1
|
Zhao Y, Wang L, Xu S. Vascular dysfunction in Hutchinson-Gilford progeria syndrome. Trends Mol Med 2024:S1471-4914(24)00341-1. [PMID: 39741011 DOI: 10.1016/j.molmed.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Most patients with Hutchinson-Gilford progeria syndrome (HGPS) succumb to cardiovascular disease. Recent studies by Barettino et al., Cardoso et al., and Vakili et al. utilized progeria mouse models to elucidate novel mechanisms by which vascular smooth muscle cell (VSMC) and endothelial cell (EC) dysfunction accelerate the progress of the disease, thus providing directions for the development of new targeted pharmaco-therapies.
Collapse
Affiliation(s)
- Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 23001, China.
| |
Collapse
|
2
|
Hamczyk MR, Nevado RM, Gonzalo P, Andrés-Manzano MJ, Nogales P, Quesada V, Rosado A, Torroja C, Sánchez-Cabo F, Dopazo A, Bentzon JF, López-Otín C, Andrés V. Endothelial-to-Mesenchymal Transition Contributes to Accelerated Atherosclerosis in Hutchinson-Gilford Progeria Syndrome. Circulation 2024; 150:1612-1630. [PMID: 39206565 DOI: 10.1161/circulationaha.123.065768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis is the main medical problem in Hutchinson-Gilford progeria syndrome, a rare premature aging disorder caused by the mutant lamin-A protein progerin. Recently, we found that limiting progerin expression to vascular smooth muscle cells (VSMCs) is sufficient to hasten atherosclerosis and death in Apoe-deficient mice. However, the impact of progerin-driven VSMC defects on endothelial cells (ECs) remained unclear. METHODS Apoe- or Ldlr-deficient C57BL/6J mice with ubiquitous, VSMC-, EC- or myeloid-specific progerin expression fed a normal or high-fat diet were used to study endothelial phenotype during Hutchinson-Gilford progeria syndrome-associated atherosclerosis. Endothelial permeability to low-density lipoproteins was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein and confocal microscopy analysis of the aorta. Leukocyte recruitment to the aortic wall was evaluated by en face immunofluorescence. Endothelial-to-mesenchymal transition (EndMT) was assessed by quantitative polymerase chain reaction and RNA sequencing in the aortic intima and by immunofluorescence in aortic root sections. TGFβ (transforming growth factor β) signaling was analyzed by multiplex immunoassay in serum, by Western blot in the aorta, and by immunofluorescence in aortic root sections. The therapeutic benefit of TGFβ1/SMAD3 pathway inhibition was evaluated in mice by intraperitoneal injection of SIS3 (specific inhibitor of SMAD3), and vascular phenotype was assessed by Oil Red O staining, histology, and immunofluorescence in the aorta and the aortic root. RESULTS Both ubiquitous and VSMC-specific progerin expression in Apoe-null mice provoked alterations in aortic ECs, including increased permeability to low-density lipoprotein and leukocyte recruitment. Atherosclerotic lesions in these progeroid mouse models, but not in EC- and myeloid-specific progeria models, contained abundant cells combining endothelial and mesenchymal features, indicating extensive EndMT triggered by dysfunctional VSMCs. Accordingly, the intima of ubiquitous and VSMC-specific progeroid models at the onset of atherosclerosis presented increased expression of EndMT-linked genes, especially those specific to fibroblasts and extracellular matrix. Aorta in both models showed activation of the TGFβ1/SMAD3 pathway, a major trigger of EndMT, and treatment of VSMC-specific progeroid mice with SIS3 alleviated the aortic phenotype. CONCLUSIONS Progerin-induced VSMC alterations promote EC dysfunction and EndMT through TGFβ1/SMAD3, identifying this process as a candidate target for Hutchinson-Gilford progeria syndrome treatment. These findings also provide insight into the complex role of EndMT during atherogenesis.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Pilar Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - María J Andrés-Manzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Centro de Investigación Biomédica en Red de Cáncer, Spain (V.Q.)
| | - Aránzazu Rosado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Ana Dopazo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Department of Clinical Medicine, Aarhus University, Denmark (J.F.B.)
