1
|
Peng H, Moore C, Saha D, Jiang S, Timmerman R. Understanding the PULSAR effect in combined radiotherapy and immunotherapy using transformer-based attention mechanisms. Front Oncol 2024; 14:1497351. [PMID: 39687891 PMCID: PMC11647037 DOI: 10.3389/fonc.2024.1497351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
PULSAR (personalized, ultra-fractionated stereotactic adaptive radiotherapy) is the adaptation of stereotactic ablative radiotherapy towards personalized cancer management. It has potential to harness the synergy between radiation therapy and immunotherapy, such as immune checkpoint inhibitors to amplify the anti-tumor immune response. For the first time, we applied a transformer-based attention mechanism to investigate the underlying interactions between combined PULSAR and PD-L1 blockade immunotherapy, based on the preliminary experimental results of a murine cancer model (Lewis Lung Carcinoma, LLC). The radiation and administration of α-PD-L1 were viewed as two external stimulation signals occurring in a temporal sequence. Our study demonstrates the utility of a transformer model in 1) predicting tumor changes in response to specific treatment schemes, and 2) generating self-attention and cross-attention maps. The cross-attention maps serve as a biological representation of the semantic similarity between source and target sentences in neural translation, offering insights into the causal relationships of the PULSAR effect. Our model offers a unique perspective with the potential to enhance the understanding of the temporal dependencies of the PULSAR effect on time, dose, and T cell dynamics. In a broader context, our proposed framework offers the potential to explore varying intervals and doses for subsequent treatments while monitoring the biological parameters impacted by these perturbations. This approach can lead to more personalized and rational radiation or drug interactions.
Collapse
Affiliation(s)
- Hao Peng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Casey Moore
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Ghalehtaki R, Amini A, Abyaneh R. Optimizing neoadjuvant radiotherapy for locally advanced esophageal squamous cell carcinoma: a comprehensive review on the role of concomitant or sequential immune checkpoint inhibitors. Esophagus 2024:10.1007/s10388-024-01097-1. [PMID: 39562407 DOI: 10.1007/s10388-024-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent form of esophageal cancer with a poor prognosis despite advances in treatment. Combining immune checkpoint inhibitors (ICIs) with radiotherapy (RT) or chemoradiotherapy (CRT) has shown potential in enhancing treatment efficacy. We conducted a comprehensive review of clinical trials published between 2019 and 2024, sourced from PubMed, Scopus, and Embase databases. Studies included were prospective phase II trials that evaluated the combination of ICIs with neoadjuvant chemoradiotherapy (nCRT) in resectable locally advanced ESCC. Ten trials met the inclusion criteria. The review highlights various approaches in combining ICIs with CRT, including concurrent, induction, and consolidation therapy. Among the included trials, a significant proportion focused on concurrently administering ICIs with CRT, showing promising outcomes with high pathological complete response rates (pCR) and manageable toxicities. However, further research is needed to validate the efficacy of induction and consolidation therapies and determine optimal treatment protocols. The combination of ICIs and nCRT can potentially improve treatment responses and outcomes for patients with locally advanced ESCC. Despite recent encouraging findings, most trials were single-arm with small sample sizes, indicating the need for larger studies with longer follow-ups to assess survival outcomes comprehensively.
Collapse
Affiliation(s)
- Reza Ghalehtaki
- Department of Radiation Oncology, Cancer Institute, IKHC, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Romina Abyaneh
- Radiation Oncology Research Center, Cancer Research Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hill CS, Parkinson R, Jaffee EM, Sugar E, Zheng L, Onners B, Weiss MJ, Wolfgang CL, Cameron JL, Pawlik TM, Rosati L, Le DT, Hacker-Prietz A, Lutz ER, Schulick R, Narang AK, Laheru DA, Herman JM. Phase 1 Study of Adjuvant Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor-Transduced Pancreatic Tumor Cell Vaccine, Low-Dose Cyclophosphamide, and Stereotactic Body Radiation Therapy Followed by FOLFIRINOX in High-Risk Resected Pancreatic Ductal Adenocarcinoma. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03561-2. [PMID: 39547453 DOI: 10.1016/j.ijrobp.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE Local and distant progression remains common following resection of resectable pancreatic ductal adenocarcinoma (PDAC) despite adjuvant multiagent chemotherapy. We report a prospective institutional phase 1 trial incorporating adjuvant GVAX vaccine, low-dose cyclophosphamide (Cy), and stereotactic body radiation therapy (SBRT) followed by FOLFIRINOX (FFX) among patients who underwent resection of high-risk PDAC. PATIENTS AND METHODS The study design was a modified 3+3. Cohort 1 received 5-fraction SBRT to 33 Gy to the tumor bed and 25 Gy to elective nodes followed by 6 cycles of full-dose FFX. After toxicity review, cohort 2 had SBRT and was switched to modified FFX (mFFX). Cohort 3 had 1 cycle of Cy/GVAX followed by SBRT, mFFX, and 4 cycles of maintenance Cy/GVAX with 6-month Cy/GVAX boosts until progression. RESULTS Nineteen patients were enrolled with a median follow-up of 36.2 months. To be eligible, patients were required to have close/positive margins (within ≤1 mm) (71%) and/or lymph node metastasis (79%). Overall, 63% of patients had both. In cohort 1, 67% of patients received 6 cycles of FFX; in cohort 2, 75% received 6 cycles of modified FFX. In cohort 3, 12 patients received the first dose of Cy/GVAX and SBRT with 10 individuals (83%) receiving 6 cycles of mFFX. Cohort 3 had acceptable levels of grade ≥3 thrombocytopenia, neutropenia, and diarrhea after 2 cycles of mFFX. Median overall survival (OS)/disease-free survival (DFS) for the overall cohort and cohort 3 was 36.2/18.2 months and 61.3/24.1 months, respectively. One- and 2-year OS for cohort 3 was 83%/75%, respectively. At the last follow-up (median = x), 5 patients were alive (42%) in cohort 3. CONCLUSIONS This is the first prospective trial to evaluate adjuvant GVAX, Cy, SBRT, and mFFX in resected PDAC patients with high-risk features. This combination regimen was well tolerated with limited toxicity and promising survival outcomes, warranting future studies to validate this regimen in the adjuvant setting.
Collapse
Affiliation(s)
- Colin S Hill
- Laura and Issac Perlmutter Cancer Center at New York University, Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Rose Parkinson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Sugar
- Division of Biostatistics and Bioinformatics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onners
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Weiss
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, New York, University Grossman School of Medicine, New York, New York
| | - John L Cameron
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy M Pawlik
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Lauren Rosati
- Department of Pediatrics, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy Hacker-Prietz
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Richard Schulick
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado; University of Colorado Cancer Center, Aurora, Colorado
| | - Amol K Narang
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Joseph M Herman
- Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York..
| |
Collapse
|
4
|
Sano Y, Kanai M, Morizane C, Sasaki K, Yoshimura M, Ito Y, Furuse J, Ozaka M, Fukuda H, Ueno M. Protocol digest of a randomized phase III trial comparing S-1-based chemoradiotherapy with/without nivolumab for unresectable locally advanced or borderline resectable pancreatic cancer: JCOG1908E (PENETRATE). Jpn J Clin Oncol 2024; 54:1214-1218. [PMID: 38941345 DOI: 10.1093/jjco/hyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Pancreatic cancer remains a highly lethal disease with a 5-year survival proportion of <10%. Chemoradiotherapy is a treatment option for unresectable locally advanced (UR-LA) or borderline resectable (BR) pancreatic cancer, but its efficacy is not sufficient. Induction of the synergistic effect of irradiation and immune checkpoint inhibitors can be an attractive strategy. An open-label randomized phase III trial has been conducted since October 2020 to confirm the superiority of nivolumab plus S-1-based chemoradiotherapy over S-1-based chemoradiotherapy alone in patients with UR-LA or BR pancreatic cancer. A total of 216 patients will be enrolled in 14 institutions within 3.5 years. The primary endpoint of the safety run-in part is dose-limiting toxicity, and that of the phase III part is overall survival. This trial was registered at the Japan Registry of Clinical Trials as jRCT2080225361 (https://jrct.niph.go.jp/latest-detail/jRCT2080225361).
