1
|
Harboe M, Kjaer-Sorensen K, Füchtbauer EM, Fenton RA, Thomsen JS, Brüel A, Oxvig C. The metalloproteinase PAPP-A is required for IGF-dependent chondrocyte differentiation and organization. Sci Rep 2024; 14:20161. [PMID: 39215168 PMCID: PMC11364822 DOI: 10.1038/s41598-024-71062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Insulin-like growth factor (IGF) signaling is required for proper growth and skeletal development in vertebrates. Consequently, its dysregulation may lead to abnormalities of growth or skeletal structures. IGF is involved in the regulation of cell proliferation and differentiation of chondrocytes. However, the availability of bioactive IGF may be controlled by antagonizing IGF binding proteins (IGFBPs) in the circulation and tissues. As the metalloproteinase PAPP-A specifically cleaves members of the IGFBP family, we hypothesized that PAPP-A activity liberates bioactive IGF in cartilage. In PAPP-A knockout mice, the femur length was reduced and the mice showed a disorganized columnar organization of growth plate chondrocytes. Similarly, zebrafish lacking pappaa showed reduced length of Meckel's cartilage and disorganized chondrocytes, reminiscent of the mouse knockout phenotype. Expression of chondrocyte differentiation markers (sox9a, ihha, and col10a1) was markedly affected in Meckel's cartilage of pappaa knockout zebrafish, indicating that differentiation of chondrocytes was compromised. Additionally, the zebrafish pappaa knockout phenotype was mimicked by pharmacological inhibition of IGF signaling, and it could be rescued by treatment with exogenous recombinant IGF-I. In conclusion, our data suggests that IGF activity in the growing cartilage, and hence IGF signaling in chondrocytes, requires the presence of PAPP-A. The absence of PAPP-A causes aberrant chondrocyte organization and compromised growth in both mice and zebrafish.
Collapse
Affiliation(s)
- Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Fernández-Arjona MDM, Navarro JA, López-Gambero AJ, de Ceglia M, Rodríguez M, Rubio L, Rodríguez de Fonseca F, Barrios V, Chowen JA, Argente J, Rivera P, Suárez J. Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments. Biol Sex Differ 2024; 15:34. [PMID: 38589872 PMCID: PMC11000399 DOI: 10.1186/s13293-024-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. METHODS Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. RESULTS Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. CONCLUSIONS Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, 33000, France
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Miguel Rodríguez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Leticia Rubio
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain.
- La Princesa Research Institute, Madrid, 28009, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain.
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain.
| |
Collapse
|
3
|
Güemes M, Martín-Rivada Á, Corredor B, Enes P, Canelles S, Barrios V, Argente J. Implication of Pappalysins and Stanniocalcins in the Bioavailability of IGF-I in Children With Type 1 Diabetes Mellitus. J Endocr Soc 2024; 8:bvae081. [PMID: 38712328 PMCID: PMC11071684 DOI: 10.1210/jendso/bvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/08/2024] Open
Abstract
Context Anomalies in the growth hormone (GH)/insulin-like growth factor (IGF) axis, are common in children with type 1 diabetes mellitus (T1DM), even in those reaching a normal or near-normal final height. However, concentrations of the IGF bioavailability regulatory factors (pappalysins [PAPP-As] and stanniocalcins [STCs]) have not been reported in children with T1DM. Objective To determine serum concentrations of PAPP-As and STCs in children at diagnosis of T1DM and after insulin treatment and the correlation of these factors with other members of the GH/IGF axis, beta-cell insulin reserve, auxology, and nutritional status. Methods A single-center prospective observational study including 47 patients (59.5% male), with T1DM onset at median age of 9.2 years (interquartile range: 6.3, 11.9) was performed. Blood and anthropometric data were collected at diagnosis and after 6 and 12 months of treatment. Results At 6 and 12 months after T1DM diagnosis, there was improvement in the metabolic control (decrease in glycated hemoglobin [HbA1c] at 12 months -3.66 [95% CI: -4.81, -2.05], P = .001), as well as in body mass index SD and height SD (not statistically significant). STC2 increased (P < .001) and PAPP-A2 decreased (P < .001) at 6 and 12 months of treatment onset (P < .001), which was concurrent with increased total IGF-I and IGF-binding protein concentrations, with no significant modification in free IGF-I concentrations. HbA1c correlated with PAPP-A2 (r = +0.41; P < .05) and STC2 (r = -0.32; P < .05). Conclusion Implementation of insulin treatment after T1DM onset modifies various components of the circulating IGF system, including PAPP-A2 and STC2. How these modifications modulate linear growth remains unknown.
Collapse
Affiliation(s)
- María Güemes
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Álvaro Martín-Rivada
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Beatriz Corredor
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Patricia Enes
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Sandra Canelles
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Vicente Barrios
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, 28049 Madrid, Spain
| |
Collapse
|
4
|
Gong J, Ding G, Hao Z, Li Y, Deng A, Zhang C. Elucidating the mechanism of corneal epithelial cell repair: unraveling the impact of growth factors. Front Med (Lausanne) 2024; 11:1384500. [PMID: 38638937 PMCID: PMC11024251 DOI: 10.3389/fmed.2024.1384500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The repair mechanism for corneal epithelial cell injuries encompasses migration, proliferation, and differentiation of corneal epithelial cells, and extracellular matrix remodeling of the stromal structural integrity. Furthermore, it involves the consequential impact of corneal limbal stem cells (LSCs). In recent years, as our comprehension of the mediating mechanisms underlying corneal epithelial injury repair has advanced, it has become increasingly apparent that growth factors play a pivotal role in this intricate process. These growth factors actively contribute to the restoration of corneal epithelial injuries by orchestrating responses and facilitating specific interactions at targeted sites. This article systematically summarizes the role of growth factors in corneal epithelial cell injury repair by searching relevant literature in recent years, and explores the limitations of current literature search, providing a certain scientific basis for subsequent basic research and clinical applications.
Collapse
Affiliation(s)
- Jinjin Gong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Gang Ding
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Zhongkai Hao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Yuchun Li
- Wuxi No. 2 Chinese Medicine Hospital, Wuxi, China
| | - Aijun Deng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Chenming Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| |
Collapse
|
5
|
Nimptsch K, Aydin EE, Chavarria RFR, Janke J, Poy MN, Oxvig C, Steinbrecher A, Pischon T. Pregnancy associated plasma protein-A2 (PAPP-A2) and stanniocalcin-2 (STC2) but not PAPP-A are associated with circulating total IGF-1 in a human adult population. Sci Rep 2024; 14:1770. [PMID: 38245583 PMCID: PMC10799854 DOI: 10.1038/s41598-024-52074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The pappalysins pregnancy associated plasma protein-A (PAPP-A) and -A2 (PAPP-A2) act as proteinases of insulin-like growth factor-1 (IGF-1) binding proteins, while stanniocalcin-2 (STC2) was identified as a pappalysin inhibitor. While there is some evidence from studies in children and adolescents, it is unclear whether these molecules are related to concentrations of IGF-1 and its binding proteins in adults. We investigated cross-sectionally the association of circulating PAPP-A, PAPP-A2 and STC2 with IGF-1 and its binding proteins (IGFBPs) in 394 adult pretest participants (20-69 years) of the German National Cohort Berlin North study center. Plasma PAPP-A, PAPP-A2, total and free IGF-1, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-5 and STC2 were measured by ELISAs. The associations of PAPP-A, PAPP-A2 and STC2 with IGF-1 or IGFBPs were investigated using multivariable linear regression analyses adjusting for age, sex, body mass index and pretest phase. We observed significant inverse associations of PAPP-A2 (difference in concentrations per 0.5 ng/mL higher PAPP-A2 levels) with total IGF-1 (- 4.3 ng/mL; 95% CI - 7.0; - 1.6), the IGF-1:IGFBP-3 molar ratio (- 0.34%; 95%-CI - 0.59; - 0.09), but not free IGF-1 and a positive association with IGFBP-2 (11.9 ng/mL; 95% CI 5.0; 18.8). PAPP-A was not related to total or free IGF-1, but positively associated with IGFBP-5. STC2 was inversely related to total IGF-1, IGFBP-2 and IGFBP-3 and positively to IGFBP-1. This first investigation of these associations in a general adult population supports the hypothesis that PAPP-A2 as well as STC2 play a role for IGF-1 and its binding proteins, especially for total IGF-1. The role of PAPP-A2 and STC2 for health and disease in adults warrants further investigation.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Elif Ece Aydin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rafael Francisco Rios Chavarria
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Poy
- John Hopkins University, All Children's Hospital, St. Petersburg, FL, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Astrid Steinbrecher
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Conover CA, Oxvig C. The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocr Rev 2023; 44:1012-1028. [PMID: 37267421 DOI: 10.1210/endrev/bnad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) was first identified in the early 1970s as a placental protein of unknown function, present at high concentrations in the circulation of pregnant women. In the mid-to-late 1990s, PAPP-A was discovered to be a metzincin metalloproteinase, expressed by many nonplacental cells, that regulates local insulin-like growth factor (IGF) activity through cleavage of high-affinity IGF binding proteins (IGFBPs), in particular IGFBP-4. With PAPP-A as a cell surface-associated enzyme, the reduced affinity of the cleavage fragments results in increased IGF available to bind and activate IGF receptors in the pericellular environment. This proteolytic regulation of IGF activity is important, since the IGFs promote proliferation, differentiation, migration, and survival in various normal and cancer cells. Thus, there has been a steady growth in investigation of PAPP-A structure and function outside of pregnancy. This review provides historical perspective on the discovery of PAPP-A and its structure and cellular function, highlights key studies of the first 50 years in PAPP-A research, and introduces new findings from recent years.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Li S, Li H, Wang Z, Duan C. Stanniocalcin 1a regulates organismal calcium balance and survival by suppressing Trpv6 expression and inhibiting IGF signaling in zebrafish. Front Endocrinol (Lausanne) 2023; 14:1276348. [PMID: 37964974 PMCID: PMC10640984 DOI: 10.3389/fendo.2023.1276348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Stanniocalcin 1 (Stc1) is well known for its role in regulating calcium uptake in fish by acting on ionocytes or NaR cells. A hallmark of NaR cells is the expression of Trpv6, a constitutively open calcium channel. Recent studies in zebrafish suggest that genetical deletion of Stc1a and Trpv6 individually both increases IGF signaling and NaR cell proliferation. While trpv6-/- fish suffered from calcium deficiency and died prematurely, stc1a-/- fish had elevated body calcium levels but also died prematurely. The relationship between Stc1a, Trpv6, and IGF signaling in regulating calcium homeostasis and organismal survival is unclear. Here we report that loss of Stc1a increases Trpv6 expression in NaR cells in an IGF signaling-dependent manner. Treatment with CdCl2, a Trpv6 inhibitor, reduced NaR cell number in stc1a -/- fish to the sibling levels. Genetic and biochemical analysis results suggest that Stc1a and Trpv6 regulate NaR cell proliferation via the same IGF pathway. Alizarin red staining detected abnormal calcium deposits in the yolk sac region and kidney stone-like structures in stc1a -/- fish. Double knockout or pharmacological inhibition of Trpv6 alleviated these phenotypes, suggesting that Stc1a inhibit epithelial Ca2+ uptake by regulating Trpv6 expression and activity. stc1a-/- mutant fish developed cardiac edema, body swelling, and died prematurely. Treatment of stc1a-/- fish with CdCl2 or double knockout of Trpv6 alleviated these phenotypes. These results provide evidence that Stc1a regulates calcium homeostasis and organismal survival by suppressing Trpv6 expression and inhibiting IGF signaling in ionocytes.