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain (C.L.-O.)
- Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, INSERM U1138, France (C.L.-O.)
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| |
Collapse
|
3
|
Kim PH, Kim JR, Heizer PJ, Jung H, Tu Y, Presnell A, Scheithauer J, Yu RG, Young SG, Fong LG. The Accumulation of Progerin Underlies the Loss of Aortic Smooth Muscle Cells in Hutchinson-Gilford Progeria Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620896. [PMID: 39554077 PMCID: PMC11565845 DOI: 10.1101/2024.10.29.620896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disorder characterized by multiple aging-like phenotypes, including disease in large arteries. HGPS is caused by an internally truncated prelamin A (progerin) that cannot undergo the ZMPSTE24-mediated processing step that converts farnesyl-prelamin A to mature lamin A; consequently, progerin retains a carboxyl-terminal farnesyl lipid anchor. In cultured cells, progerin and full-length farnesyl-prelamin A (produced in Zmpste24 -/- cells) form an abnormal nuclear lamin meshwork accompanied by nuclear membrane ruptures and cell death; however, these proteins differ in their capacity to cause arterial disease. In a mouse model of HGPS (Lmna G609G), progerin causes loss of aortic smooth muscle cells (SMCs) by ~12 weeks of age. In contrast, farnesyl-prelamin A in Zmpste24 -/- mice does not cause SMC loss-even at 21 weeks of age. In young mice, aortic levels of farnesyl-prelamin A in Zmpste24 -/- mice and aortic levels of progerin in Lmna G609G/+ mice are the same. However, the levels of progerin and other A-type lamins increase with age in Lmna G609G/+ mice, whereas farnesyl-prelamin A and lamin C levels in Zmpste24 -/- mice remain stable. Lmna transcript levels are similar, implying that progerin influences nuclear lamin turnover. We identified a likely mechanism. In cultured SMCs, the phosphorylation of Ser-404 by AKT (which triggers prelamin A degradation) is reduced in progerin. In mice, AKT activity is significantly lower in Lmna G609G/+ aortas than in wild-type or Zmpste24 -/- aortas. Our studies identify that the accumulation of progerin in Lmna G609G aortas underlies the hallmark arterial pathology in HGPS.
Collapse
Affiliation(s)
- Paul H. Kim
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Joonyoung R. Kim
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Patrick J. Heizer
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Hyesoo Jung
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Ashley Presnell
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Julia Scheithauer
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Rachel G. Yu
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Benedicto I, Hamczyk MR, Nevado RM, Barettino A, Carmona RM, Espinós-Estévez C, Gonzalo P, de la Fuente-Pérez M, Andrés-Manzano MJ, González-Gómez C, Dorado B, Andrés V. Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death. Aging Cell 2024:e14389. [PMID: 39479939 DOI: 10.1111/acel.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene that provokes the synthesis of progerin, a mutant version of the nuclear protein lamin A that accelerates aging and precipitates death. The most clinically relevant feature of HGPS is the development of cardiac anomalies and severe vascular alterations, including massive loss of vascular smooth muscle cells, increased fibrosis, and generalized atherosclerosis. However, it is unclear if progerin expression in endothelial cells (ECs) causes the cardiovascular manifestations of HGPS. To tackle this question, we generated atherosclerosis-free mice (LmnaLCS/LCSCdh5-CreERT2) and atheroprone mice (Apoe-/-LmnaLCS/LCSCdh5-CreERT2) with EC-specific progerin expression. Like progerin-free controls, LmnaLCS/LCSCdh5-CreERT2 mice did not develop heart fibrosis or cardiac electrical and functional alterations, and had normal vascular structure, body weight, and lifespan. Similarly, atheroprone Apoe-/-LmnaLCS/LCSCdh5-CreERT2 mice showed no alteration in body weight or lifespan versus Apoe-/-LmnaLCS/LCS controls and did not develop vascular alterations or aggravated atherosclerosis. Our results indicate that progerin expression in ECs is not sufficient to cause the cardiovascular phenotype and premature death associated with progeria.