Collapse
Affiliation(s)
- Yusuke Sano
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masashi Kanai
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka 573-1191, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Keita Sasaki
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Japan
| | - Masato Ozaka
- Department of Gastroenterology, Cancer Institute Hospital, Tokyo 135-8550, Japan
| | - Haruhiko Fukuda
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Japan
| |
Collapse
|
5
|
Kerschbaum-Gruber S, Kleinwächter A, Popova K, Kneringer A, Appel LM, Stasny K, Röhrer A, Dias AB, Benedum J, Walch L, Postl A, Barna S, Kratzer B, Pickl WF, Akalin A, Horvat F, Franke V, Widder J, Georg D, Slade D. Cytosolic nucleic acid sensors and interferon beta-1 activation drive radiation-induced anti-tumour immune effects in human pancreatic cancer cells. Front Immunol 2024; 15:1286942. [PMID: 39372406 PMCID: PMC11449851 DOI: 10.3389/fimmu.2024.1286942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/05/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths worldwide with limited treatment options due to extensive radiation and chemotherapy resistance. Monotherapy with immune checkpoint blockade showed no survival benefit. A combination of immunomodulation and radiotherapy may offer new treatment strategies, as demonstrated for non-small cell lung cancer. Radiation-induced anti-tumour immunity is mediated through cytosolic nucleic acid sensing pathways that drive the expression of interferon beta-1 (IFNB1) and proinflammatory cytokines. Methods Human PDAC cell lines (PANC-1, MIA PaCa-2, BxPC-3) were treated with X-rays and protons. Immunogenic cell death was measured based on HMGB1 release. Cytosolic dsDNA and dsRNA were analysed by immunofluorescence microscopy. Cell cycle progression, MHC-I and PD-L1 expression were determined by flow cytometry. Galectin-1 and IFNB1 were measured by ELISA. The expression levels and the phosphorylation status of the cGAS/STING and RIG-I/MAVS signalling pathways were analysed by western blotting, the expression of IFNB1 and proinflammatory cytokines was determined by RT-qPCR and genome-wide by RNA-seq. CRISPR-Cas9 knock-outs and inhibitors were used to elucidate the relevance of STING, MAVS and NF-κB for radiation-induced IFNB1 activation. Results We demonstrate that a clinically relevant X-ray hypofractionation regimen (3x8 Gy) induces immunogenic cell death and activates IFNB1 and proinflammatory cytokines. Fractionated radiation induces G2/M arrest and accumulation of cytosolic DNA in PDAC cells, which partly originates from mitochondria. RNA-seq analysis shows a global upregulation of type I interferon response and NF-κB signalling in PDAC cells following 3x8 Gy. Radiation-induced immunogenic response is regulated by STING, MAVS and NF-κB. In addition to immunostimulation, radiation also induces immunosuppressive galectin-1. No significant changes in MHC-I or PD-L1 expression were observed. Moreover, PDAC cell lines show similar radiation-induced immune effects when exposed to single-dose protons or photons. Conclusion Our findings provide a rationale for combinatorial radiation-immunomodulatory treatment approaches in PDAC using conventional photon-based or proton beam radiotherapy.
Collapse
Affiliation(s)
- Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ava Kleinwächter
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Katerina Popova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Alexandra Kneringer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | | - Anna Röhrer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Beatriz Dias
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Lena Walch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Postl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Altuna Akalin
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Filip Horvat
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Vedran Franke
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Liao KL, Wieler AJ, Gascon PML. Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1. Math Biosci 2024; 374:109218. [PMID: 38797473 DOI: 10.1016/j.mbs.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Adam J Wieler
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pedro M Lopez Gascon
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
7
|
Bliley R, Avant A, Medina TM, Lanning RM. Radiation and Melanoma: Where Are We Now? Curr Oncol Rep 2024; 26:904-914. [PMID: 38822928 DOI: 10.1007/s11912-024-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the current role of radiotherapy for the treatment of cutaneous melanoma in the definitive, adjuvant, and palliative settings, and combinations with immunotherapy and targeted therapies. RECENT FINDINGS Definitive radiotherapy may be considered for lentigo maligna if surgery would be disfiguring. High risk, resected melanoma may be treated with adjuvant radiotherapy, but the role is poorly defined since the advent of effective systemic therapies. For patients with metastatic disease, immunotherapy and targeted therapies can be delivered safely in tandem with radiotherapy to improve outcomes. Radiotherapy and modern systemic therapies act in concert to improve outcomes, especially in the metastatic setting. Further prospective data is needed to guide the use of definitive radiotherapy for lentigo maligna and adjuvant radiotherapy for high-risk melanoma in the immunotherapy era. Current evidence does not support an abscopal response or at least identify the conditions necessary to reliably produce one with combinations of radiation and immunotherapy.
Collapse
Affiliation(s)
- Roy Bliley
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam Avant
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theresa M Medina
- Department of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ryan M Lanning
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
8
|
McNeal KC, Reeves KM, Song PN, Lapi SE, Sorace AG, Larimer BM. [ 18F]FMISO-PET imaging reveals the role of hypoxia severity in checkpoint blockade response. Nucl Med Biol 2024; 134-135:108918. [PMID: 38772123 PMCID: PMC11180552 DOI: 10.1016/j.nucmedbio.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
CONTEXT Hypoxia within the tumor microenvironment is a critical factor influencing the efficacy of immunotherapy, including immune checkpoint inhibition. Insufficient oxygen supply, characteristic of hypoxia, has been recognized as a central determinant in the progression of various cancers. The reemergence of evofosfamide, a hypoxia-activated prodrug, as a potential treatment strategy has sparked interest in addressing the role of hypoxia in immunotherapy response. This investigation sought to understand the kinetics and heterogeneity of tumor hypoxia and their implications in affecting responses to immunotherapeutic interventions with and without evofosfamide. PURPOSE This study aimed to investigate the influence of hypoxia on immune checkpoint inhibition, evofosfamide monotherapy, and their combination on colorectal cancer (CRC). Employing positron emission tomography (PET) imaging, we developed novel analytical methods to quantify and characterize tumor hypoxia severity and distribution. PROCEDURES Murine CRC models were longitudinally imaged with [18F]-fluoromisonidazole (FMISO)-PET to quantify tumor hypoxia during checkpoint blockade (anti-CTLA-4 + and anti-PD1 +/- evofosfamide). Metrics including maximum tumor [18F]FMISO uptake (FMISOmax) and mean tumor [18F]FMISO uptake (FMISOmean) were quantified and compared with normal muscle tissue (average muscle FMISO uptake (mAvg) and muscle standard deviation (mSD)). Histogram distributions were used to evaluate heterogeneity of tumor hypoxia. FINDINGS Severe hypoxia significantly impeded immunotherapy effectiveness consistent with an immunosuppressive microenvironment. Hypoxia-specific PET imaging revealed a striking degree of spatial heterogeneity in tumor hypoxia, with some regions exhibiting significantly more severe hypoxia than others. The study identified FMISOmax as a robust predictor of immunotherapy response, emphasizing the impact of localized severe hypoxia on tumor volume control during therapy. Interestingly, evofosfamide did not directly reduce hypoxia but markedly improved the response to immunotherapy, uncovering an alternative mechanism for its efficacy. CONCLUSIONS These results enhance our comprehension of the interplay between hypoxia and immune checkpoint inhibition within the tumor microenvironment, offering crucial insights for the development of personalized cancer treatment strategies. Non-invasive hypoxia quantification through molecular imaging evaluating hypoxia severity may be an effective tool in guiding treatment planning, predicting therapy response, and ultimately improving patient outcomes across diverse cancer types and tumor microenvironments. It sets the stage for the translation of these findings into clinical practice, facilitating the optimization of immunotherapy regimens by addressing tumor hypoxia and thereby enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Kaytlyn C McNeal
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kirsten M Reeves
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Suzanne E Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Benjamin M Larimer
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
9
|
Mitrea DA, Froicu EM, Prenen H, Gambacorta MA, Span PN, Poortmans P. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review. Crit Rev Oncol Hematol 2024; 199:104381. [PMID: 38735504 DOI: 10.1016/j.critrevonc.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION AND PURPOSE With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.
Collapse
Affiliation(s)
- Diana A Mitrea
- Department of Radiation Oncology, Centre Antoine-Lacassagne, 33 Av. de Valombrose, Nice 06100, France.
| | - Eliza M Froicu
- Department of Medical Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Hans Prenen
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Maria A Gambacorta
- Department of Radiation Oncology Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Wilrijk-Antwerp, Belgium
| |
Collapse
|
10
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
11
|
Larson AC, Doty KR, Solheim JC. The double life of a chemotherapy drug: Immunomodulatory functions of gemcitabine in cancer. Cancer Med 2024; 13:e7287. [PMID: 38770637 PMCID: PMC11106691 DOI: 10.1002/cam4.7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology, Microbiology, & ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Peng H, Moore C, Zhang Y, Saha D, Jiang S, Timmerman R. An AI-based approach for modeling the synergy between radiotherapy and immunotherapy. Sci Rep 2024; 14:8250. [PMID: 38589494 PMCID: PMC11001871 DOI: 10.1038/s41598-024-58684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Personalized, ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is designed to administer tumoricidal doses in a pulsed mode with extended intervals, spanning weeks or months. This approach leverages longer intervals to adapt the treatment plan based on tumor changes and enhance immune-modulated effects. In this investigation, we seek to elucidate the potential synergy between combined PULSAR and PD-L1 blockade immunotherapy using experimental data from a Lewis Lung Carcinoma (LLC) syngeneic murine cancer model. Employing a long short-term memory (LSTM) recurrent neural network (RNN) model, we simulated the treatment response by treating irradiation and anti-PD-L1 as external stimuli occurring in a temporal sequence. Our findings demonstrate that: (1) The model can simulate tumor growth by integrating various parameters such as timing and dose, and (2) The model provides mechanistic interpretations of a "causal relationship" in combined treatment, offering a completely novel perspective. The model can be utilized for in-silico modeling, facilitating exploration of innovative treatment combinations to optimize therapeutic outcomes. Advanced modeling techniques, coupled with additional efforts in biomarker identification, may deepen our understanding of the biological mechanisms underlying the combined treatment.
