIP2) in cardiomyocytes. We additionally found that Bim was a target of miR-25. The inhibitory effects of miR-25 downregulation on cardiomyocytes survival and migration were all significantly attenuated when Bim was silenced. To sum up, our study demonstrates that miR-25 downregulation inhibits cardiomyocytes proliferation and migration, but promotes apoptosis. The role of miR-25 in cardiomyocytes was by targeting Bim.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Shufang Gao
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Yadong Yang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Leilei Wu
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Liming Wang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
24
|
Improved Efficiency of Cardiomyocyte-Like Cell Differentiation from Rat Adipose Tissue-Derived Mesenchymal Stem Cells with a Directed Differentiation Protocol. Stem Cells Int 2019; 2019:8940365. [PMID: 31065283 PMCID: PMC6466858 DOI: 10.1155/2019/8940365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 01/29/2023] Open
Abstract
Cell-based therapy has become a resource for the treatment of cardiovascular diseases; however, there are some conundrums to achieve. In vitro cardiomyocyte generation could be a solution for scaling options in clinical applications. Variability on cardiac differentiation in previously reported studies from adipose tissue-derived mesenchymal stem cells (ASCs) and the lack of measuring of the cardiomyocyte differentiation efficiency motivate the present study. Here, we improved the ASC-derived cardiomyocyte-like cell differentiation efficiency with a directed cardiomyocyte differentiation protocol: BMP-4 + VEGF (days 0-4) followed by a methylcellulose-based medium with cytokines (IL-6 and IL-3) (days 5-21). Cultures treated with the directed cardiomyocyte differentiation protocol showed cardiac-like cells and “rosette-like structures” from day 7. The percentage of cardiac troponin T- (cTnT-) positive cells was evaluated by flow cytometry to assess the cardiomyocyte differentiation efficiency in a quantitative manner. ASCs treated with the directed cardiomyocyte differentiation protocol obtained a differentiation efficiency of up to 44.03% (39.96%±3.78) at day 15 without any enrichment step. Also, at day 21 we observed by immunofluorescence the positive expression of early, late, and cardiac maturation differentiation markers (Gata-4, cTnT, cardiac myosin heavy chain (MyH), and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCa2)) in cultures treated with the directed cardiomyocyte differentiation protocol. Unlike other protocols, the use of critical factors of embryonic cardiomyogenesis coupled with a methylcellulose-based medium containing previously reported cardiogenic cytokines (IL-6 and IL-3) seems to be favorable for in vitro cardiomyocyte generation. This novel efficient culture protocol makes ASC-derived cardiac differentiation more efficient. Further investigation is needed to identify an ASC-derived cardiomyocyte surface marker for cardiac enrichment.
Collapse
|
25
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
26
|
Alvino VV, Fernández-Jiménez R, Rodriguez-Arabaolaza I, Slater S, Mangialardi G, Avolio E, Spencer H, Culliford L, Hassan S, Sueiro Ballesteros L, Herman A, Ayaon-Albarrán A, Galán-Arriola C, Sánchez-González J, Hennessey H, Delmege C, Ascione R, Emanueli C, Angelini GD, Ibanez B, Madeddu P. Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. J Am Heart Assoc 2018; 7:JAHA.117.006727. [PMID: 29358198 PMCID: PMC5850145 DOI: 10.1161/jaha.117.006727] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of adventitial pericytes (APCs) promotes cardiac repair in murine models of myocardial infarction. The aim of present study was to confirm the benefit of APC therapy in a large animal model. METHODS AND RESULTS We performed a blind, randomized, placebo-controlled APC therapy trial in a swine model of reperfused myocardial infarction. A first study used human APCs (hAPCs) from patients undergoing coronary artery bypass graft surgery. A second study used allogeneic swine APCs (sAPCs). Primary end points were (1) ejection fraction as assessed by cardiac magnetic resonance imaging and (2) myocardial vascularization and fibrosis as determined by immunohistochemistry. Transplantation of hAPCs reduced fibrosis but failed to improve the other efficacy end points. Incompatibility of the xenogeneic model was suggested by the occurrence of a cytotoxic response following in vitro challenge of hAPCs with swine spleen lymphocytes and the failure to retrieve hAPCs in transplanted hearts. We next considered sAPCs as an alternative. Flow cytometry, immunocytochemistry, and functional/cytotoxic assays indicate that sAPCs are a surrogate of hAPCs. Transplantation of allogeneic sAPCs benefited capillary density and fibrosis but did not improve cardiac magnetic resonance imaging indices of contractility. Transplanted cells were detected in the border zone. CONCLUSIONS Immunologic barriers limit the applicability of a xenogeneic swine model to assess hAPC efficacy. On the other hand, we newly show that transplantation of allogeneic sAPCs is feasible, safe, and immunologically acceptable. The approach induces proangiogenic and antifibrotic benefits, though these effects were not enough to result in functional improvements.