Collapse
Affiliation(s)
- Ignacio Benedicto
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magda R Hamczyk
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosa M Carmona
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
5
|
Zhang X, Wang Y, Wang J, Zhang Y, Li R, Wang X, Ge X, Ye Q, Ji J, Fei D, Wang Q. Impaired stemness in aging periodontal ligament stem cells is mediated by the progerin/endoplasmic reticulum stress/p53 axis. J Adv Res 2024:S2090-1232(24)00484-3. [PMID: 39490613 DOI: 10.1016/j.jare.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Decreased periodontal ligament stem cells (PDLSCs) stemness is a key factor in age-related alveolar bone loss. Endoplasmic reticulum (ER) stress is closely related to age-related diseases and the mesenchymal stem cell (MSC) stemness. However, the role of ER stress in regulating the stemness of senescent PDLSCs and its potential mechanism remain unclear. OBJECTIVES To investigate the detailed effect and mechanism of ER stress on impaired stemness in old periodontal ligament stem cells (OPDLSCs). METHODS The level of ER stress of Young PDLSCs (YPDLSCs) and OPDLSCs were detected, and ER stress was regulated to observe its effect on PDLSCs stemness. The expression levels of ER stress sensors (protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1)) were upregulated in YPDLSCs and downregulated in OPDLSCs by transfection experiments to verify the detailed unfolded protein response (UPR) pathway. Mechanismly, the regulatory effect of UPR pathway on p53/p21 pathway was explored. Further study was performed to investigated the important role of progerin accumulation during aging process on ER stress, UPR and p53/p21 pathway. RESULTS Decreased stemness and ER stress activation were found in OPDLSCs. ER stress activation resulted in decreased stemness of YPDLSCs, while ER stress inhibition rescued compromised stemness of OPDLSCs. Mechanismly, ATF6 pathway regulated the OPDLSC stemness via the p53/p21 signaling as confirmed by transfection assay. Further study showed that progerin was accumulated in PDLSCs and progerin overexpression could resulted in ER stress activation, activating the ATF6/p53/p21 axis, leading to decreased stemness of aging PDLSCs. CONCLUSIONS Progerin accumulation during the aging process can lead to ER stress activation, which can suppress OPDLSC stemness via the ATF6/p53/p21 axis.
Collapse
Affiliation(s)
- Xige Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yazheng Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Jinjin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yang Zhang
- Department of Stomatology, the Air Force Hospital from Eastern Theater, Nanjing, 210001, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaoyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaotong Ge
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases& Shaanxi Clinical Research Center for Oral Diseases, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiyun Ji
- Department of Stomatology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000, Hainan, China
| | - Dongdong Fei
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Qintao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University.
| |
Collapse
|
6
|
Barettino A, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Guerrero CR, Espinosa FM, Carmona RM, Blanco Y, Dorado B, Torroja C, Sánchez-Cabo F, Quintas A, Benguría A, Dopazo A, García R, Benedicto I, Andrés V. Endothelial YAP/TAZ activation promotes atherosclerosis in a mouse model of Hutchinson-Gilford progeria syndrome. J Clin Invest 2024; 134:e173448. [PMID: 39352768 PMCID: PMC11563688 DOI: 10.1172/jci173448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease caused by the expression of progerin, an aberrant protein produced by a point mutation in the LMNA gene. HGPS patients show accelerated aging and die prematurely mainly from complications of atherosclerosis such as myocardial infarction, heart failure, or stroke. However, the mechanisms underlying HGPS vascular pathology remain ill-defined. We used single-cell RNA sequencing to characterize the aorta in progerin-expressing LmnaG609G/G609G mice and wild-type controls, with a special focus on endothelial cells (ECs). HGPS ECs showed gene expression changes associated with extracellular matrix alterations, increased leukocyte extravasation, and activation of the yes-associated protein 1/transcriptional activator with PDZ-binding domain (YAP/TAZ) mechanosensing pathway, all validated by different techniques. Atomic force microscopy experiments demonstrated stiffer subendothelial extracellular matrix in progeroid aortae, and ultrasound assessment of live HGPS mice revealed disturbed aortic blood flow, both key inducers of the YAP/TAZ pathway in ECs. YAP/TAZ inhibition with verteporfin reduced leukocyte accumulation in the aortic intimal layer and decreased atherosclerosis burden in progeroid mice. Our findings identify endothelial YAP/TAZ signaling as a key mechanism of HGPS vascular disease and open a new avenue for the development of YAP/TAZ-targeting drugs to ameliorate progerin-induced atherosclerosis.