Collapse
Affiliation(s)
- Hao Peng
- Departments of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Casey Moore
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuanyuan Zhang
- Departments of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debabrata Saha
- Departments of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steve Jiang
- Departments of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Timmerman
- Departments of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Zhao T, Wei P, Zhang C, Zhou S, Liang L, Guo S, Yin Z, Cheng S, Gan Z, Xia Y, Zhang Y, Guo S, Zhong J, Yang Z, Tu F, Wang Q, Bai J, Ren F, Feng Z, Jia H. Nifuroxazide suppresses PD-L1 expression and enhances the efficacy of radiotherapy in hepatocellular carcinoma. eLife 2024; 12:RP90911. [PMID: 38441416 PMCID: PMC10942647 DOI: 10.7554/elife.90911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.
Collapse
Affiliation(s)
- Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Pengkun Wei
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
- Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Congli Zhang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Shijie Zhou
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Lirui Liang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Shuoshuo Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan UniversityGuangzhouChina
| | - Sichang Cheng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zerui Gan
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Yuanling Xia
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Jiateng Zhong
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Fei Tu
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Qianqing Wang
- Department of Gynecology, Xinxiang Central HospitalXinxiangChina
- The Fourth Clinical College, Xinxiang Medical UniversityXinxiangChina
| | - Jin Bai
- Department of Gynecology, Xinxiang Central HospitalXinxiangChina
- The Fourth Clinical College, Xinxiang Medical UniversityXinxiangChina
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zhiwei Feng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
14
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Wang J, Gai J, Zhang T, Niu N, Qi H, Thomas DL, Li K, Xia T, Rodriguez C, Parkinson R, Durham J, McPhaul T, Narang AK, Anders RA, Osipov A, Wang H, He J, Laheru DA, Herman JM, Lee V, Jaffee EM, Thompson ED, Zhu Q, Zheng L. Neoadjuvant radioimmunotherapy in pancreatic cancer enhances effector T cell infiltration and shortens their distances to tumor cells. SCIENCE ADVANCES 2024; 10:eadk1827. [PMID: 38324679 PMCID: PMC10849596 DOI: 10.1126/sciadv.adk1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Radiotherapy is hypothesized to have an immune-modulating effect on the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) to sensitize it to anti-PD-1 antibody (a-PD-1) treatment. We collected paired pre- and posttreatment specimens from a clinical trial evaluating combination treatment with GVAX vaccine, a-PD-1, and stereotactic body radiation (SBRT) following chemotherapy for locally advanced PDACs (LAPC). With resected PDACs following different neoadjuvant therapies as comparisons, effector cells in PDACs were found to skew toward a more exhausted status in LAPCs following chemotherapy. The combination of GVAX/a-PD-1/SBRT drives TME to favor antitumor immune response including increased densities of GZMB+CD8+ T cells, TH1, and TH17, which are associated with longer survival, however increases immunosuppressive M2-like tumor-associated macrophages (TAMs). Adding SBRT to GVAX/a-PD-1 shortens the distances from PD-1+CD8+ T cells to tumor cells and to PD-L1+ myeloid cells, which portends prolonged survival. These findings have guided the design of next radioimmunotherapy studies by targeting M2-like TAM in PDACs.
Collapse
Affiliation(s)
- Junke Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jessica Gai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tengyi Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nan Niu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanfei Qi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwayne L. Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christina Rodriguez
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thomas McPhaul
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amol K. Narang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Anders
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A. Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph M. Herman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Northwell Health System, New Hyde Park, NY, 11042, USA
| | - Valerie Lee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth D. Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Erdem S, Narayanan JS, Worni M, Bolli M, White RR. Local ablative therapies and the effect on antitumor immune responses in pancreatic cancer - A review. Heliyon 2024; 10:e23551. [PMID: 38187292 PMCID: PMC10767140 DOI: 10.1016/j.heliyon.2023.e23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, projected to rank as the second most prevalent cause of cancer-related mortality by 2030. Despite significant progress in advances in surgical techniques and chemotherapy protocols, the overall survival (OS) remains to be less than 10 % for all stages combined. In recent years, local ablative techniques have been introduced and utilized as additional therapeutic approaches for locally advanced pancreatic cancer (LAPC), with promising results with respect to local tumor control and OS. In addition to successful cytoreduction, there is emerging evidence that local ablation induces antitumor immune activity that could prevent or even treat distant metastatic tumors. The enhancement of antitumor immune responses could potentially make ablative therapy a therapeutic option for the treatment of metastatic PDAC. In this review, we summarize current ablative techniques used in the management of LAPC and their impact on systemic immune responses.
Collapse
Affiliation(s)
- Suna Erdem
- Moores Cancer Center, University of California San Diego, CA, USA
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Mathias Worni
- Department of Surgery, Hirslanden Clinic Beau Site, Bern, Switzerland
- Department of Surgery, Duke University Switzerland
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
- Medical Center, Duke University, Durham, NC, USA
- Swiss Institute for Translational and Entrepreneurial Medicine, Stiftung Lindenhof, Campus SLB, Bern, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Rebekah R. White
- Moores Cancer Center, University of California San Diego, CA, USA
| |
Collapse
|
17
|
Zhang S, Song D, Yu W, Li J, Wang X, Li Y, Zhao Z, Xue Q, Zhao J, Li JP, Guo Z. Combining cisplatin and a STING agonist into one molecule for metalloimmunotherapy of cancer. Natl Sci Rev 2024; 11:nwae020. [PMID: 38332843 PMCID: PMC10852989 DOI: 10.1093/nsr/nwae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/06/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024] Open
Abstract
Mounting evidence suggests that strategies combining DNA-damaging agents and stimulator of interferon genes (STING) agonists are promising cancer therapeutic regimens because they can amplify STING activation and remodel the immunosuppressive tumor microenvironment. However, a single molecular entity comprising both agents has not yet been developed. Herein, we designed two PtIV-MSA-2 conjugates (I and II) containing the DNA-damaging chemotherapeutic drug cisplatin and the innate immune-activating STING agonist MSA-2; these conjugates showed great potential as multispecific small-molecule drugs against pancreatic cancer. Mechanistic studies revealed that conjugate I upregulated the expression of transcripts associated with innate immunity and metabolism in cancer cells, significantly differing from cisplatin and MSA-2. An analysis of the tumor microenvironment demonstrated that conjugate I could enhance the infiltration of natural killer (NK) cells into tumors and promote the activation of T cells, NK cells and dendritic cells in tumor tissues. These findings indicated that conjugate I, which was created by incorporating a Pt chemotherapeutic drug and STING agonist into one molecule, is a promising and potent anticancer drug candidate, opening new avenues for small-molecule-based cancer metalloimmunotherapy.