Collapse
Affiliation(s)
| | | | | | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Backeljauw PF, Andrews M, Bang P, Dalle Molle L, Deal CL, Harvey J, Langham S, Petriczko E, Polak M, Storr HL, Dattani MT. Challenges in the care of individuals with severe primary insulin-like growth factor-I deficiency (SPIGFD): an international, multi-stakeholder perspective. Orphanet J Rare Dis 2023; 18:312. [PMID: 37805563 PMCID: PMC10559630 DOI: 10.1186/s13023-023-02928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/24/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Severe primary insulin-like growth factor-I (IGF-I) deficiency (SPIGFD) is a rare growth disorder characterized by short stature (standard deviation score [SDS] ≤ 3.0), low circulating concentrations of IGF-I (SDS ≤ 3.0), and normal or elevated concentrations of growth hormone (GH). Laron syndrome is the best characterized form of SPIGFD, caused by a defect in the GH receptor (GHR) gene. However, awareness of SPIGFD remains low, and individuals living with SPIGFD continue to face challenges associated with diagnosis, treatment and care. OBJECTIVE To gather perspectives on the key challenges for individuals and families living with SPIGFD through a multi-stakeholder approach. By highlighting critical gaps in the awareness, diagnosis, and management of SPIGFD, this report aims to provide recommendations to improve care for people affected by SPIGFD globally. METHODS An international group of clinical experts, researchers, and patient and caregiver representatives from the SPIGFD community participated in a virtual, half-day meeting to discuss key unmet needs and opportunities to improve the care of people living with SPIGFD. RESULTS As a rare disorder, limited awareness and understanding of SPIGFD amongst healthcare professionals (HCPs) poses significant challenges in the diagnosis and treatment of those affected. Patients often face difficulties associated with receiving a formal diagnosis, delayed treatment initiation and limited access to appropriate therapy. This has a considerable impact on the physical health and quality of life for patients, highlighting a need for more education and clearer guidance for HCPs. Support from patient advocacy groups is valuable in helping patients and their families to find appropriate care. However, there remains a need to better understand the burden that SPIGFD has on individuals beyond height, including the impact on physical, emotional, and social wellbeing. CONCLUSIONS To address the challenges faced by individuals and families affected by SPIGFD, greater awareness of SPIGFD is needed within the healthcare community, and a consensus on best practice in the care of individuals affected by this condition. Continued efforts are also needed at a global level to challenge existing perceptions around SPIGFD, and identify solutions that promote equitable access to appropriate care. Medical writing support was industry-sponsored.
Collapse
Affiliation(s)
- Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Mary Andrews
- The Major Aspects of Growth in Children (MAGIC) Foundation, Warrenville, IL, USA
- The MAGIC Foundation International Coalition for Organizations Supporting Endocrine Patients (MAGIC-ICOSEP), Atlanta, GA, USA
| | - Peter Bang
- Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences (BKV), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | - Cheri L Deal
- Université de Montréal, Montréal, QC, Canada
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, QC, Canada
| | - Jamie Harvey
- The Major Aspects of Growth in Children (MAGIC) Foundation, Warrenville, IL, USA
- The MAGIC Foundation International Coalition for Organizations Supporting Endocrine Patients (MAGIC-ICOSEP), Atlanta, GA, USA
| | - Shirley Langham
- Paediatric Endocrinology, Great Ormond Street Hospital UCL Hospitals, London, UK
| | - Elżbieta Petriczko
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Disorders, and Cardiology of Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Michel Polak
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mehul T Dattani
- Paediatric Endocrinology, Great Ormond Street Hospital UCL Hospitals, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Adolescent Endocrinology, UCL Hospitals, London, UK.
| |
Collapse
|
9
|
Martín AI, Moreno-Rupérez Á, Nebot E, Granado M, Jaque D, Nieto-Bona MP, López-Calderón A, Priego T. Time-Dependent Changes in Muscle IGF1-IGFBP5-PAPP System after Sciatic Denervation. Int J Mol Sci 2023; 24:14112. [PMID: 37762414 PMCID: PMC10531309 DOI: 10.3390/ijms241814112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Denervation-induced muscle atrophy is a frequent cause of skeletal muscle diseases. However, the role of the most important muscle growth factor, insulin-like growth factor (IGF-1), in this process is poorly understood. IGF-1 activity is controlled by six IGF-1 binding proteins (IGFBPs). In skeletal muscle, IGFBP-5 seems to have an important role in atrophic processes. Furthermore, pappalysins (PAPP-A) modulate muscle growth by increasing IGF-1 bioavailability through IGFBP cleavage. We aimed to study the time-dependent changes in the IGF1-IGFBP5-PAPP system and its regulators in gastrocnemius muscle after sciatic denervation. Gastrocnemius atrophy and overexpression of IGF-1 was observed from day 3 post-denervation. The proteolytic factors measured were elevated from day 1 post-denervation onwards. Expression of both IGFBP-5 and pappalysins were increased on days 1 and 3. Subsequently, on days 7 to 14 pappalysins returned to control levels while IGFBP-5 remained elevated. The ratio IGFBP-5/PAPP-A was correlated with the main proteolytic markers. All data suggest that the initial increase of pappalysins could facilitate the IGF-1 action on muscle growth, whereas their subsequent decrease could lead to further muscle wasting.
Collapse
Affiliation(s)
- Ana Isabel Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain; (A.I.M.); (Á.M.-R.); (E.N.); (A.L.-C.)
| | - Álvaro Moreno-Rupérez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain; (A.I.M.); (Á.M.-R.); (E.N.); (A.L.-C.)
| | - Elena Nebot
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain; (A.I.M.); (Á.M.-R.); (E.N.); (A.L.-C.)
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 2, 28029 Madrid, Spain;
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Avenida Francisco Tomas y Valiente, 28049 Madrid, Spain;
| | - M. Paz Nieto-Bona
- Departamento de Ciencias Básicas de la Salud, Facultad CC Salud, Universidad Rey Juan Carlos, Avenida de Atenas sn, 20922 Madrid, Spain;
| | - Asunción López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain; (A.I.M.); (Á.M.-R.); (E.N.); (A.L.-C.)
| | - Teresa Priego
- Departamento de Fisiología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
10
|
Oxvig C, Conover CA. The Stanniocalcin-PAPP-A-IGFBP-IGF Axis. J Clin Endocrinol Metab 2023; 108:1624-1633. [PMID: 36718521 DOI: 10.1210/clinem/dgad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The pappalysin metalloproteinases, PAPP-A and PAPP-A2, have emerged as highly specific proteolytic enzymes involved in the regulation of insulin-like growth factor (IGF) signaling. The only known pappalysin substrates are a subset of the IGF binding proteins (IGFBPs), which bind IGF-I or IGF-II with high affinity to antagonize receptor binding. Thus, by cleaving IGFBPs, the pappalysins have the potential to increase IGF bioactivity and hence promote IGF signaling. This is relevant both in systemic and local IGF regulation, in normal and several pathophysiological conditions. Stanniocalcin-1 and -2 were recently found to be potent pappalysin inhibitors, thus comprising the missing components of a complete proteolytic system, the stanniocalcin-PAPP-A-IGFBP-IGF axis. Here, we provide the biological context necessary for understanding the properties of this molecular network, and we review biochemical data, animal experiments, clinical data, and genetic data supporting the physiological operation of this branch as an important part of the IGF system. However, although in vivo data clearly illustrate its power, it is a challenge to understand its subtle operation, for example, multiple equilibria and inhibitory kinetics may determine how, where, and when the IGF receptor is stimulated. In addition, literally all of the regulatory proteins have suspected or known activities that are not directly related to IGF signaling. How such activities may integrate with IGF signaling is also important to address in the future.