Collapse
Affiliation(s)
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Sadie Slater
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Helen Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Lucy Culliford
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Sakinah Hassan
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | | | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
| | - Ali Ayaon-Albarrán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Adult Cardiac Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Helena Hennessey
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Catherine Delmege
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Gianni Davide Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
27
|
Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, Morrisey EE, Burdick JA. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng 2017; 1:983-992. [PMID: 29354322 PMCID: PMC5773070 DOI: 10.1038/s41551-017-0157-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction (MI). In previous work, we showed that the miR-302/367 cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe the development and application of an injectable hyaluronic acid (HA) hydrogel for the local and sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After MI, gel/miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of a Confetti mouse model. Gel/miR-302 further decreased cardiac end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and fractional shortening (64%) four weeks after MI and injection, compared to controls. Our findings suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes in cardiac regeneration.
Collapse
Affiliation(s)
- Leo L Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J Chung
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tao Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann C Gaffey
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Minmin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Kanade
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Atluri
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Cheng YY, Yan YT, Lundy DJ, Lo AH, Wang YP, Ruan SC, Lin PJ, Hsieh PC. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol Med 2017; 9:251-264. [PMID: 28011860 PMCID: PMC5286362 DOI: 10.15252/emmm.201606558] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although remnant cardiomyocytes (CMs) possess a certain degree of proliferative ability, efficiency is too low for cardiac regeneration after injury. In this study, we identified a distinct stage within the initiation phase of CM reprogramming before the MET process, and microarray analysis revealed the strong up-regulation of several mitosis-related genes at this stage of reprogramming. Several candidate genes were selected and tested for their ability to induce CM proliferation. Delivering a cocktail of three genes, FoxM1, Id1, and Jnk3-shRNA (FIJs), induced CMs to re-enter the cell cycle and complete mitosis and cytokinesis in vitro More importantly, this gene cocktail increased CM proliferation in vivo and significantly improved cardiac function and reduced fibrosis after myocardial infarction. Collectively, our findings present a cocktail FIJs that may be useful in cardiac regeneration and also provide a practical strategy for probing reprogramming assays for regeneration of other tissues.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Yan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - David J Lundy
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Annie Ha Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Patrick Ch Hsieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Surgery, Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 2017; 16:699-717. [DOI: 10.1038/nrd.2017.106] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Choong OK, Lee DS, Chen CY, Hsieh PCH. The roles of non-coding RNAs in cardiac regenerative medicine. Noncoding RNA Res 2017; 2:100-110. [PMID: 30159427 PMCID: PMC6096405 DOI: 10.1016/j.ncrna.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of non-coding RNAs (ncRNAs) has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects.
Collapse
Affiliation(s)
- Oi Kuan Choong
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Desy S Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Patrick C H Hsieh
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
31
|
Doppler SA, Lange R, Laugwitz KL, Krane M. Cardiac development: from current understanding to new regenerative concepts. J Thorac Dis 2017; 9:S1-S4. [PMID: 28446962 DOI: 10.21037/jtd.2017.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefanie A Doppler
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Karl-Ludwig Laugwitz
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,I. Department of Medicine (Cardiology), Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|