Collapse
Affiliation(s)
- Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wenhao Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ji Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoyu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yachao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China
| |
Collapse
|
18
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
19
|
Zhu X, Liu W, Cao Y, Feng Z, Zhao X, Jiang L, Ye Y, Zhang H. Immune profiling of pancreatic cancer for radiotherapy with immunotherapy and targeted therapy: Biomarker analysis of a randomized phase 2 trial. Radiother Oncol 2024; 190:109941. [PMID: 37820884 DOI: 10.1016/j.radonc.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Immunotherapy alone offered limited survival benefits in pancreatic cancer, while the role of immunotherapy-centric combined therapy remains controversial. Therefore, it is required to develop biomarkers to precisely deliver immunotherapy-based multimodality for pancreatic cancer. METHODS This is a secondary analysis of an open label, randomized, phase 2 trial, whereas patients with locally recurrent pancreatic cancer after surgery were enrolled. Eligible patients with mutant KRAS and positive immunohistochemical staining of PD-L1 were randomly assigned to receive stereotactic body radiation therapy (SBRT) plus pembrolizumab and trametinib (SBRT + K + M) or SBRT and gemcitabine (SBRT + G). Meanwhile, patients were classified into PD-L1+/tumor infiltrating lymphocytes [TIL(s)]- and PD-L1+/TIL + group for each arm. RESULTS A total of 170 patients were enrolled and randomly assigned to receive SBRT + K + M (n = 85) or SBRT + G (n = 85). The improved outcomes have been reported in patients with SBRT + K + M in the previous study. In this secondary analysis, the median overall survival (OS) was 17.2 months (95% CI 14.6-19.8 months) in patients with PD-L1+/TIL + and 12.7 months (95% CI 10.8-14.6 months) in patients with PD-L1+/TIL- (HR 0.62, 95% CI 0.39-0.97, p = 0.036) receiving SBRT + K + M. In SBRT + G group, the median OS was 13.1 months (95% CI 10.9-15.3 months) in patients with PD-L1+/TIL- and 12.7 months (95% CI 9.2-16.2 months) in patients with PD-L1+/TIL+ (HR 0.97, 95% CI 0.62-1.52, p = 0.896). Grade 3 or 4 adverse events were found in 16 patients (30.8%) and 10 patients (30.3%) with PD-L1+/TIL- and PD-L1+/TIL + in SBRT + K + M group respectively; whereas 9 (16.7%) and 8 patients (25.8%) with PD-L1+/TIL- and PD-L1+/TIL + in SBRT + G group. CONCLUSION PD-L1, TILs and mutant KRAS may be a biomarker to guide clinical practice of radiotherapy and immunotherapy-based regimens in pancreatic cancer if further combined with MEK inhibitors as targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital Affiliated to Naval Medical University, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Zhiru Feng
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China.
| |
Collapse
|
20
|
Minz AP, Mohapatra D, Dutta M, Sethi M, Parida D, Mohapatra AP, Mishra S, Kar S, Sasmal PK, Senapati S. Statins abrogate gemcitabine-induced PD-L1 expression in pancreatic cancer-associated fibroblasts and cancer cells with improved therapeutic outcome. Cancer Immunol Immunother 2023; 72:4261-4278. [PMID: 37926727 PMCID: PMC10992415 DOI: 10.1007/s00262-023-03562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
A combination of chemotherapy with immunotherapy has been proposed to have better clinical outcomes in Pancreatic Ductal Adenocarcinoma (PDAC). On the other hand, chemotherapeutics is known to have certain unwanted effects on the tumor microenvironment that may mask the expected beneficial effects of immunotherapy. Here, we have investigated the effect of gemcitabine (GEM), on two immune checkpoint proteins (PD-L1 and PD-L2) expression in cancer associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Findings of in vitro studies conducted by using in-culture activated mouse pancreatic stellate cells (mPSCs) and human PDAC patients derived CAFs demonstrated that GEM significantly induces PD-L1 and PD-L2 expression in these cells. Moreover, GEM induced phosphorylation of STAT1 and production of multiple known PD-L1-inducing secretory proteins including IFN-γ in CAFs. Upregulation of PD-L1 in PSCs/CAFs upon GEM treatment caused T cell inactivation and apoptosis in vitro. Importantly, Statins suppressed GEM-induced PD-L1 expression both in CAFs and PCCs while abrogating the inactivation of T-cells caused by GEM-treated PSCs/CAFs. Finally, in an immunocompetent syngeneic orthotopic mouse pancreatic tumor model, simvastatin and GEM combination therapy significantly reduced intra-tumor PD-L1 expression and noticeably reduced the overall tumor burden and metastasis incidence. Together, the findings of this study have provided experimental evidence that illustrates potential unwanted side effects of GEM that could hamper the effectiveness of this drug as mono and/or combination therapy. At the same time the findings also suggest use of statins along with GEM will help in overcoming these shortcomings and warrant further clinical investigation.
Collapse
Affiliation(s)
- Aliva Prity Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Debasish Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- CV Raman Global University, Bhubaneswar, Odisha, India
| | - Madhuri Dutta
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Amlan Priyadarshee Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Swayambara Mishra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Salona Kar
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Prakash K Sasmal
- Department of General Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | | |
Collapse
|
21
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
22
|
Sun T, Gilani S, Jain D, Cai G. Cytomorphologic, immunophenotypical and molecular features of pancreatic acinar cell carcinoma. Diagn Cytopathol 2023; 51:674-683. [PMID: 37469257 DOI: 10.1002/dc.25196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVES As a rare tumor in pancreas, pancreatic acinar cell carcinoma (PACC) possesses a distinct molecular feature from pancreatic ductal carcinoma (PDAC). Though the diagnosis of PACC is often established based on cytology specimens, its cytologic diagnosis can be challenging. Furthermore, the correlation between PACC cytomorphology and its unique different molecular alterations have not been fully explored. METHODS Cytology features were analyzed in 8 histologically proven PACC and cytohistological correlation was performed. Immunocytochemistry for trypsin, chymotrypsin, BCL10, synaptophysin, chromogranin A, INSM1, β-catenin, and Ki-67 was assessed. Comprehensive molecular profiling and additional targetable treatment biomarker assessment were also performed. RESULTS The cohort included 4 mixed acinar-neuroendocrine carcinomas, 3 pure PACCs, and 1 mixed acinar-ductal carcinoma. Immunophenotypical features are consistent with diagnoses of PACC or PACC with neuroendocrine features. Identified genetic alterations included somatic mutations of CTNNB1, TP53, MAP2K1, PTEN, RAC1, germline mutations of NBN and BRAC2, and gene fusion of CCDC6-RET. CONCLUSIONS The current study is the first attempt to explore the correlation between the cytomorphology characteristics and molecular features of PACC and a few intriguing findings were observed. Further validation in larger cohorts is warranted.
Collapse
Affiliation(s)
- Tong Sun
- Departments of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Syed Gilani
- Departments of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Departments of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Guoping Cai
- Departments of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
25
|
Alimohammadi M, Ghaffari-Nazari H, Alimohammadi R, Bakhshandeh M, Jalali SA, Rezaei N. Radiotherapy Combination: Insight from Tumor Immune Microenvironment (TIME). Avicenna J Med Biotechnol 2023; 15:209-215. [PMID: 38078341 PMCID: PMC10709758 DOI: 10.18502/ajmb.v15i4.13490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/05/2023] [Indexed: 09/29/2024] Open
Abstract
The view of Radiotherapy (RT) as a simple inducer of DNA damage resulting in tumor cell death has dramatically changed in recent years, and it is now widely accepted that RT can trigger an immune response which provides a sound basis for combining RT with immunotherapy. Given that, radiation can be delivered with different regimens, its effect on immune responses and Tumor Immune Microenvironment (TIME) may vary with dose and fractionation schedule. This fractional dose dependency may need to be more considered because of recent developments in RT delivery techniques making it possible to deliver precisely higher dosages per fraction (hypofractionation) while reducing exposure to normal tissues. Although combining radiotherapy with immunotherapy could be a promising strategy for synergistic enhancement of treatment efficacy, the selection of the best-matched combination of immunotherapy with each radiotherapy scheme remains to be addressed. Thus, for designing better therapeutic combinations, it is necessary to understand the immunological effects of RT. Here, we review the impact of conventional and different hypofractionation radiation schedules on the TIME. Subsequently, we highlight how knowing about these interactions may have implications for choosing a rational combination with targeted therapies.
Collapse
Affiliation(s)
- Masoumeh Alimohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
27
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
28
|
Käsmann L, Eze C, Taugner J, Nieto A, Hofstetter K, Kröninger S, Guggenberger J, Kenndoff S, Flörsch B, Tufman A, Reinmuth N, Duell T, Belka C, Manapov F. Concurrent/sequential versus sequential immune checkpoint inhibition in inoperable large stage III non-small cell lung cancer patients treated with chemoradiotherapy: a prospective observational study. J Cancer Res Clin Oncol 2023; 149:7393-7403. [PMID: 36939927 PMCID: PMC10374706 DOI: 10.1007/s00432-023-04654-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE/AIM The international standard for patients with large inoperable stage III NSCLC is durvalumab consolidation after concurrent chemoradiotherapy (CRT). In this single centre observational study based on individual data, we prospectively evaluated the role of concurrent/sequential versus sequential immune checkpoint inhibition (ICI). METHODS AND PATIENTS In total, 39 stage III NSCLC patients were prospectively enrolled, 11 (28%) patients were treated with simultaneous and consolidation therapy with PD-1 inhibition (nivolumab) (SIM-cohort) and 28 (72%) patients received PD-L1 inhibition (durvalumab) as consolidation treatment up to 12 months after the end of CRT (SEQ-cohort). RESULTS For the entire cohort, median progression-free survival (PFS) was 26.3 months and median survival (OS), locoregional recurrence-free survival and distant metastasis-free survival were not reached. For the SIM-cohort, median OS was not reached and PFS was 22.8 months, respectively. In the SEQ-cohort, neither median PFS nor OS were reached. After propensity score matching, PFS at 12/24 months were 82/44% in the SIM-cohort and 57/57% in the SEQ-cohort (p = 0.714), respectively. In the SIM-cohort, 36.4/18.2% of patients showed grade II/III pneumonitis; in the SEQ-cohort 18.2/13.6% after PSM (p = 0.258, p = 0.55). CONCLUSION Both concurrent/sequential and sequential ICI show a favorable side effect profile and promising survival in treated patients with inoperable large stage III NSCLC. Concurrent ICI showed a numerical non-significant improvement regarding 6- and 12-months PFS and distant control compared to sequential approach in this small study. However, concurrent ICI to CRT was associated with a non-significant moderate increase in grade II/III pneumonitis.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany.