Collapse
Affiliation(s)
- Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 C, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Hoeflich A, Galow AM, Brenmoehl J, Hadlich F. Growth and development of the mammary gland in mice-control of the insulin-like growth factor system by hormones and metalloproteases, and putative interference with micro RNAs. Anim Front 2023; 13:77-85. [PMID: 37324202 PMCID: PMC10266761 DOI: 10.1093/af/vfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
12
|
Gude MF, Hjortebjerg R, Bjerre M, Charles MH, Witte DR, Sandbæk A, Frystyk J. The STC2-PAPP-A-IGFBP4-IGF1 axis and its associations to mortality and CVD in T2D. Endocr Connect 2023; 12:e220451. [PMID: 36607154 PMCID: PMC9986395 DOI: 10.1530/ec-22-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Objective Physiologically, pregnancy-associated plasma protein-A (PAPP-A) serves to liberate bound IGF1 by enzymatic cleavage of IGF-binding proteins (IGFBPs), IGFBP4 in particular. Clinically, PAPP-A has been linked to cardiovascular disease (CVD). Stanniocalcin-2 (STC2) is a natural inhibitor of PAPP-A enzymatic activity, but its association with CVD is unsettled. Therefore, we examined associations between the STC2-PAPP-A-IGFBP4-IGF1 axis and all-cause mortality and CVD in patients with type 2 diabetes (T2D). Design We followed 1284 participants with T2D from the ADDITION trial for 5 years. Methods Circulating concentrations of STC2, PAPP-A, total and intact IGFBP4 and IGF1 and -2 were measured at inclusion. End-points were all-cause mortality and a composite CVD event: death from CVD, myocardial infarction, stroke, revascularisation or amputation. Survival analysis was performed by Cox proportional hazards model. Results During follow-up, 179 subjects presented with an event. After multivariable adjustment, higher levels of STC2, PAPP-A, as well as intact and total IGFBP4, were associated with all-cause mortality; STC2: hazard ratio (HR) = 1.84 (1.09-3.12) (95% CI); P = 0.023, PAPP-A: HR = 2.81 (1.98-3.98); P < 0.001, intact IGFBP4: HR = 1.43 (1.11-1.85); P = 0.006 and total IGFBP4: HR = 3.06 (1.91-4.91); P < 0.001. Higher PAPP-A levels were also associated with CVD events: HR = 1.74 (1.16-2.62); P = 0.008, whereas lower IGF1 levels were associated with all-cause mortality: HR = 0.51 (0.34-0.76); P = 0.001. Conclusions This study supports that PAPP-A promotes CVD and increases mortality. However, STC2 is also associated with mortality. Given that STC2 inhibits the enzymatic effects of PAPP-A, we speculate that STC2 either serves to counteract harmful PAPP-A actions or possesses effects independently of the PAPP-A-IGF1 axis. Significance statement PAPP-A has pro-atherosclerotic effects and exerts these most likely through IGF1. IGF1 is regulated by the STC2-PAPP-A-IGFBP4-IGF1 axis, where STC2, an irreversible inhibitor of PAPP-A, has been shown to reduce the development of atherosclerotic lesions in mice. We examined the association of this axis to mortality and CVD in T2D. We demonstrated an association between PAPP-A and CVD. All components of the STC2-PAPP-A-IGFBP4-IGF1 axis were associated with mortality and it is novel that STC2 was associated with mortality in T2D. Our study supports that inhibition of PAPP-A may be a new approach to reducing mortality and CVD. Whether modification of STC2 could serve as potential intervention warrants further investigation.
Collapse
Affiliation(s)
- Mette Faurholdt Gude
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Hjortebjerg
- Department of Molecular Endocrinology, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Mette Bjerre
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Haaning Charles
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Annelli Sandbæk
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Sun J, Zhang P, Wang D, Zhu S, Ma X, Du Z, Zhang J, Yang S, Huang H, Jiang R, Tian Y, Li W, Kang X, Yan F, Sun G, Li D. Integrative analyses of the mRNA expression profile reveal the involvement of STC1 in chicken folliculogenesis. J Anim Sci 2023; 101:skad295. [PMID: 37656166 PMCID: PMC10503649 DOI: 10.1093/jas/skad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023] Open
Abstract
Efficient ovarian follicle development, maturation, and ovulation are critical for egg production performance. Previous research has underscored the importance of messenger RNAs (mRNAs) in regulating development and folliculogenesis in chicken ovarians. However, the molecular mechanism is not fully understood, especially in the late period of the laying cycle. In the present study, ovarian tissues from 80-week-old Hy-Line Brown layers (three with high and three with low rates of egg laying) were collected for transcriptome sequencing. A total of 306 differentially expressed genes (DEGs) were identified in this study, at a false discovery rate (FDR)-corrected P-value < 0.05 and a log2|fold change| (log2|FC|) ≥1.5. Among these DEGs, stanniocalcin 1 (STC1) was mainly related to cellular processes, single-organism processes, biological regulation, metabolic processes, developmental processes, and reproductive processes. Then, we further investigated the regulation of STC1 during chicken follicle development and found that STC1 inhibited the proliferation and stimulated the apoptosis of follicular granulosa cells (GCs), and decreased the expression of progesterone (P4) and estradiol (E2). Collectively, these results suggest that STC1 plays an important role in chicken follicle development by decreasing GC proliferation and steroidogenesis and stimulating GC apoptosis. This study contributes to the understanding of the reproductive biology of laying hens in the late period of the laying cycle and further lays a foundation for the improvement of egg production in poultry breeding.
Collapse
Affiliation(s)
- Junwei Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhenwei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jiechang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Shuangyuan Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
14
|
Structure of the proteolytic enzyme PAPP-A with the endogenous inhibitor stanniocalcin-2 reveals its inhibitory mechanism. Nat Commun 2022; 13:6084. [PMID: 36257932 PMCID: PMC9579167 DOI: 10.1038/s41467-022-33698-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The metzincin metalloproteinase PAPP-A plays a key role in the regulation of insulin-like growth factor (IGF) signaling by specific cleavage of inhibitory IGF binding proteins (IGFBPs). Using single-particle cryo-electron microscopy (cryo-EM), we here report the structure of PAPP-A in complex with its endogenous inhibitor, stanniocalcin-2 (STC2), neither of which have been reported before. The highest resolution (3.1 Å) was obtained for the STC2 subunit and the N-terminal approximately 1000 residues of the PAPP-A subunit. The 500 kDa 2:2 PAPP-A·STC2 complex is a flexible multidomain ensemble with numerous interdomain contacts. In particular, a specific disulfide bond between the subunits of STC2 and PAPP-A prevents dissociation, and interactions between STC2 and a module located in the very C-terminal end of the PAPP-A subunit prevent binding of its main substrate, IGFBP-4. While devoid of activity towards IGFBP-4, the active site cleft of the catalytic domain is accessible in the inhibited PAPP-A·STC2 complex, as shown by its ability to hydrolyze a synthetic peptide derived from IGFBP-4. Relevant to multiple human pathologies, this unusual mechanism of proteolytic inhibition may support the development of specific pharmaceutical agents, by which IGF signaling can be indirectly modulated.
Collapse
|
15
|
Martín-Rivada Á, Guerra-Cantera S, Campillo-Calatayud A, Andrés-Esteban EM, Sánchez Holgado M, Martos-Moreno GÁ, Pozo J, Güemes M, Soriano-Guillén L, Pellicer A, Oxvig C, Frystyk J, Chowen JA, Barrios V, Argente J. Pappalysins and Stanniocalcins and Their Relationship With the Peripheral IGF Axis in Newborns and During Development. J Clin Endocrinol Metab 2022; 107:2912-2924. [PMID: 35902207 DOI: 10.1210/clinem/dgac453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pappalysins (PAPP-A, PAPP-A2) modulate body growth by increasing insulin-like growth factor I (IGF-I) bioavailability through cleavage of insulin-like growth factor binding proteins (IGFBPs) and are inhibited by stanniocalcins (STC1, STC2). Normative data on these novel factors, as well as on free IGF-I and uncleaved fractions of IGFBPs, are not well established. OBJECTIVE This work aimed to determine serum concentrations of PAPP-A, PAPP-A2, STC1, and STC2 in relationship with other growth hormone (GH)-IGF axis parameters during development. METHODS Full-term newborns (150; gestational age: 39.30 ± 1.10 weeks), 40 preterm newborns (30.87 ± 3.35 weeks), and 1071 healthy individuals (aged 1-30 years) were included in the study and divided according to their Tanner stages (males and females): I:163 males, 154 females; II:100 males, 75 females; III:83 males, 96 females; IV: 77 males, 86 females; and V:109 males,128 females. RESULTS Serum concentrations of PAPP-A, PAPP-A2, STC1, STC2, IGFBP-2, total IGFBP-4, and total IGFBP-5 were elevated at birth and declined throughout childhood. In postnatal life, PAPP-A2 concentrations decreased progressively in concomitance with the free/total IGF-I ratio; however, stanniocalcin concentrations remained stable. PAPP-A2 concentrations positively correlated with the free/total IGF-I ratio (r = +0.28; P < .001) and negatively with the intact/total IGFBP-3 ratio (r = -0.23; P < .001). PAPP-A concentrations inversely correlated with intact/total IGFBP-4 ratio (r = -0.21; P < .001), with PAPP-A concentrations being lower in females at all ages. Association studies indicate the importance of stanniocalcins and pappalysins in the control of this axis in an age-specific manner. CONCLUSION This study provides reference values of pappalysins and stanniocalcins, which modulate IGF-I activity by changing the concentrations of cleaved and uncleaved IGFBPs.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Santiago Guerra-Cantera
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Ana Campillo-Calatayud
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | | | | | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Pozo
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - María Güemes
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Leandro Soriano-Guillén
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Fundación Jiménez Díaz, E-28040, Madrid, Spain
| | - Adelina Pellicer
- Department of Neonatology, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Aarhus, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| | - Vicente Barrios
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| |
Collapse
|
16
|
Judge RA, Sridar J, Tunyasuvunakool K, Jain R, Wang JCK, Ouch C, Xu J, Mafi A, Nile AH, Remarcik C, Smith CL, Ghosh C, Xu C, Stoll V, Jumper J, Singh AH, Eaton D, Hao Q. Structure of the PAPP-A BP5 complex reveals mechanism of substrate recognition. Nat Commun 2022; 13:5500. [PMID: 36127359 PMCID: PMC9489782 DOI: 10.1038/s41467-022-33175-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is highly conserved and tightly regulated by proteases including Pregnancy-Associated Plasma Protein A (PAPP-A). PAPP-A and its paralog PAPP-A2 are metalloproteases that mediate IGF bioavailability through cleavage of IGF binding proteins (IGFBPs). Here, we present single-particle cryo-EM structures of the catalytically inactive mutant PAPP-A (E483A) in complex with a peptide from its substrate IGFBP5 (PAPP-ABP5) and also in its substrate-free form, by leveraging the power of AlphaFold to generate a high quality predicted model as a starting template. We show that PAPP-A is a flexible trans-dimer that binds IGFBP5 via a 25-amino acid anchor peptide which extends into the metalloprotease active site. This unique IGFBP5 anchor peptide that mediates the specific PAPP-A-IGFBP5 interaction is not found in other PAPP-A substrates. Additionally, we illustrate the critical role of the PAPP-A central domain as it mediates both IGFBP5 recognition and trans-dimerization. We further demonstrate that PAPP-A trans-dimer formation and distal inter-domain interactions are both required for efficient proteolysis of IGFBP4, but dispensable for IGFBP5 cleavage. Together the structural and biochemical studies reveal the mechanism of PAPP-A substrate binding and selectivity.