Collapse
Affiliation(s)
- Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María J. Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Rosa M. Carmona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Yaazan Blanco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguría
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
7
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Shores KL, Truskey GA. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front Physiol 2024; 15:1464678. [PMID: 39239311 PMCID: PMC11374724 DOI: 10.3389/fphys.2024.1464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
Collapse
Affiliation(s)
- Kevin L Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
9
|
Kim PH, Kim JR, Tu Y, Jung H, Jeong JYB, Tran AP, Presnell A, Young SG, Fong LG. Progerin forms an abnormal meshwork and has a dominant-negative effect on the nuclear lamina. Proc Natl Acad Sci U S A 2024; 121:e2406946121. [PMID: 38917015 PMCID: PMC11228511 DOI: 10.1073/pnas.2406946121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.
Collapse
Affiliation(s)
- Paul H. Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Joonyoung R. Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - J. Y. Brian Jeong
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, CA90095
| | - Anh P. Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Ashley Presnell
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
10
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
11
|
Carvalho AA, Machado RA, Maia CMF, Santos LAND, Martelli DRB, Coletta RD, Martelli Júnior H. A rare LMNA missense mutation causing a severe phenotype of mandibuloacral dysplasia type A: a case report. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 42:e2022189. [PMID: 38808865 PMCID: PMC11135898 DOI: 10.1590/1984-0462/2024/42/2022189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/21/2023] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To report the case of a girl presenting a severe phenotype of mandibuloacral dysplasia type A (MADA) characterized by prominent osteolytic changes and ectodermal defects, associated with a rare homozygous LMNA missense mutation (c.1579C>T). CASE DESCRIPTION A 6-year-old girl was evaluated during hospitalization exhibiting the following dysmorphic signs: subtotal alopecia, dysmorphic facies with prominent eyes, marked micrognathia and retrognathia, small beaked nose, teeth crowding and thin lips, generalized lipodystrophy, narrow and sloping shoulders, generalized joint stiffness and bone reabsorption in the terminal phalanges. In dermatological examination, atrophic skin, loss of cutaneous elasticity, hyperkeratosis, dermal calcinosis, and hyperpigmented and hypochromic patches were observed. Radiology exams performed showed bilateral absence of the mandibular condyles, clavicle resorption with local amorphous bone mass confluence with the scapulae, shoulder joints with subluxation and severe bone dysplasia, hip dysplasia, osteopenia and subcutaneous calcifications. COMMENTS MADA is a rare autosomal recessive disease caused by mutations in LMNA gene. It is characterized by craniofacial deformities, skeletal anomalies, skin alterations, lipodystrophy in certain regions of the body and premature ageing. Typical MADA is caused by the p.R527H mutation in the LMNA gene. However, molecular analysis performed from oral epithelial cells obtained from the patient showed the rare mutation c.1579C>T, p. R527C in the exon 9 of LMNA. This is the sixth family identified with this mutation described in the literature.