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Kerstin Hofstetter
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Sophie Kröninger
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Julian Guggenberger
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Saskia Kenndoff
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Benedikt Flörsch
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany
| | | | | | - Claus Belka
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, University of Munich (LMU), Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
29
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
30
|
Zhuang Y, Wang Y, Liu C, Li S, Du S, Li G. Yes-Associated Protein 1 Inhibition Induces Immunogenic Cell Death and Synergizes With Radiation and PD-1 Blockade. Int J Radiat Oncol Biol Phys 2023; 116:894-905. [PMID: 36608830 DOI: 10.1016/j.ijrobp.2022.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Danger signals released by ionizing radiation (IR) can theoretically stimulate immune activation in the tumor environment (TME), but IR alone is not sufficient to induce an effective immune response in clinical practice. In this study, we investigated whether inhibition of yes-associated protein 1 (YAP1) could induce immunogenic cell death (ICD) and whether the combination of YAP1 inhibition with IR could increase in vivo immune infiltration and thereby boost a tumor response to immunotherapy. METHODS AND MATERIALS First, the expression of ICD markers, markers of T-cell activation, and key proteins involved in innate immune signaling were measured after YAP1 inhibition. Next, the expression level of YAP1 protein was measured after different doses of IR. Then, the antitumor effect of YAP1 inhibition combined with IR was investigated in vivo, and the immune status of the TME was evaluated. Finally, the efficacy of a triple therapy including YAP1 inhibition combined with IR and programmed cell death protein 1 blockade in the treatment of resistant tumors was determined. RESULTS We found that YAP1 inhibition induced ICD and increased the levels of antigen presentation machinery, effectively causing the activation of T cells. Mechanistically, YAP1 inhibition induced cell DNA damage and activated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Surprisingly, IR upregulated YAP1 expression. IR combined with YAP1 inhibition significantly inhibited cancer growth and prolonged survival, which was related to the augmented infiltration, activation, and function of CD8+ T cells in the TME. Moreover, the addition of YAP1 inhibition significantly improved the efficacy of pancreatic cancer treatment when neither radiation nor programmed cell death protein 1 inhibitors were ideal. CONCLUSIONS YAP1 inhibition could trigger ICD and is a potential approach to potentiating the therapeutic efficacy of radiation therapy and anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Yuzi Wang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China; Proton Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Chang Liu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Sihan Li
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Shuyan Du
- Department of Central Laboratory, First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Tan H, Liu J, Huang J, Li Y, Xie Q, Dong Y, Mi Z, Ma X, Rong P. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J Transl Med 2023; 21:462. [PMID: 37438720 DOI: 10.1186/s12967-023-04312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Great progress has been made in applying immunotherapy to the clinical treatment of tumors. However, many patients with triple-negative breast cancer (TNBC) cannot benefit from immunotherapy due to the immune desert type of TNBC, which is unresponsive to immunotherapy. DMKG, a cell-permeable derivative of α-KG, has shown potential to address this issue. METHOD We investigated the effects of combining DMKG with radioimmunotherapy on TNBC. We assessed the ability of DMKG to promote tumor cell apoptosis and immunogenic death induced by radiotherapy (RT), as well as its impact on autophagy reduction, antigen and inflammatory factor release, DC cell activation, and infiltration of immune cells in the tumor area. RESULT Our findings indicated that DMKG significantly promoted tumor cell apoptosis and immunogenic death induced by RT. DMKG also significantly reduced autophagy in tumor cells, resulting in increased release of antigens and inflammatory factors, thereby activating DC cells. Furthermore, DMKG promoted infiltration of CD8 + T cells in the tumor area and reduced the composition of T-regulatory cells after RT, reshaping the tumor immune microenvironment. Both DMKG and RT increased the expression of PD-L1 at immune checkpoints. When combined with anti-PD-L1 drugs (α-PD-L1), they significantly inhibited tumor growth without causing obvious side effects during treatment. CONCLUSION Our study underscores the potential of pairing DMKG with radioimmunotherapy as an effective strategy for treating TNBC by promoting apoptosis, immunogenic death, and remodeling the tumor immune microenvironment. This combination therapy could offer a promising therapeutic avenue for TNBC patients unresponsive to conventional immunotherapy.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuqian Dong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
32
|
Sharon S, Daher-Ghanem N, Zaid D, Gough MJ, Kravchenko-Balasha N. The immunogenic radiation and new players in immunotherapy and targeted therapy for head and neck cancer. FRONTIERS IN ORAL HEALTH 2023; 4:1180869. [PMID: 37496754 PMCID: PMC10366623 DOI: 10.3389/froh.2023.1180869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Although treatment modalities for head and neck cancer have evolved considerably over the past decades, survival rates have plateaued. The treatment options remained limited to definitive surgery, surgery followed by fractionated radiotherapy with optional chemotherapy, and a definitive combination of fractionated radiotherapy and chemotherapy. Lately, immunotherapy has been introduced as the fourth modality of treatment, mainly administered as a single checkpoint inhibitor for recurrent or metastatic disease. While other regimens and combinations of immunotherapy and targeted therapy are being tested in clinical trials, adapting the appropriate regimens to patients and predicting their outcomes have yet to reach the clinical setting. Radiotherapy is mainly regarded as a means to target cancer cells while minimizing the unwanted peripheral effect. Radiotherapy regimens and fractionation are designed to serve this purpose, while the systemic effect of radiation on the immune response is rarely considered a factor while designing treatment. To bridge this gap, this review will highlight the effect of radiotherapy on the tumor microenvironment locally, and the immune response systemically. We will review the methodology to identify potential targets for therapy in the tumor microenvironment and the scientific basis for combining targeted therapy and radiotherapy. We will describe a current experience in preclinical models to test these combinations and propose how challenges in this realm may be faced. We will review new players in targeted therapy and their utilization to drive immunogenic response against head and neck cancer. We will outline the factors contributing to head and neck cancer heterogeneity and their effect on the response to radiotherapy. We will review in-silico methods to decipher intertumoral and intratumoral heterogeneity and how these algorithms can predict treatment outcomes. We propose that (a) the sequence of surgery, radiotherapy, chemotherapy, and targeted therapy should be designed not only to annul cancer directly, but to prime the immune response. (b) Fractionation of radiotherapy and the extent of the irradiated field should facilitate systemic immunity to develop. (c) New players in targeted therapy should be evaluated in translational studies toward clinical trials. (d) Head and neck cancer treatment should be personalized according to patients and tumor-specific factors.
Collapse
Affiliation(s)
- Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral and Maxillofacial Surgery, Boston University and Boston Medical Center, Boston, MA, United States
| | - Narmeen Daher-Ghanem
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deema Zaid
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Wang S, Zhou Z, Hu R, Dong M, Zhou X, Ren S, Zhang Y, Chen C, Huang R, Zhu M, Xie W, Han L, Shen J, Xie C. Metabolic Intervention Liposome Boosted Lung Cancer Radio-Immunotherapy via Hypoxia Amelioration and PD-L1 Restraint. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207608. [PMID: 37092578 PMCID: PMC10288235 DOI: 10.1002/advs.202207608] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
At present, radiotherapy (RT) still acquires limited success in clinical due to the lessened DNA damage under hypoxia and acquired immune tolerance owing to the amplified programmed death ligand-1 (PD-L1) expression. Incredibly, intracellular PD-L1 expression depression is proven to better sensitize RT by inhibiting DNA damage repair. However, the disability of the clinically used antibodies in disrupting the extracellular PD-L1function still limits the effectiveness of radio-immunotherapy. Therefore, better PD-L1 regulation strategies are still urgently needed to better sensitize radio-immunotherapy. Hence, for this purpose, TPP-LND is synthesized by linking mitochondrial-targeted triphenylphosphine cations (TPP+ ) to the antineoplastic agent lonidamine (LND), which significantly reduces the dose needed for LND to induce effective oxidative phosphorylation inhibition (2 vs 300 µM). Then, TPP-LND is wrapped with liposomes to form TPP-LND@Lip nanoparticles. By doing this, TPP-LND@Lip nanoparticles can sensitize RT by reversing the hypoxic microenvironment of tumors to generate more DNA damage and reducing the expression of PD-L1 via enhancing the adenosine 5'-monophosphate-activated protein kinase activation. As expected, these well-designed economical TPP-LND@Lip nanoparticles are more effective than conventional anti-PD-L1 antibodies to some extent.