Collapse
Affiliation(s)
| | - Janani Sridar
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Rinku Jain
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | - John C K Wang
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Aaron H Nile
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Crystal Ghosh
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Stoll
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | | | - Amoolya H Singh
- Calico Life Sciences LLC, South San Francisco, CA, USA
- GRAIL, Menlo Park, CA, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| |
Collapse
|
17
|
Jepsen MR, Østergaard JA, Conover CA, Wogensen L, Birn H, Krag SP, Fenton RA, Oxvig C. Increased activity of the metalloproteinase PAPP-A promotes diabetes-induced glomerular hypertrophy. Metabolism 2022; 132:155218. [PMID: 35588861 DOI: 10.1016/j.metabol.2022.155218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious complication of diabetes and a common cause of end stage renal failure. Insulin-like growth factor (IGF)-signaling has been implicated in DN, but is mechanistically poorly understood. Here, we assessed the activity of the metalloproteinase PAPP-A, an activator of IGF activity, and its possible interaction with the endogenous PAPP-A inhibitors stanniocalcin (STC)-1 and -2 in the mammalian kidney under normal and hyperglycemic conditions. METHODS AND RESULTS Immunohistochemistry demonstrated that PAPP-A, its proteolytic substrate IGF binding protein-4, STC1 and STC2 are present in the human kidney. Endogenous inhibited complexes of PAPP-A (PAPP-A:STC1 and PAPP-A:STC2) were demonstrated in media conditioned by human mesangial cells (HMCs), suggesting that PAPP-A activity is regulated by the STCs in kidney tissue. A method for the selective detection of active PAPP-A in tissue was developed and a significant increase in glomerular active PAPP-A in human diabetic kidney relative to normal was observed. In DN patients, the estimated glomerular filtration rate correlated with PAPP-A activity. In diabetic mice, glomerular growth was reduced when PAPP-A activity was antagonized by adeno-associated virus-mediated overexpression of STC2. CONCLUSION We propose that PAPP-A activity in renal tissue is precisely balanced by STC1 and STC2. An imbalance in this equilibrium causing increased PAPP-A enzymatic activity potentially contributes to the development of DN, and thus, therapeutic targeting of PAPP-A activity may represent a novel strategy for its treatment.
Collapse
Affiliation(s)
- Malene R Jepsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jakob A Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | | | - Lise Wogensen
- Dean's Office, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren P Krag
- Department of Histopathology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Damen L, Elizabeth MSM, Donze SH, van den Berg SAA, de Graaff LCG, Hokken-Koelega ACS. Free Insulin-like Growth Factor (IGF)-I in Children with PWS. J Clin Med 2022; 11:jcm11051280. [PMID: 35268371 PMCID: PMC8911349 DOI: 10.3390/jcm11051280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
In children with Prader−Willi syndrome (PWS), the standard growth hormone (GH) dose often results in high immunoreactive IGF-I levels. These high immunoreactive IGF-I levels lead to concern because their long-term effects are unknown. As a result, clinicians have to lower the GH dose, which worsens body composition and quality of life. As clinical features do not seem to correspond to immunoreactive IGF-I values, it is questionable whether immunoreactive IGF-I is a suitable marker for GH dosing, or whether another parameter better reflects IGF-I bioavailability and bioactivity. We, therefore, investigate serum immunoreactive IGF-I, free IGF-I and IGFBP-3 levels in 70 GH-treated children with PWS. Our study showed that, although immunoreactive IGF-I levels were high (>2 SDS) in the vast majority of prepubertal and pubertal children, free IGF-I SDS levels were <0 SDS in most and <1 SDS in all. Free IGF-I correlated with the immunoreactive IGF-I, IGFBP-3 and IGF-I/IGFBP-3 ratio. We conclude that there is a major discrepancy between immunoreactive and free IGF-I levels. While in the majority of GH-treated children with PWS, immunoreactive IGF-I levels were high, free IGF-I levels were <0 SDS in most. Our data appear to be very reassuring and suggest that free IGF-I levels should also be taken into consideration when the immunoreactive IGF-I levels are >2 SDS in GH-treated children with PWS.
Collapse
Affiliation(s)
- Layla Damen
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands; (S.H.D.); (A.C.S.H.-K.)
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands;
- Academic Center for Growth Disorders, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-225-1533
| | - Melitza S. M. Elizabeth
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.M.E.); (S.A.A.v.d.B.)
| | - Stephany H. Donze
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands; (S.H.D.); (A.C.S.H.-K.)
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands;
- Academic Center for Growth Disorders, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sjoerd A. A. van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.M.E.); (S.A.A.v.d.B.)
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Laura C. G. de Graaff
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands;
- Academic Center for Growth Disorders, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.M.E.); (S.A.A.v.d.B.)
| | - Anita C. S. Hokken-Koelega
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands; (S.H.D.); (A.C.S.H.-K.)
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands;
- Academic Center for Growth Disorders, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
19
|
DeVito LM, Barzilai N, Cuervo AM, Niedernhofer LJ, Milman S, Levine M, Promislow D, Ferrucci L, Kuchel GA, Mannick J, Justice J, Gonzales MM, Kirkland JL, Cohen P, Campisi J. Extending human healthspan and longevity: a symposium report. Ann N Y Acad Sci 2022; 1507:70-83. [PMID: 34498278 PMCID: PMC10231756 DOI: 10.1111/nyas.14681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.
Collapse
Affiliation(s)
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Sofiya Milman
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - George A Kuchel
- University of Connecticut School of Medicine, Farmington, Connecticut
| | | | - Jamie Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitzi M Gonzales
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | | | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, Los Angeles, California
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, California
- Lawrence Berkeley National Laboratory, Berkley, California
| |
Collapse
|
20
|
Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021; 10:cells10123576. [PMID: 34944082 PMCID: PMC8700087 DOI: 10.3390/cells10123576] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays fundamental roles during development, maturation, and aging. Members of this axis, composed of various ligands, receptors, and binding proteins, are regulated in a tissue- and time-specific manner that requires precise control that is not completely understood. Some of the most recent advances in understanding the implications of this axis in human growth are derived from the identifications of new mutations in the gene encoding the pregnancy-associated plasma protein PAPP-A2 protease that liberates IGFs from their carrier proteins in a selective manner to allow binding to the IGF receptor 1. The identification of three nonrelated families with mutations in the PAPP-A2 gene has shed light on how this protease affects human physiology. This review summarizes our understanding of the implications of PAPP-A2 in growth physiology, obtained from studies in genetically modified animal models and the PAPP-A2 deficient patients known to date.
Collapse
|
21
|
Vázquez-Mera S, Pichel JG, Salgado FJ. Involvement of IGF Proteins in Severe Allergic Asthma: New Roles for Old Players. Arch Bronconeumol 2021; 57:731-732. [PMID: 35698977 DOI: 10.1016/j.arbr.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 06/15/2023]
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, Biomedical Research Networking Center on Respiratory Diseases (CIBERES, ISCIII), Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Hjortebjerg R, Bojsen-Møller KN, Søeby M, Oxvig C, Madsbad S, Frystyk J. Metabolic improvement after gastric bypass correlates with changes in IGF-regulatory proteins stanniocalcin-2 and IGFBP-4. Metabolism 2021; 124:154886. [PMID: 34506805 DOI: 10.1016/j.metabol.2021.154886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pregnancy-associated plasma protein-A (PAPP-A) is an enzyme that increases IGF-activity through cleavage of IGF-binding proteins (IGFBPs), primarily IGFBP-4, whereby bound IGF-I becomes released as a free molecule. The enzymatic activity of PAPP-A is irreversibly suppressed by the glycoprotein stanniocalcin-2 (STC2). Pre-clinical and clinical studies suggest that the STC2 - PAPP-A - IGFBP-4 axis is important in controlling local IGF-action. STC2, PAPP-A and IGFBP-4 are expressed in adipose tissue, and as bariatric surgery markedly reduces the amount of fat, we found it relevant to study the impact of Roux-en-Y gastric bypass (RYGB) on circulating concentrations of this IGF-regulatory network. METHODS Analysis of fasting blood samples from 20 obese subjects, hereof 10 with preoperative type 2 diabetes, investigated before RYGB, and 1 week, 3 months and 12 months post-surgery. Members of the IGF-system were analyzed by immunoassays, bioactive IGF by cell-based IGF-I receptor activation assay. We compared changes in IGF-system components with changes in fasting plasma insulin and glucose, and HbA1c. RESULTS PAPP-A remained unchanged, but STC2 decreased following RYGB (p < 0.05). The PAPP-A substrate IGFBP-4 declined (p < 0.01), whereas levels of PAPP-A specific IGFBP-4 fragments increased (p < 0.05), indicating an increased PAPP-A enzymatic activity post-RYGB. Further, the reduction in intact IGFBP-4 correlated with increased levels of bioactive IGF (p < 0.05). In multivariable regression analyses, an improved glucose metabolism correlated with reductions in STC2 and IGFBP-4, and with increases in bioactive IGF and IGF-I (p < 0.05). CONCLUSION After 12 months, RYGB caused reduced serum concentrations of intact IGFBP-4 and STC2, whereas serum PAPP-A remained at pre-operative levels. However, concentrations of PAPP-A generated IGFBP-4 fragments increased, pointing to an overall increased PAPP-A enzymatic activity following RYGB. Notably, reductions in intact IGFBP-4 and STC2 associated with improvements in glucose metabolism. Therefore, we propose that STC2 and IGFBP-4 are involved in the metabolic improvement that follows RYGB.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Mette Søeby
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark; Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Martín-Rivada Á, Barrios V, Martínez Díaz-Guerra G, Pozo J, Martos-Moreno GÁ, Argente J. Adult height and long-term outcomes after rhIGF-1 therapy in two patients with PAPP-A2 deficiency. Growth Horm IGF Res 2021; 60-61:101419. [PMID: 34358737 DOI: 10.1016/j.ghir.2021.101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
PAPP-A2 deficiency is a novel syndrome characterized by short stature due to low IGF bioactivity, skeletal abnormalities and decreased bone mineral density (BMD). Treatment with recombinant human IGF-1 (rhIGF-1) for 1 year demonstrated to increase growth velocity and BMD, without reported adverse effects, but data regarding the long-term efficacy and safety of rhIGF-1 administration in this entity has not yet been reported. Two Spanish siblings with short stature due to a homozygous loss-of-function mutation in the PAPP-A2 gene (p.D643fs25*) were treated with rhIGF-1 twice daily for six years. Growth velocity continued to increase and both patients achieved their target height. Free IGF-1 concentrations increased notably after rhIGF-1 administration, with serum IGFBP-3, IGFBP-5 and ALS levels also being higher during treatment. BMD was progressively normalized and an increase in lean mass was also noted during treatment. No episodes of hypoglycemia or any other adverse effects were documented. An increase in the growth of kidney and spleen length was observed in one of the patients.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa", Madrid, Spain
| | - Vicente Barrios
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa", Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Pozo
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa", Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universidad Autónoma de Madrid, Department of Pediatrics, Madrid, Spain
| | - Gabriel Ángel Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa", Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universidad Autónoma de Madrid, Department of Pediatrics, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa", Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universidad Autónoma de Madrid, Department of Pediatrics, Madrid, Spain; IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, Madrid, Spain.
| |
Collapse
|
24
|
Wu T, Wang S, Jin Q, Lv X, Sun W. PAPPA2 Promote the Proliferation of Dermal Papilla Cells in Hu Sheep ( Ovis aries) by Regulating IGFBP5. Genes (Basel) 2021; 12:genes12101490. [PMID: 34680885 PMCID: PMC8535430 DOI: 10.3390/genes12101490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 02/02/2023] Open
Abstract
Hu sheep (Ovis aries) is a rare white sheep breed, with four different types of lambskin patterns that have different values. However, the genetic mechanisms underlying different types of pattern formation remains unclear. This research aimed to characterize the molecular mechanism of differentially expressed gene PAPPA2 affecting the pattern type of Hu sheep's lambskin at the cellular level. Thus, RT-qPCR, EdU and Cell Cycle detection were used to explore the effect of PAPPA2 and IGFBP5 (a protein that can be hydrolyzed by PAPPA2) on the proliferation of dermal papilla cells (DPCs) after overexpression or interference with PAPPA2 and IGFBP5. The expression level of PAPPA2 in straight DPCs was 4.79 ± 1.84 times higher than curved. Overexpression of PAPPA2 promoted the proliferation of DPCs and also increased the expression of IGFBP5. Conversely, overexpression of IGFBP5 reduced the proliferation of DPCs. However, the proliferation of DPCs was restored by co-overexpression of PAPPA2 and IGFBP5 compared with overexpression of IGFBP5 alone. Thus, PAPPA2 can affect the proliferation of DPCs through regulating IGFBP5 and then participate in lambskin pattern determination. Overall, we preliminarily clarified the critical role played by PAPPA2 during the formation of different pattern in Hu sheep lambskin.
Collapse
Affiliation(s)
- Tianyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Qiunan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (T.W.); (S.W.); (Q.J.); (X.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
25
|
Fernandez-Luque L, Al Herbish A, Al Shammari R, Argente J, Bin-Abbas B, Deeb A, Dixon D, Zary N, Koledova E, Savage MO. Digital Health for Supporting Precision Medicine in Pediatric Endocrine Disorders: Opportunities for Improved Patient Care. Front Pediatr 2021; 9:715705. [PMID: 34395347 PMCID: PMC8358399 DOI: 10.3389/fped.2021.715705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Digitalization of healthcare delivery is rapidly fostering development of precision medicine. Multiple digital technologies, known as telehealth or eHealth tools, are guiding individualized diagnosis and treatment for patients, and can contribute significantly to the objectives of precision medicine. From a basis of "one-size-fits-all" healthcare, precision medicine provides a paradigm shift to deliver a more nuanced and personalized approach. Genomic medicine utilizing new technologies can provide precision analysis of causative mutations, with personalized understanding of mechanisms and effective therapy. Education is fundamental to the telehealth process, with artificial intelligence (AI) enhancing learning for healthcare professionals and empowering patients to contribute to their care. The Gulf Cooperation Council (GCC) region is rapidly implementing telehealth strategies at all levels and a workshop was convened to discuss aspirations of precision medicine in the context of pediatric endocrinology, including diabetes and growth disorders, with this paper based on those discussions. GCC regional investment in AI, bioinformatics and genomic medicine, is rapidly providing healthcare benefits. However, embracing precision medicine is presenting some major new design, installation and skills challenges. Genomic medicine is enabling precision and personalization of diagnosis and therapy of endocrine conditions. Digital education and communication tools in the field of endocrinology include chatbots, interactive robots and augmented reality. Obesity and diabetes are a major challenge in the GCC region and eHealth tools are increasingly being used for management of care. With regard to growth failure, digital technologies for growth hormone (GH) administration are being shown to enhance adherence and response outcomes. While technical innovations become more affordable with increasing adoption, we should be aware of sustainability, design and implementation costs, training of HCPs and prediction of overall healthcare benefits, which are essential for precision medicine to develop and for its objectives to be achieved.
Collapse
Affiliation(s)
| | | | - Riyad Al Shammari
- National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| | - Bassam Bin-Abbas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Deeb
- Paediatric Endocrine Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - David Dixon
- Connected Health and Devices, Merck, Ares Trading SA, Aubonne, Switzerland
| | - Nabil Zary
- Institute for Excellence in Health Professions Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Martin O. Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, United Kingdom
| |
Collapse
|
26
|
Babiker A, Al Noaim K, Al Swaid A, Alfadhel M, Deeb A, Martín-Rivada Á, Barrios V, Pérez-Jurado LA, Alfares A, Al Alwan I, Argente J. Short stature with low insulin-like growth factor 1 availability due to pregnancy-associated plasma protein A2 deficiency in a Saudi family. Clin Genet 2021; 100:601-606. [PMID: 34272725 DOI: 10.1111/cge.14030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023]
Abstract
In 2016 a new syndrome with postnatal short stature and low IGF1 bioavailability caused by biallelic loss-of-function mutations in the gene encoding the metalloproteinase pregnancy-associated plasma protein A2 (PAPP-A2) was described in two families. Here we report two siblings of a third family from Saudi Arabia with postnatal growth retardation and decreased IGF1 availability due to a new homozygous nonsense mutation (p.Glu886* in exon 7) in PAPPA2. The two affected males showed progressively severe short stature starting around 8 years of age, moderate microcephaly, decreased bone mineral density, and high circulating levels of total IGF1, IGFBP3, and the IGF acid-labile subunit (IGFALS), with decreased free IGF1 concentrations. Interestingly, circulating IGF2 and IGFBP5 were not increased. An increase in growth velocity and height was seen in the prepuberal patient in response to rhIGF1. These patients contribute to the confirmation of the clinical picture associated with PAPP-A2 deficiency and that the PAPPA2 gene should be studied in all patients with short stature with this characteristic phenotype. Hence, pediatric endocrinologists should measure circulating PAPP-A2 levels in the study of short stature as very low or undetectable levels of this protein can help to focus the diagnosis and treatment.
Collapse
Affiliation(s)
- Amir Babiker
- King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khalid Al Noaim
- King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulrahman Al Swaid
- King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City, Abu Dhabi & Khalifa University, Abu Dhabi, United Arab Emirates
| | - Álvaro Martín-Rivada
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vicente Barrios
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Service of Genetics, Hospital del Mar and Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ahmed Alfares
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Departement of Laboratory and Pathology Medicine, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Departement of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ibrahim Al Alwan
- King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA. Food Institute, CEIUAM+CSI, Madrid, Spain
| |
Collapse
|
27
|
Munchel S, Rohrback S, Randise-Hinchliff C, Kinnings S, Deshmukh S, Alla N, Tan C, Kia A, Greene G, Leety L, Rhoa M, Yeats S, Saul M, Chou J, Bianco K, O'Shea K, Bujold E, Norwitz E, Wapner R, Saade G, Kaper F. Circulating transcripts in maternal blood reflect a molecular signature of early-onset preeclampsia. Sci Transl Med 2021; 12:12/550/eaaz0131. [PMID: 32611681 DOI: 10.1126/scitranslmed.aaz0131] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/07/2019] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Circulating RNA (C-RNA) is continually released into the bloodstream from tissues throughout the body, offering an opportunity to noninvasively monitor all aspects of pregnancy health from conception to birth. We asked whether C-RNA analysis could robustly detect aberrations in patients diagnosed with preeclampsia (PE), a prevalent and potentially fatal pregnancy complication. As an initial examination, we sequenced the circulating transcriptome from 40 pregnancies at the time of severe, early-onset PE diagnosis and 73 gestational age-matched controls. Differential expression analysis identified 30 transcripts with gene ontology annotations and tissue expression patterns consistent with the placental dysfunction, impaired fetal development, and maternal immune and cardiovascular system dysregulation characteristic of PE. Furthermore, machine learning identified combinations of 49 C-RNA transcripts that classified an independent cohort of patients (early-onset PE, n = 12; control, n = 12) with 85 to 89% accuracy. C-RNA may thus hold promise for improving the diagnosis and identification of at-risk pregnancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emmanuel Bujold
- Department of Obstetrics and Gynecology and Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec G1V 086, Canada
| | - Errol Norwitz
- Department of Obstetrics and Gynecology and the Mother Infant Research Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
28
|
Li S, Liu C, Goldstein A, Xin Y, Ke C, Duan C. Calcium State-Dependent Regulation of Epithelial Cell Quiescence by Stanniocalcin 1a. Front Cell Dev Biol 2021; 9:662915. [PMID: 33898465 PMCID: PMC8063699 DOI: 10.3389/fcell.2021.662915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The molecular mechanisms regulating cell quiescence-proliferation balance are not well defined. Using a zebrafish model, we report that Stc1a, a secreted glycoprotein, plays a key role in regulating the quiescence-proliferation balance of Ca2+ transporting epithelial cells (ionocytes). Zebrafish stc1a, but not the other stc genes, is expressed in a Ca2+ state-dependent manner. Genetic deletion of stc1a, but not stc2b, increased ionocyte proliferation, leading to elevated body Ca2+ levels, cardiac edema, body swelling, and premature death. The increased ionocyte proliferation was accompanied by an increase in the IGF1 receptor-mediated PI3 kinase-Akt-Tor signaling activity in ionocytes. Inhibition of the IGF1 receptor, PI3 kinase, Akt, and Tor signaling reduced ionocyte proliferation and rescued the edema and premature death in stc1a–/– fish, suggesting that Stc1a promotes ionocyte quiescence by suppressing local IGF signaling activity. Mechanistically, Stc1 acts by inhibiting Papp-aa, a zinc metalloproteinase degrading Igfbp5a. Inhibition of Papp-aa proteinase activity restored ionocyte quiescence-proliferation balance. Genetic deletion of papp-aa or its substrate igfbp5a in the stc1a–/– background reduced ionocyte proliferation and rescued the edema and premature death. These findings uncover a novel and Ca2+ state-dependent pathway regulating cell quiescence. Our findings also provide new insights into the importance of ionocyte quiescent-proliferation balance in organismal Ca2+ homeostasis and survival.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Chengdong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Allison Goldstein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yi Xin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Bleach R, Sherlock M, O'Reilly MW, McIlroy M. Growth Hormone/Insulin Growth Factor Axis in Sex Steroid Associated Disorders and Related Cancers. Front Cell Dev Biol 2021; 9:630503. [PMID: 33816477 PMCID: PMC8012538 DOI: 10.3389/fcell.2021.630503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity. Interestingly, IGF-1 has been found to play a compensatory role for both estrogen receptor (ER) and androgen receptor (AR) by augmenting hormonal responses in the absence of, or where low levels of ligand are present. Furthermore, experimental, and epidemiological evidence supports a role for dysregulated IGF signalling in breast and prostate cancers. Insulin-like growth factor binding protein (IGFBP) molecules can regulate the bioavailability of IGF-1 and are frequently expressed in these hormonally regulated tissues. The link between age-related disease and the role of IGF-1 in the process of ageing and longevity has gained much attention over the last few decades, spurring the development of numerous IGF targeted therapies that have, to date, failed to deliver on their therapeutic potential. This review will provide an overview of the sexually dimorphic nature of IGF signalling in humans and how this is impacted by the reduction in sex steroids in mid-life. It will also explore the latest links with metabolic syndromes, hormonal imbalances associated with ageing and targeting of IGF signalling in endocrine-related tumour growth with an emphasis on post-menopausal breast cancer and the impact of the steroidal milieu.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mark Sherlock
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Michael W O'Reilly
- Academic Department of Endocrinology, Beaumont Hospital and RCSI Medical School, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
30
|
Vázquez-Mera S, Pichel JG, Salgado FJ. Involvement of IGF Proteins in Severe Allergic Asthma: New Roles for Old Players. Arch Bronconeumol 2021; 57:S0300-2896(21)00094-6. [PMID: 33836863 DOI: 10.1016/j.arbres.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, Biomedical Research Networking Center on Respiratory Diseases (CIBERES, ISCIII), Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Development of a Sensitive Bioassay for the Analysis of IGF-Related Activation of AKT/mTOR Signaling in Biological Matrices. Cells 2021; 10:cells10030482. [PMID: 33668197 PMCID: PMC7995968 DOI: 10.3390/cells10030482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 (p < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers (p < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (µM). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.