Collapse
Affiliation(s)
- Saijun Wang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision ScienceSchool of Ophthalmology and Optometry, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
| | - Rui Hu
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Mingyue Dong
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Xiaobo Zhou
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Siyan Ren
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Yi Zhang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Chengxun Chen
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ruoyuan Huang
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Man Zhu
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Wanying Xie
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ling Han
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision ScienceSchool of Ophthalmology and Optometry, School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325027China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Congying Xie
- Medical and Radiation OncologyDepartment of the Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation OncologyWenzhouZhejiang325000China
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
34
|
Gao Z, Zhao Q, Xu Y, Wang L. Improving the efficacy of combined radiotherapy and immunotherapy: focusing on the effects of radiosensitivity. Radiat Oncol 2023; 18:89. [PMID: 37226275 DOI: 10.1186/s13014-023-02278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer treatment is gradually entering an era of precision, with multitude studies in gene testing and immunotherapy. Tumor cells can be recognized and eliminated by the immune system through the expression of tumor-associated antigens, but when the cancer escapes or otherwise suppresses immunity, the balance between cancer cell proliferation and immune-induced cancer cell killing may be interrupted, resulting in tumor proliferation and progression. There has been significant attention to combining conventional cancer therapies (i.e., radiotherapy) with immunotherapy as opposed to treatment alone. The combination of radio-immunotherapy has been demonstrated in both basic research and clinical trials to provide more effective anti-tumor responses. However, the absolute benefits of radio-immunotherapy are dependent on individual characteristics and not all patients can benefit from radio-immunotherapy. At present, there are numerous articles about exploring the optimal models for combination radio-immunotherapy, but the factors affecting the efficacy of the combination, especially with regard to radiosensitivity remain inconclusive. Radiosensitivity is a measure of the response of cells, tissues, or individuals to ionizing radiation, and various studies have shown that the radiosensitivity index (RSI) will be a potential biomarker for predicting the efficacy of combination radio-immunotherapy. The purpose of this review is to focus on the factors that influence and predict the radiosensitivity of tumor cells, and to evaluate the impact and predictive significance of radiosensitivity on the efficacy of radio-immunotherapy combination.
Collapse
Affiliation(s)
- Zhiru Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430064, China
| | - Yiyue Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
35
|
Shih KC, Chan HW, Wu CY, Chuang HY. Curcumin Enhances the Abscopal Effect in Mice with Colorectal Cancer by Acting as an Immunomodulator. Pharmaceutics 2023; 15:pharmaceutics15051519. [PMID: 37242761 DOI: 10.3390/pharmaceutics15051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment. The abscopal effect, referring to the unexpected shrinkage observed in non-irradiated tumors after radiation therapy, is thought to be mediated by systemic immune activation. However, it has low incidence and is unpredictable. Here, RT was combined with curcumin to investigate how curcumin affects RT-induced abscopal effects in mice with bilateral CT26 colorectal tumors. Indium 111-labeled DOTA-anti-OX40 mAb was synthesized to detect the activated T cell accumulations in primary and secondary tumors correlating with the changes in protein expressions and tumor growth to understand the overall effects of the combination of RT and curcumin. The combination treatment caused the most significant tumor suppression in both primary and secondary tumors, accompanied by the highest 111In-DOTA-OX40 mAb tumor accumulations. The combination treatment elevated expressions of proapoptotic proteins (Bax and cleaved caspase-3) and proinflammatory proteins (granzyme B, IL-6, and IL-1β) in both primary and secondary tumors. Based on the biodistribution of 111In-DOTA-OX40 mAb, tumor growth inhibition, and anti-tumor protein expression, our findings suggest that curcumin could act as an immune booster to augment RT-induced anti-tumor and abscopal effects effectively.
Collapse
Affiliation(s)
- Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
36
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
37
|
Ye J, Gavras NW, Keeley DC, Hughson AL, Hannon G, Vrooman TG, Lesch ML, Johnston CJ, Lord EM, Belt BA, Linehan DC, Eyles J, Gerber SA. CD73 and PD-L1 dual blockade amplifies antitumor efficacy of SBRT in murine PDAC models. J Immunother Cancer 2023; 11:e006842. [PMID: 37142292 PMCID: PMC10163599 DOI: 10.1136/jitc-2023-006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) induces immunogenic cell death, leading to subsequent antitumor immune response that is in part counterbalanced by activation of immune evasive processes, for example, upregulation of programmed cell death-ligand 1 (PD-L1) and adenosine generating enzyme, CD73. CD73 is upregulated in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue and high expression of CD73 in PDACs is associated with increased tumor size, advanced stage, lymph node involvement, metastasis, PD-L1 expression and poor prognosis. Therefore, we hypothesized that blockade of both CD73 and PD-L1 in combination with SBRT might improve antitumor efficacy in an orthotopic murine PDAC model. METHODS We assessed the combination of systemic blockade of CD73/PD-L1 and local SBRT on tumor growth in primary pancreatic tumors, and investigated systemic antitumor immunity using a metastatic murine model bearing both orthotopic primary pancreatic tumor and distal hepatic metastases. Immune response was quantified by flow cytometric and Luminex analyses. RESULTS We demonstrated that blockade of both CD73 and PD-L1 significantly amplified the antitumor effect of SBRT, leading to superior survival. The triple therapy (SBRT+anti-CD73+anti-PD-L1) modulated tumor-infiltrating immune cells with increases of interferon-γ+CD8+ T cells. Additionally, triple therapy reprogramed the profile of cytokines/chemokines in the tumor microenvironment toward a more immunostimulatory phenotype. The beneficial effects of triple therapy are completely abrogated by depletion of CD8+ T cells, and partially reversed by depletion of CD4+ T cells. Triple therapy promoted systemic antitumor responses illustrated by: (1) potent long-term antitumor memory and (2) enhanced both primary and liver metastases control along with prolonged survival.
Collapse
Affiliation(s)
- Jian Ye
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas W Gavras
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Keeley
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela L Hughson
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gary Hannon
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maggie L Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Scott A Gerber
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
38
|
Shi X, Shu L, Wang M, Yao J, Yao Q, Bian S, Chen X, Wan J, Zhang F, Zheng S, Wang H. Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204890. [PMID: 37017572 PMCID: PMC10214259 DOI: 10.1002/advs.202204890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/22/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint blockade (ICB) therapies have had a tremendous impact on cancer therapy. However, most patients harbor a poorly immunogenic tumor microenvironment (TME), presenting overwhelming de novo refractoriness to ICB inhibitors. To address these challenges, combinatorial regimens that employ chemotherapies and immunostimulatory agents are urgently needed. Here, a combination chemoimmunotherapeutic nanosystem consisting of a polymeric monoconjugated gemcitabine (GEM) prodrug nanoparticle decorated with an anti-programmed cell death-ligand 1 (PD-L1) antibody (αPD-L1) on the surface and a stimulator of interferon genes (STING) agonist encapsulated inside is developed. Treatment with GEM nanoparticles upregulates PD-L1 expression in ICB-refractory tumors, resulting in augmented intratumor drug delivery in vivo and synergistic antitumor efficacy via activation of intratumor CD8+ T cell responses. Integration of a STING agonist into the αPD-L1-decorated GEM nanoparticles further improves response rates by transforming low-immunogenic tumors into inflamed tumors. Systemically administered triple-combination nanovesicles induce robust antitumor immunity, resulting in durable regression of established large tumors and a reduction in the metastatic burden, coincident with immunological memory against tumor rechallenge in multiple murine tumor models. These findings provide a design rationale for synchronizing STING agonists, PD-L1 antibodies, and chemotherapeutic prodrugs to generate a chemoimmunotherapeutic effect in treating ICB-nonresponsive tumors.