Collapse
|
32
|
Fujimoto M, Andrew M, Dauber A. Disorders caused by genetic defects associated with GH-dependent genes: PAPPA2 defects. Mol Cell Endocrinol 2020; 518:110967. [PMID: 32739295 PMCID: PMC7609568 DOI: 10.1016/j.mce.2020.110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) and its mediator, insulin-like growth factor-1 (IGF-1), have long been recognized as central to human growth physiology. IGF-1 is known to complex with IGF binding proteins as well as with the acid labile subunit (ALS) in order to prolong its half-life in circulation. Factors regulating the bioavailability of IGF-1 (i.e. the balance between free and bound IGF-1) were less well understood. Recently, pregnancy-associated plasma protein-A2 (PAPP-A2) was discovered as a protease which specifically cleaves IGF-binding protein (IGFBP)-3 and -5. PAPP-A2 deficient patients present with characteristic findings including growth failure, elevated total IGF-1 and -2, IGFBPs, and ALS, but decreased percentage of free to total IGF-1. Additionally, patients with PAPP-A2 deficiency have impairments in glucose metabolism and bone mineral density (BMD). Treatment with recombinant human IGF-1 (rhIGF-1) improved height SD scores, growth velocity, body composition, and dysglycemia. Mouse models recapitulate many of the human findings of PAPP-A2 deficiency. This review summarizes the function of PAPP-A2 and its contribution to the GH-IGF axis through an examination of PAPP-A2 deficient patients and mouse models, thereby emphasizing the importance of the regulation of IGF-1 bioavailability in human growth.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Melissa Andrew
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
33
|
Werner H, Sarfstein R, Nagaraj K, Laron Z. Laron Syndrome Research Paves the Way for New Insights in Oncological Investigation. Cells 2020; 9:cells9112446. [PMID: 33182502 PMCID: PMC7696416 DOI: 10.3390/cells9112446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Laron syndrome (LS) is a rare genetic endocrinopathy that results from mutation of the growth hormone receptor (GH-R) gene and is typically associated with dwarfism and obesity. LS is the best characterized entity under the spectrum of the congenital insulin-like growth factor-1 (IGF1) deficiencies. Epidemiological analyses have shown that LS patients do not develop cancer, whereas heterozygous family members have a cancer prevalence similar to the general population. To identify genes and signaling pathways differentially represented in LS that may help delineate a biochemical and molecular basis for cancer protection, we have recently conducted a genome-wide profiling of LS patients. Studies were based on our collection of Epstein–Barr virus (EBV)-immortalized lymphoblastoid cell lines derived from LS patients, relatives and healthy controls. Bioinformatic analyses identified differences in gene expression in several pathways, including apoptosis, metabolic control, cytokine biology, Jak-STAT and PI3K-AKT signaling, etc. Genes involved in the control of cell cycle, motility, growth and oncogenic transformation are, in general, down-regulated in LS. These genetic events seem to have a major impact on the biological properties of LS cells, including proliferation, apoptosis, response to oxidative stress, etc. Furthermore, genomic analyses allowed us to identify novel IGF1 downstream target genes that have not been previously linked to the IGF1 signaling pathway. In summary, by ‘mining’ genomic data from LS patients, we were able to generate clinically-relevant information in oncology and, potentially, related disciplines.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
- Shalom and Varda Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
| | - Zvi Laron
- Endocrine and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel;
| |
Collapse
|
34
|
Ohde D, Walz M, Walz C, Noce A, Brenmoehl J, Langhammer M, Hoeflich A. Sex-Specific Control of Muscle Mass: Elevated IGFBP Proteolysis and Reductions of IGF-1 Levels Are Associated with Substantial Loss of Carcass Weight in Male DU6PxIGFBP-2 Transgenic Mice. Cells 2020; 9:cells9102174. [PMID: 32993096 PMCID: PMC7600981 DOI: 10.3390/cells9102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
In farmed animals, carcass weight represents an important economic trait. Since we had demonstrated that IGFBP-2 represents a potent inhibitor of muscle accretion in inbred mice, we wanted to quantify the inhibitory effects of IGFBP-2 under conditions of elevated protein mass in growth selected non-inbred mice (DU6P). Therefore, we crossed male DU6P mice with female IGFBP-2 transgenic mice. Male IGFBP-2 transgenic offspring (DU6P/IGFBP-2) were characterized by more than 20% reductions of carcass mass compared to male non-transgenic littermates. The carcass mass in males was also significantly lower (p < 0.001) than in transgenic female DU6P/IGFBP-2 mice, which showed a reduction of less than 10% (p < 0.05) compared to non-transgenic female DU6P/IGFBP-2 mice. Although transgene expression was elevated in the muscle of both sexes (p < 0.001), serum levels were normal in female, but significantly reduced in male transgenic DU6P/IGFBP-2 mice (p < 0.001). In this group, also IGFBP-3 and IGFBP-4 were significantly reduced in the circulation (p < 0.01). Particularly in male transgenic mice, we were able to identify proteolytic activity against recombinant IGFBP-2 included in diluted serum. IGFBP-proteolysis in males correlated with massive reductions of IGF-1 in serum samples and the presence of elevated levels of IGFBP-2 fragments. From our data, we conclude that elevated tissue expression of IGFBP-2 is an essential effector of muscle accretion and may block more than 20% of carcass mass. However, in the circulation, intact IGFBP-2 contained no reliable biomarker content. Notably, for the estimation of breeding values in meat-producing animal species, monitoring of IGFBP-2 expression in muscle appears to be supported by the present study in a model system.
Collapse
Affiliation(s)
- Daniela Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Michael Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Christina Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Antonia Noce
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
- Correspondence: ; Tel.: +49-38208-68744
| |
Collapse
|
35
|
Frystyk J, Teran E, Gude MF, Bjerre M, Hjortebjerg R. Pregnancy-associated plasma proteins and Stanniocalcin-2 - Novel players controlling IGF-I physiology. Growth Horm IGF Res 2020; 53-54:101330. [PMID: 32693362 DOI: 10.1016/j.ghir.2020.101330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/23/2022]
Abstract
IGF-I was originally discovered as a GH-dependent growth factor stimulating longitudinal growth. Currently, however, it has become evident that the biological activities of IGF-I extend well beyond those of a simple growth factor and impact such processes as insulin sensitivity, aging, cancer and cardiovascular disease. The vast majority of IGF-I is tightly bound to IGF-binding proteins (IGFBPs), which renders IGF-I unable to stimulate the IGF-I receptor (IGF-IR) in vivo. This binding means that liberation of IGF-I from the IGFBPs is an important step controlling IGF-I action. In this context, IGFBP-cleaving enzymes appear to play a key role. Enzymatic cleavage of the IGFBPs markedly lowers their ligand affinity, and as a consequence, IGF-I becomes liberated and hence available for stimulation of the IGF-IR. Two of the best-characterized IGFBP-cleaving enzymes are pregnancy-associated plasma protein-A (PAPP-A) and its paralog PAPP-A2. The two enzymes (often referred to as pappalysins) regulate the liberation of IGF-I in a highly controlled manner. PAPP-A is believed to act predominantly in tissues, serving to liberate IGF-I at the cell surface in close proximity to the IGF-IR. In keeping with this notion, mice lacking PAPP-A exhibit reduced body size, despite having normal circulating IGF-I concentrations. In contrast, human findings indicate that altered PAPP-A2 activity changes circulating IGF-I concentrations, although PAPP-A2 is also present in high concentrations in tissues. Thus, PAPP-A2 appears to impact circulating, as well as tissue, IGF-I activity. The enzymatic activity of PAPP-A and PAPP-A2 was recently discovered to be regulated by the protein Stanniocalcin-2 (STC2). By binding to the enzymatic sites of PAPP-A and PAPP-A2, STC2 inhibits their activity. To date, the majority of findings demonstrating the ability of pappalysins and STC2 to regulate IGF-I action are from preclinical studies. However, clinical studies are now beginning to emerge. In this review, we will summarize our data on STC2, PAPP-A and PAPP-A2 in humans. These results indicate that pappalysins and STC2 constitute an important IGF-I activity-regulating system that warrants further investigation.
Collapse
Affiliation(s)
- Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mette Faurholdt Gude
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense (SDCO), Odense University Hospital, Odense, Denmark
| |
Collapse
|
36
|
van Doorn J. Insulin-like growth factor-II and bioactive proteins containing a part of the E-domain of pro-insulin-like growth factor-II. Biofactors 2020; 46:563-578. [PMID: 32026557 PMCID: PMC7497164 DOI: 10.1002/biof.1623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor (IGF)-II is considered to function as an important fetal growth factor, which is structurally and functionally related to IGF-I and proinsulin. At least in vitro, IGF-II actions are mediated through the IGF-I receptor and to a lesser extent the insulin receptor. After birth, the function of IGF-II is less clear although in adults the serum level of IGF-II exceeds that of IGF-I several fold. The IGF-II gene is maternally imprinted, with exception of the liver and several parts of the brain, where it is expressed from both alleles. The regulation, organization, and translation of the IGF-II gene is complex, with five different putative promotors leading to a range of noncoding and coding mRNAs. The 180-amino acid pre-pro-IGF-II translation product can be divided into five domains and include a N-terminal signal peptide of 24 amino acid residues, the 67 amino acid long mature protein, and an 89 residues extension at the COOH terminus, designated as the E-domain. After removal of the signal peptide, the processing of pro-IGF-II into mature IGF-II requires various steps including glycosylation of the E-domain followed by the action of endo-proteases. Several of these processing intermediates can be found in the human circulation. There is increasing evidence that, besides IGF-II, several incompletely processed precursor forms of the protein, and even a 34-amino acid peptide (preptin) derived from the E-domain of pro-IGF-II, exhibit distinct biological activities. This review will focus on the current insights regarding the specific roles of the latter proteins in cancer, glucose homeostasis, and bone physiology. To address this topic clearly in the right context, a concise overview of the biological and biochemical properties of IGF-II and several relevant aspects of the IGF system will be provided.
Collapse
Affiliation(s)
- Jaap van Doorn
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
37
|
Stuard WL, Titone R, Robertson DM. The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front Endocrinol (Lausanne) 2020; 11:24. [PMID: 32194500 PMCID: PMC7062709 DOI: 10.3389/fendo.2020.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) family plays key roles in growth and development. In the cornea, IGF family members have been implicated in proliferation, differentiation, and migration, critical events that maintain a smooth refracting surface that is essential for vision. The IGF family is composed of multiple ligands, receptors, and ligand binding proteins. Expression of IGF type 1 receptor (IGF-1R), IGF type 2 receptor (IGF-2R), and insulin receptor (INSR) in the cornea has been well characterized, including the presence of the IGF-1R and INSR hybrid (Hybrid-R) in the corneal epithelium. Recent data also indicates that each of these receptors display unique intracellular localization. Thus, in addition to canonical ligand binding at the plasma membrane and the initiation of downstream signaling cascades, IGF-1R, INSR, and Hybrid-R also function to regulate mitochondrial stability and nuclear gene expression. IGF-1 and IGF-2, two of three principal ligands, are polypeptide growth factors that function in all cellular layers of the cornea. Unlike IGF-1 and IGF-2, the hormone insulin plays a unique role in the cornea, different from many other tissues in the body. In the corneal epithelium, insulin is not required for glucose uptake, due to constitutive activation of the glucose transporter, GLUT1. However, insulin is needed for the regulation of metabolism, circadian rhythm, autophagy, proliferation, and migration after wounding. There is conflicting evidence regarding expression of the six IGF-binding proteins (IGFBPs), which function primarily to sequester IGF ligands. Within the cornea, IGFBP-2 and IGFBP-3 have identified roles in tissue homeostasis. While IGFBP-3 regulates growth control and intracellular receptor localization in the corneal epithelium, both IGFBP-2 and IGFBP-3 function in corneal fibroblast differentiation and myofibroblast proliferation, key events in stromal wound healing. IGFBP-2 has also been linked to cellular overgrowth in pterygium. There is a clear role for IGF family members in regulating tissue homeostasis in the cornea. This review summarizes what is known regarding the function of IGF and related proteins in corneal development, during wound healing, and in the pathophysiology of disease. Finally, we highlight key areas of research that are in need of future study.
Collapse
|
38
|
Dereke J, Nilsson C, Strevens H, Landin-Olsson M, Hillman M. Pregnancy-associated plasma protein-A2 levels are increased in early-pregnancy gestational diabetes: a novel biomarker for early risk estimation. Diabet Med 2020; 37:131-137. [PMID: 31340069 DOI: 10.1111/dme.14088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Abstract
AIM To determine whether pregnancy-associated plasma protein-A2 levels are increased in early pregnancies complicated by gestational diabetes and whether gestation age influences levels. The possible use of pregnancy-associated plasma protein-A2 as a pre-screening biomarker to reduce the need for performing oral glucose tolerance tests in pregnant women was also investigated. METHODS Pregnant women were diagnosed with gestational diabetes in early pregnancy after a 2-hour 75 g oral glucose tolerance test in the catchment area of Skåne University Hospital, Lund, Sweden during 2011-2015 (n = 99). Age- and BMI-matched pregnant women without diabetes were recruited at similar gestational ages from maternal healthcare centres in the same geographical area during 2014-2015 to act as controls (n = 100). Circulating pregnancy-associated plasma protein-A2 was analysed in participant serum using commercially available enzyme-linked immunosorbent assay kits. RESULTS Circulating pregnancy-associated plasma protein-A2 was increased in women diagnosed with gestational diabetes [13.5 (9.58-18.8) ng/ml] compared with controls [8.11 (5.74-11.3) ng/ml; P < 0.001]. Pregnancy-associated plasma protein-A2 was associated with gestational diabetes independent of age, BMI, C-peptide and adiponectin (P < 0.001). Pregnancy-associated plasma protein-A2 as a pre-screening biomarker to identify women at a decreased risk of gestational diabetes resulted in a negative predictive value of 99.7%, with a sensitivity of 96% and a specificity of 30% at a cut-off level of 6 ng/ml. CONCLUSIONS This is the first study to show increased pregnancy-associated plasma protein-A2 levels in gestational diabetes. Pregnancy-associated plasma protein-A2 also shows promise as a pre-screening biomarker with the potential to reduce the need for performing oral glucose tolerance tests in early pregnancy. Future prospective cohort studies in a larger group of both high- and low-risk women are, however, needed to further confirm this observation.
Collapse
Affiliation(s)
- J Dereke
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
| | - C Nilsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
- Department of Paediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - H Strevens
- Department of Obstetrics, Skåne University Hospital Lund, Lund, Sweden
| | - M Landin-Olsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital Lund, Lund, Sweden
| | - M Hillman
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Diabetes Research Laboratory, Lund, Sweden
| |
Collapse
|
39
|
Hoeflich A, Fitzner B, Walz C, Hecker M, Tuchscherer A, Brenmoehl J, Zettl UK. Reduced Fragmentation of IGFBP-2 and IGFBP-3 as a Potential Mechanism for Decreased Ratio of IGF-II to IGFBPs in Cerebrospinal Fluid in Response to Repeated Intrathecal Administration of Triamcinolone Acetonide in Patients With Multiple Sclerosis. Front Endocrinol (Lausanne) 2020; 11:565557. [PMID: 33469444 PMCID: PMC7813808 DOI: 10.3389/fendo.2020.565557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the brain and spinal cord causing a wide range of symptoms such as impaired walking capability, spasticity, fatigue, and pain. The insulin-like growth factor (IGF) system has regulatory functions for the induction of inflammatory pathways in experimental encephalomyelitis. We have therefore assessed expression and regulation of the IGF system on the level of IGFs and IGFBPs in serum and cerebrospinal fluid (CSF) in the course of four repeated triamcinolone acetonide (TCA) administrations in two female and four male MS patients. Sample series of 20 treatment cycles were analyzed. IGF-I and IGF-II were quantified by ELISAs, and IGFBPs were analyzed by quantitative Western ligand (qWLB) and Western immunoblotting (WIB) in order to differentiate intact and fragmented IGFBPs. The ratios of fragmented to intact IGFBP-2 and -3 were calculated in serum and CSF. Finally, the ratios of IGF-I and IGF-II to the total IGF-binding activity, quantified by qWLB, were determined as an indicator of IGF-related bioactivity. After the fourth TCA administration, the average level of IGF-I was increased in serum (p < 0.001). The increase of IGF-I concentrations in serum resulted in an increased ratio of IGF-I to IGFBPs in the circulation. By contrast in CSF, fragmentation of IGFBP-2 and IGFBP-3 and the ratio of IGF-II to intact IGFBPs were decreased at the fourth TCA administration (p < 0.01). Furthermore, reduced fragmentation of IGFBP-3 in CSF was accompanied by increased concentrations of intact IGFBP-3 (p < 0.001). We conclude that reduced fragmentation of IGFBPs and concomitant reduction of IGF-II to IGFBP ratios indicate regulation of bioactivity of IGF-II in CSF during repeated intrathecal TCA administration in MS patients.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Andreas Hoeflich, ; Uwe Klaus Zettl,
| | - Brit Fitzner
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
| | - Christina Walz
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Hecker
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Uwe Klaus Zettl
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
- *Correspondence: Andreas Hoeflich, ; Uwe Klaus Zettl,
| |
Collapse
|
40
|
Janssen JAMJL, Varewijck AJ, Brugts MP. The insulin-like growth factor-I receptor stimulating activity (IRSA) in health and disease. Growth Horm IGF Res 2019; 48-49:16-28. [PMID: 31493625 DOI: 10.1016/j.ghir.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Determination of true IGF-I bioactivity in serum and other biological fluids is still a substantial challenge. The IGF-IR Kinase Receptor Activation assay (IGF-IR KIRA assay) is a novel tool to asses IGF-IR stimulating activity (IRSA) and has opened a new era in studying the IGF system. In this paper we discuss many studies showing that measuring IRSA by the IGF-IR KIRA assay often provides fundamentally different information about the IGF system than the commonly used total IGF-I immunoassays. With the IGF-IR KIRA assay phosphorylation of tyrosine residues of the IGF-IR is used as read out to quantify IRSA in unknown (serum) samples. The IGF-IR KIRA assay gives information about net overall effects of circulating IGF-I, IGF-II, IGFBPs and IGFBP-proteases on IGF-IR activation and seems especially superior to immunoreactive total IGF-I in monitoring therapeutic interventions. Although the IRSA as measured by the IGF-IR KIRA assay probably more closely reflects true bioactive IGF-I than measurements of total IGF-I in serum, the IGF-IR KIRA assay in its current form does not give information about all the post-receptor intracellular events mediated by the IGF-IR. Interestingly, in several conditions in health and disease IRSA measured by the IGF-IR KIRA assay is considerably higher in interstitial fluid and ascites than in serum. This suggests that both the paracrine (local) and endocrine (circulating) IRSA should be measured to get a complete picture about the role of the IGF system in health and disease.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, the Netherlands.