Collapse
Affiliation(s)
- Xiaowei Shi
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Liwei Shu
- Department of Medical OncologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang Province310016P. R. China
| | - Minwen Wang
- Department of Medical OncologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang Province310016P. R. China
| | - Jie Yao
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Department of Chemical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- National Clinical Research Center for Infectious DiseasesHangzhou310003P. R. China
| | - Suchen Bian
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
| | - Xiaona Chen
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Jianqin Wan
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Fu Zhang
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
| | - Shusen Zheng
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| | - Hangxiang Wang
- The First Affiliated HospitalNational Health Commission (NHC) Key Laboratory of Combined Multi‐Organ TransplantationZhejiang University School of MedicineHangzhouZhejiang Province310003P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandong Province250117P. R. China
| |
Collapse
|
39
|
Liu J, Jiang X, Feng X, Lee MJ, Li Y, Mao J, Weichselbaum RR, Lin W. A Three-in-One Nanoscale Coordination Polymer for Potent Chemo-Immunotherapy. SMALL METHODS 2023; 7:e2201437. [PMID: 36638256 PMCID: PMC10192092 DOI: 10.1002/smtd.202201437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Indexed: 05/17/2023]
Abstract
The addition of immune checkpoint blockade to standard chemotherapy has changed the standards of care for some cancer patients. However, current chemo-immunotherapy strategies do not benefit most colorectal cancer patients and many triple-negative breast cancer patients. Here, the design of a three-in-one nanoscale coordination polymer (NCP), OX/GC/CQ, comprising prodrugs of oxaliplatin (OX), gemcitabine (GC), and 5-carboxy-8-hydroxyquinoline (CQ) for triple-modality chemo-immunotherapy is reported. OX/GC/CQ exhibits optimal pharmacokinetics and enhanced particle accumulation and drug release in acidic tumor tissues, wherein CQ greatly enhances immunogenic cell death induced by OX/GC and downregulates programmed cell death-ligand 1 expression in cancer cells. Consequently, OX/GC/CQ efficiently promotes infiltration and activity of cytotoxic T lymphocytes, while decreasing the proportion of immunosuppressive regulatory T cells. Intravenous injection of OX/GC/CQ reduces the growth of colorectal carcinoma and triple-negative breast cancer, prevents metastasis to lungs, and extends mouse survival by 30-40 days compared to free drugs. This work highlights the potential of NCPs in co-delivering synergistic chemo-immunotherapeutics for the treatment of advanced and aggressive cancers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Xuanyu Feng
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Morten J. Lee
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Youyou Li
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Jianming Mao
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
40
|
Fudalej M, Kwaśniewska D, Nurzyński P, Badowska-Kozakiewicz A, Mękal D, Czerw A, Sygit K, Deptała A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082327. [PMID: 37190255 DOI: 10.3390/cancers15082327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death across the world. Poor prognosis of PC is associated with several factors, such as diagnosis at an advanced stage, early distant metastases, and remarkable resistance to most conventional treatment options. The pathogenesis of PC seems to be significantly more complicated than originally assumed, and findings in other solid tumours cannot be extrapolated to this malignancy. To develop effective treatment schemes prolonging patient survival, a multidirectional approach encompassing different aspects of the cancer is needed. Particular directions have been established; however, further studies bringing them all together and connecting the strengths of each therapy are needed. This review summarises the current literature and provides an overview of new or emerging therapeutic strategies for the more effective management of metastatic PC.
Collapse
Affiliation(s)
- Marta Fudalej
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Daria Kwaśniewska
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Paweł Nurzyński
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | | | - Dominika Mękal
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
41
|
Hannon G, Lesch ML, Gerber SA. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int J Mol Sci 2023; 24:7359. [PMID: 37108522 PMCID: PMC10138513 DOI: 10.3390/ijms24087359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maggie L. Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Chen IM, Donia M, Chamberlain CA, Jensen AWP, Draghi A, Theile S, Madsen K, Hasselby JP, Toxværd A, Høgdall E, Lorentzen T, Wilken EE, Geertsen P, Svane IM, Johansen JS, Nielsen D. Phase 2 study of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy in patients with refractory pancreatic cancer (TRIPLE-R). Eur J Cancer 2023; 180:125-133. [PMID: 36592507 DOI: 10.1016/j.ejca.2022.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Interleukin-6 blockade and radiation combined with immunotherapy may modulate the tumour microenvironment to overcome immune resistance. We assessed the efficacy of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy (SBRT) in patients with refractory pancreatic cancer (PC). METHODS Patients with PC who had progressive disease (PD) or intolerance to gemcitabine- or fluorouracil-containing regimens were enrolled in Part A of the two-part, single-centre, phase 2 study (NCT04258150). SBRT with 15 Gy was administered on day one of the first cycle. Ipilimumab was administered (1 mg/kg every 6 weeks) for a maximum of two infusions. Nivolumab (6 mg/kg) and tocilizumab (8 mg/kg) were given every four weeks until the PD or unacceptable toxicity, or for up to one year. The primary end-point was the objective response rate, with a threshold of 15%. RESULTS Twenty-six patients were enrolled and treated between April 17, 2020, and January 25, 2021. The median follow-up time at the time of data cutoff (February 7, 2022) was 4.9 months (interquartile range 2.1-7.7). No responses were observed. Five patients (19%; 95% confidence intervals [CI], 7-39) achieved a stable disease. The median progression-free survival was 1.6 months (95% CI 1.4-1.7), and the median overall survival was 5.3 months (95% CI 2.3-8.0). Overall, 19 (73%) experienced adverse events related to the treatment including two (8%) with grade 3 or higher events. CONCLUSION The combination of ipilimumab, nivolumab, tocilizumab, and SBRT in patients with PC did not meet the prespecified criteria for expansion for full accrual.
Collapse
Affiliation(s)
- Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
| | - Marco Donia
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark; National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Christopher A Chamberlain
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Agnete W P Jensen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Susann Theile
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Jane P Hasselby
- Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Toxværd
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Torben Lorentzen
- Department of Gastroenterology, Unit of Surgical Ultrasound, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Eva E Wilken
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge M Svane
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark; National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
44
|
Jin Y, Gong S, Shang G, Hu L, Li G. Profiling of a novel circadian clock-related prognostic signature and its role in immune function and response to molecular targeted therapy in pancreatic cancer. Aging (Albany NY) 2023; 15:119-133. [PMID: 36626244 PMCID: PMC9876629 DOI: 10.18632/aging.204462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PADA) represents a devastating type of pancreatic cancer with high mortality. Defining a prognostic gene signature that can stratify patients with different risk will benefit cancer treatment strategies. METHODS Gene expression profiles of PADA patients were acquired from the Cancer Genome Atlas and Gene Expression Omnibus, including GSE62452 and GSE28735. Differential expression analysis was carried out using the package edgeR in R. Intro-tumor immune infiltrates were quantified by six different computational algorithms XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, and CIBERSORT. Biological processes were investigated based on R package "clusterProfiler". RESULTS 13 genes (ARNTL2, BHLHE40, FBXL17, FBXL8, PPP1CB, RBM4B, ADRB1, CCAR2, CDK1, CSNK1D, KLF10, PSPC1, SIAH2) were eligible for the development of a prognostic gene signature. Performance of the prognostic gene signature was assessed in the discovery set (n = 210), validation set (n = 52), and two external data set (GSE62452, n = 65, and GSE28735, n = 84). Area under the curve (AUC) for predicting 3-year overall survival was 0.727, 0.732, 0.700, and 0.658 in the training set, the validation set, and the two test sets, respectively. KM curve revealed that the low-risk group had an improved prognosis than the high-risk group in all four datasets. PCA analysis demonstrated that the low-risk group was apparently separated from the high-risk group. CD8 T cell and B cell were significantly reduced in the high-risk group than in the low-risk group, while neutrophils were significantly augmented in the high-risk group than in the low-risk group. BMS-536924, Foretinib, Linsitinib, and Sabutoclax were more sensitive in the low-risk group, whereas Erlotinib was more effective in the high-risk group. CONCLUSIONS We successfully established and verified a novel circadian clock-related gene signature, which could stratify patients with different risk and be reflective of the therapeutic effect of molecular targeted therapy. Our findings could incorporate the pharmacological modulation of circadian clock into future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Gong
- First School of Clinic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guochen Shang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
45
|
Stereotactic Body Radiotherapy and Immunotherapy for Older Patients with Oligometastases: A Proposed Paradigm by the International Geriatric Radiotherapy Group. Cancers (Basel) 2022; 15:cancers15010244. [PMID: 36612239 PMCID: PMC9818761 DOI: 10.3390/cancers15010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The standard of care for metastatic disease is systemic therapy. A unique subset of patients with limited metastatic disease defined as distant involvement of five anatomic sites or less (oligometastases) have a better chance of remission or improved survival and may benefit from local treatments such as surgery or stereotactic body radiotherapy (SBRT). However, to prevent further spread of disease, systemic treatment such as chemotherapy, targeted therapy, and hormonal therapy may be required. Older patients (70 years old or above) or physiologically frail younger patients with multiple co-morbidities may not be able to tolerate the conventional chemotherapy due to its toxicity. In addition, those with a good performance status may not receive optimal chemotherapy due to concern about toxicity. Recently, immunotherapy with checkpoint inhibitors (CPI) has become a promising approach only in the management of program death ligand 1 (PD-L1)-positive tumors. Thus, a treatment method that elicits induction of PD-L1 production by tumor cells may allow all patients with oligometastases to benefit from immunotherapy. In vitro studies have demonstrated that high dose of radiotherapy may induce formation of PD-L1 in various tumors as a defense mechanism against inflammatory T cells. Clinical studies also corroborated those observations. Thus, SBRT, with its high precision to minimize damage to normal organs, may be a potential treatment of choice for older patients with oligometastases due to its synergy with immunotherapy. We propose a protocol combining SBRT to achieve a minimum radiobiologic equivalent dose around 59.5 Gy to all tumor sites if feasible, followed four to six weeks later by CPI for those cancer patients with oligometastases. All patients will be screened with frailty screening questionnaires to identify individuals at high risk for toxicity. The patients will be managed with an interdisciplinary team which includes oncologists, geriatricians, nurses, nutritionists, patient navigators, and social workers to manage all aspects of geriatric patient care. The use of telemedicine by the team may facilitate patient monitoring during treatment and follow-up. Preliminary data on toxicity, local control, survival, and progression-free survival may be obtained and serve as a template for future prospective studies.
Collapse
|
46
|
Wang M, Deng S, Cao Y, Zhou H, Wei W, Yu K, Cao Y, Liang B. Injectable versatile liquid-solid transformation implants alliance checkpoint blockade for magnetothermal dynamic-immunotherapy. Mater Today Bio 2022; 16:100442. [PMID: 36199558 PMCID: PMC9527946 DOI: 10.1016/j.mtbio.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
The ongoing circulating energy loss, low reactive oxygen species (ROS) accumulation and poor immunogenicity of tumors make it difficult to induce sufficient immunogenic cell death (ICD) in the tumor immunosuppressive microenvironment (TIME), resulting in unsatisfactory immunotherapy efficacy. Furthermore, for highly malignant tumors, simply enhancing ICD is insufficient for exhaustively eliminating the tumor and inhibiting metastasis. Herein, we propose a unique magnetothermal-dynamic immunotherapy strategy based on liquid-solid transformation porous versatile implants (Fe3O4/AIPH@PLGA) that takes advantage of less energy loss and avoids ongoing circulating losses by minimally invasive injection into tumors. In addition, the magnetothermal effect regresses and eliminates tumors that are not limited by penetration to simultaneously trigger 2,2′-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) decomposition and generate a large amount of oxygen-irrelevant free radicals and heat shock protein (HSP) accumulation by heating, evoking both intracellular oxidative stress and endoplasmic reticulum (ER) stress to induce large-scale ICD and enhance tumor immunogenicity. More importantly, in orthotopic bilateral breast tumor models, a significant therapeutic effect was obtained after combining amplified ICD with CTLA4 checkpoint blockade. The 21-day primary and distant tumor inhibition rates reached 90%, and the underlying mechanism of the effective synergetic strategy of inducing the T-cell-related response, the immune memory effect and TIME reprogramming in vivo was verified by immune cell analyses. This remarkable therapeutic effect provides a new direction for antitumor immunotherapy based on magnetothermally controlled oxygen-independent free radical release. Injectable versatile liquid-solid phase transformation Fe3O4/AIPH@PLGA gel implants are constructed for the first time. The implants triggered magnetothermal dynamic therapy and successfully addressed two key barriers limiting the efficacy of immunogenic cell death (ICD): low reactive oxygen species (ROS) accumulation and poor immunogenicity. The implants promoting DC maturation, recognition and presentation of antigens. Combined with CTLA4 blockade, the function of Treg cells was inhibited to transform the “cold” TIME into “hot”.
Collapse
Affiliation(s)
- Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Institute of Ultrasound Imaging of Chongqing Medical University; The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, PR China
| | - Siyu Deng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yijia Cao
- Department of Digestion, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, PR China
| | - Hang Zhou
- Institute of Ultrasound Imaging of Chongqing Medical University; The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, PR China
| | - Wei Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, PR China
- Corresponding author. Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, PR China.
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400042, PR China
- Corresponding author. Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, PR China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400042, PR China
- Corresponding author. Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, PR China.
| |
Collapse
|
47
|
Hughes R, Snook AE, Mueller AC. The poorly immunogenic tumor microenvironment of pancreatic cancer: the impact of radiation therapy, and strategies targeting resistance. Immunotherapy 2022; 14:1393-1405. [PMID: 36468417 DOI: 10.2217/imt-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, due to its uniquely aggressive behavior and resistance to therapy. The tumor microenvironment of pancreatic cancer is immunosuppressive, and attempts at utilizing immunotherapies have been unsuccessful. Radiation therapy (RT) results in immune activation and antigen presentation in other cancers, but in pancreatic cancer has had limited success in stimulating immune responses. RT activates common pathways of fibrosis and chronic inflammation seen in pancreatic cancer, resulting in immune suppression. Here we describe the pancreatic tumor microenvironment with regard to fibrosis, myeloid and lymphoid cells, and the impact of RT. We also describe strategies of targeting these pathways that have promise to improve outcomes by harnessing the cytotoxic and immune-activating aspects of RT.
Collapse
Affiliation(s)
- Robert Hughes
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
48
|
Zhou Q, Chen D, Zhang J, Xiang J, Zhang T, Wang H, Zhang Y. Pancreatic ductal adenocarcinoma holds unique features to form an immunosuppressive microenvironment: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
49
|
Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer. Cancer Immunol Immunother 2022; 72:1285-1300. [PMID: 36436021 DOI: 10.1007/s00262-022-03334-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often refractory to treatment with gemcitabine (GEM) and immune checkpoint inhibitors including anti-programmed cell death ligand 1 (PD-L1) antibody. However, the precise relationship between GEM-resistant PDAC and development of an immunosuppressive tumor microenvironment (TME) remains unclear. In this study, we investigated the immunosuppressive TME in parental and GEM-resistant PDAC tumors and assessed the therapeutic potential of combination therapy with the telomerase-specific replication-competent oncolytic adenovirus OBP-702, which induces tumor suppressor p53 protein and PD-L1 blockade against GEM-resistant PDAC tumors. Mouse PDAC cells (PAN02) and human PDAC cells (MIA PaCa-2, BxPC-3) were used to establish GEM-resistant PDAC lines. PD-L1 expression and the immunosuppressive TME were analyzed using parental and GEM-resistant PDAC cells. A cytokine array was used to investigate the underlying mechanism of immunosuppressive TME induction by GEM-resistant PAN02 cells. The GEM-resistant PAN02 tumor model was used to evaluate the antitumor effect of combination therapy with OBP-702 and PD-L1 blockade. GEM-resistant PDAC cells exhibited higher PD-L1 expression and produced higher granulocyte-macrophage colony-stimulating factor (GM-CSF) levels compared with parental cells, inducing an immunosuppressive TME and the accumulation of myeloid-derived suppressor cells (MDSCs). OBP-702 significantly inhibited GEM-resistant PAN02 tumor growth by suppressing GM-CSF-mediated MDSC accumulation. Moreover, combination treatment with OBP-702 significantly enhanced the antitumor efficacy of PD-L1 blockade against GEM-resistant PAN02 tumors. The present results suggest that combination therapy involving OBP-702 and PD-L1 blockade is a promising antitumor strategy for treating GEM-resistant PDAC with GM-CSF-induced immunosuppressive TME formation.
Collapse
|
50
|
Yoon YN, Choe MH, Kong M, Chung WK, Kim JS, Lim YJ. Dynamic alterations in PD-1/PD-L1 expression level and immune cell profiles based on radiation response status in mouse tumor model. Front Oncol 2022; 12:989190. [DOI: 10.3389/fonc.2022.989190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
IntroductionBased on the immunologic effects of anti-cancer treatment and their therapeutic implications, we evaluated radiotherapy (RT)-induced dynamic alterations in programmed death-1 (PD-1)/PD ligand-1 (PD-L1) expression profiles.MethodsLocal RT with 2 Gy × 5 or 7.5 Gy × 1 was administered to the CT26 mouse model. Thereafter, tumors were resected and evaluated at the following predefined timepoints according to radiation response status: baseline, early (immediately after RT), middle (beginning of tumor shrinkage), late (stable status with RT effect), and progression (tumor regrowth). PD-1/PD-L1 activity and related immune cell profiles were quantitatively assessed.ResultsRT upregulated PD-L1 expression in tumor cells from the middle to late phase; however, the levels subsequently decreased to levels comparable to baseline in the progression phase. RT with 2 Gy × 5 induced a higher frequency of PD-L1+ myeloid-derived suppressor cells, with a lesser degree of tumor regression, compared to 7.5 Gy. The proportion of PD-1+ and interferon (IFN)-γ+CD8α T cells continued to increase. The frequency of splenic PD-1+CD8+ T cells was markedly elevated, and was sustained longer with 2 Gy × 5. Based on the transcriptomic data, RT stimulated the transcription of immune-related genes, leading to sequentially altered patterns.DiscussionThe dynamic alterations in PD-1/PD-L1 expression level were observed according to the time phases of tumor regression. This study suggests the influence of tumor cell killing and radiation dosing strategy on the tumor immune microenvironment.
Collapse
|