| | - Aimee J Varewijck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, the Netherlands
| | - Michael P Brugts
- Department of Internal Medicine, Ikazia Hospital, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Steffensen LB, Conover CA, Oxvig C. PAPP-A and the IGF system in atherosclerosis: what's up, what's down? Am J Physiol Heart Circ Physiol 2019; 317:H1039-H1049. [PMID: 31518159 DOI: 10.1152/ajpheart.00395.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a well-established role in releasing bioactive insulin-like growth factor-1 (IGF-1) from IGF-binding protein-2, -4, and -5 by proteolytic processing of these. The IGF system has repeatedly been suggested to be involved in the pathology of atherosclerosis, and both PAPP-A and IGF-1 are proposed biomarkers and therapeutic targets for this disease. Several experimental approaches based on atherosclerosis mouse models have been undertaken to obtain causative and mechanistic insight to the role of these molecules in atherogenesis. However, reports seem conflicting. The literature suggests that PAPP-A is detrimental, while IGF-1 is beneficial. This raises important questions that need to be addressed. Here we summarize the various studies and discuss potential underlying explanations for this seemingly inconsistency with the objective of better understanding complexities and limitations when manipulating the IGF system in mouse models of atherosclerosis. A debate clarifying what's up and what's down is highly warranted going forward with the ultimate goal of improving atherosclerosis therapy by targeting the IGF system.
Collapse
Affiliation(s)
- Lasse B Steffensen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Renes JS, van Doorn J, Hokken-Koelega ACS. Current Insights into the Role of the Growth Hormone-Insulin-Like Growth Factor System in Short Children Born Small for Gestational Age. Horm Res Paediatr 2019; 92:15-27. [PMID: 31509834 PMCID: PMC6979433 DOI: 10.1159/000502739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The reason for the insufficient catch-up growth seen in 10% of children born small for gestational age (SGA) is poorly understood. Disturbances in the growth hormone (GH) - insulin-like growth factor (IGF) axis might underlie this failure to show sufficient catch-up growth. CONCLUSION This review summarizes insights gained in the molecular and (epi) genetic mechanisms of the GH-IGF axis in short children born SGA. The most notable anomalies of the IGF system are the lowered IGF-I levels in both cord blood and the placenta, and the increased expression of IGF-binding proteins (IGFBP)-1 and IGFBP-2, which inhibit IGF-I, in the placenta of SGA neonates. These observations suggest a decreased bioactivity of IGF-I in utero. IGF-I levels remain reduced in SGA children with short stature, as well as IGFBP-3 and acid-labile subunit levels. Proteolysis of IGFBP-3 appears to be increased.
Collapse
Affiliation(s)
- Judith S Renes
- Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands,
| | - Jaap van Doorn
- Department of Genetics, Section of Metabolic Diagnostics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Chen F, Zhang Z, Pu F. Role of stanniocalcin-1 in breast cancer. Oncol Lett 2019; 18:3946-3953. [PMID: 31579413 PMCID: PMC6757304 DOI: 10.3892/ol.2019.10777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a highly heterogeneous disease consisting of five disease subtypes with distinct histological characteristics, clinical behaviors and prognostic features. Stanniocalcin-1 (STC1) is a secreted glycoprotein hormone that has been demonstrated to regulate calcium and phosphate homeostasis. Mammalian STC1 is expressed in various tissues and is implicated in multiple physiological and pathophysiological processes. In addition, growing evidence has suggested that STC1 serves an oncogenic role in a number of different types of tumor. However, the role of STC1 in breast cancer is complex, considering that some studies have shown that it exerts an oncogenic role, whereas other studies have demonstrated the opposite. The aim of the present review article is to evaluate the currently available data on mammalian STC1 and discuss its potential roles in each subtype of breast cancer.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan, Hubei 430010, P.R. China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Wuhan No. 1 Hospital, Wuhan Integrated Traditional Chinese Medicine and Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
44
|
Pilitsi E, Peradze N, Perakakis N, Mantzoros CS. Circulating levels of the components of the GH/IGF-1/IGFBPs axis total and intact IGF-binding proteins (IGFBP) 3 and IGFBP 4 and total IGFBP 5, as well as PAPPA, PAPPA2 and Stanniocalcin-2 levels are not altered in response to energy deprivation and/or metreleptin administration in humans. Metabolism 2019; 97:32-39. [PMID: 31103608 DOI: 10.1016/j.metabol.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE It remains unclear whether food deprivation induces changes in components of the GH/IGF-1/IGFBPs axis and if yes, which ones are mediated by leptin, an adipocyte secreted hormone regulating neuroendocrine response to energy deprivation in animals and humans. We aimed to investigate components of the axis that have not been studied to date, i.e. IGF-binding proteins (IGFBPs) and related proteases (total and intact IGFBP 3 and IGFBP 4, total IGFBP 5, PAPPA, PAPPA2 and Stanniocalcin-2), during acute (short-term fasting in healthy subjects) and chronic (women with hypothalamic amenorrhea [HA] due to excessive exercise) energy deprivation and whether metreleptin administration, in replacement, supraphysiologic or pharmacologic levels, may mediate any changes of circulating levels of the above molecules in healthy individuals and in women with hypothalamic amenorrhea. METHODS We studied: 1) 11 healthy men and women during three four day admissions i.e. a baseline admission in the fed isocaloric state and two admissions in the complete food deprivation state for 72-h with either placebo (resulting in a hypoleptinemic state) or metreleptin administration in doses designed to normalize circulating leptin levels for the duration of the study, 2) 15 healthy men and women during three 72-hour long admissions in a complete food deprivation state receiving three escalating doses of metreleptin designed to bring circulating leptin levels to physiologic, supraphysiologic, or pharmacologic levels, and 3) 18 women with HA randomized to either metreleptin treatment in replacement doses or placebo for nine months. RESULTS There were no significant changes in the circulating profiles of the above molecules in the fasting vs. fed state and/or with metreleptin administration during acute and chronic energy deprivation. CONCLUSIONS The studied components of the GH/IGF-1/IGFBPs axis are not affected by energy deprivation, leptin deficiency associated with energy deprivation, or by metreleptin administration in physiologic, supraphysiologic or pharmacologic doses.
Collapse
Affiliation(s)
- Eleni Pilitsi
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | - Natia Peradze
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA.
| | - Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, VA Boston Healthcare System, Jamaica Plain, MA, USA
| |
Collapse
|
45
|
Genome-Wide Profiling of Laron Syndrome Patients Identifies Novel Cancer Protection Pathways. Cells 2019; 8:cells8060596. [PMID: 31208077 PMCID: PMC6627189 DOI: 10.3390/cells8060596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This ‘experiment of nature’ reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that ‘data mining’ an orphan disease might translate into new developments in oncology.
Collapse
|
46
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
47
|
The potential role of pregnancy-associated plasma protein-A2 in angiogenesis and development of preeclampsia. Hypertens Res 2019; 42:970-980. [DOI: 10.1038/s41440-019-0224-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
48
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|
49
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
50
|
Mastrangelo A, Martos-Moreno GÁ, Rupérez FJ, Chowen JA, Barbas C, Argente J. Metabolomics changes in patients with PAPP-A2 deficiency in response to rhIGF1 treatment. Growth Horm IGF Res 2018; 42-43:28-31. [PMID: 30119035 DOI: 10.1016/j.ghir.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mutations in the pregnancy-associated plasma protein A2 (PAPP-A2) gene have recently been shown to cause postnatal growth failure in two prepubertal patients from a non-consanguineous Spanish family due to the resulting decrease in IGF1 bioavailability. Although a specific pharmacological treatment of this entity is yet to be established, both children received progressive subcutaneous doses (40 to 120 μg/kg) of rhIGF1 twice daily for 2 years. The improvements in growth, hyperinsulinemia and bone mineral density have been previously reported. The objective of this study was to analyze the changes in metabolism associated with these responses to rhIGF1 treatment. DESIGN Herein we present a detailed characterization of the acute and long-term changes in the metabolic profiles of these two siblings with PAPP-A2 deficiency after the initial injections of rhIGF1 and after two years of treatment. RESULTS By using a GC-MS-based untargeted metabolomics approach, metabolic fingerprinting yielded the identification of 70 serum metabolites including amino acids (46%), organic acids (21%) carbohydrates (16%), fatty acids (14%), and purine bases (3%). Free fatty acids (FFAs) and amino acids showed the largest changes in the compared metabolic profiles, suggesting that rhIGF1 treatment has the greatest effects on lipid and protein metabolic pathways in the PAPP-A2 deficient subjects. CONCLUSIONS The administration of rhIGF1 resulted in changes related to crucial metabolic pathways, including lipid and protein metabolism, and this could be associated with the previously reported treatment-induced improvement in the mild basal hyperinsulinemia.
Collapse
Affiliation(s)
- Annalaura Mastrangelo
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, CEI UAM & CSIC, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain.
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, CEI UAM & CSIC, Madrid, Spain.
| |
Collapse
|