Collapse
|
12
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome. J Cell Biol 2024; 223:e202307049. [PMID: 37966721 PMCID: PMC10651395 DOI: 10.1083/jcb.202307049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Jennifer Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Majumder S, Chattopadhyay A, Wright JM, Guan P, Buja LM, Kwartler CS, Milewicz DM. Pericentrin deficiency in smooth muscle cells augments atherosclerosis through HSF1-driven cholesterol biosynthesis and PERK activation. JCI Insight 2023; 8:e173247. [PMID: 37937642 PMCID: PMC10721278 DOI: 10.1172/jci.insight.173247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is caused by biallelic loss-of-function variants in pericentrin (PCNT), and premature coronary artery disease (CAD) is a complication of the syndrome. Histopathology of coronary arteries from patients with MOPDII who died of CAD in their 20s showed extensive atherosclerosis. Hyperlipidemic mice with smooth muscle cell-specific (SMC-specific) Pcnt deficiency (PcntSMC-/-) exhibited significantly greater atherosclerotic plaque burden compared with similarly treated littermate controls despite similar serum lipid levels. Loss of PCNT in SMCs induced activation of heat shock factor 1 (HSF1) and consequently upregulated the expression and activity of HMG-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol biosynthesis. The increased cholesterol biosynthesis in PcntSMC-/- SMCs augmented PERK signaling and phenotypic modulation compared with control SMCs. Treatment with the HMGCR inhibitor, pravastatin, blocked the augmented SMC modulation and reduced plaque burden in hyperlipidemic PcntSMC-/- mice to that of control mice. These data support the notion that Pcnt deficiency activates cellular stress to increase SMC modulation and plaque burden, and targeting this pathway with statins in patients with MOPDII has the potential to reduce CAD in these individuals. The molecular mechanism uncovered further emphasizes SMC cytosolic stress and HSF1 activation as a pathway driving atherosclerotic plaque formation independently of cholesterol levels.
Collapse
Affiliation(s)
- Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Jamie M. Wright
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - L. Maximilian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| |
Collapse
|
15
|
Schena E, Mattioli E, Peres C, Zanotti L, Morselli P, Iozzo P, Guzzardi MA, Bernardini C, Forni M, Nesci S, Caprio M, Cecchetti C, Pagotto U, Gabusi E, Cattini L, Lisignoli G, Blalock W, Gambineri A, Lattanzi G. Mineralocorticoid Receptor Antagonism Prevents Type 2 Familial Partial Lipodystrophy Brown Adipocyte Dysfunction. Cells 2023; 12:2586. [PMID: 37998321 PMCID: PMC10670260 DOI: 10.3390/cells12222586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.
Collapse
Affiliation(s)
- Elisa Schena
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisabetta Mattioli
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Peres
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Laura Zanotti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Paolo Morselli
- Plastic Surgery Unit, Department of Specialised, Experimental and Diagnostic Medicine, Alma Mater Studiorum University of Bologna, S. Orsola-Malpighi Hospital, 40126 Bologna, Italy;
| | - Patricia Iozzo
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Monica Forni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00163 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carolina Cecchetti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Uberto Pagotto
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Elena Gabusi
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Luca Cattini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - William Blalock
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alessandra Gambineri
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
16
|
Quintana‐Torres D, Valle‐Cao A, Bousquets‐Muñoz P, Freitas‐Rodríguez S, Rodríguez F, Lucia A, López‐Otín C, López‐Soto A, Folgueras AR. The secretome atlas of two mouse models of progeria. Aging Cell 2023; 22:e13952. [PMID: 37565451 PMCID: PMC10577534 DOI: 10.1111/acel.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by nuclear envelope alterations that lead to accelerated aging and premature death. Several studies have linked health and longevity to cell-extrinsic mechanisms, highlighting the relevance of circulating factors in the aging process as well as in age-related diseases. We performed a global plasma proteomic analysis in two preclinical progeroid models (LmnaG609G/G609G and Zmpste24-/- mice) using aptamer-based proteomic technology. Pathways related to the extracellular matrix, growth factor response and calcium ion binding were among the most enriched in the proteomic signature of progeroid samples compared to controls. Despite the global downregulation trend found in the plasma proteome of progeroid mice, several proteins associated with cardiovascular disease, the main cause of death in HGPS, were upregulated. We also developed a chronological age predictor using plasma proteome data from a cohort of healthy mice (aged 1-30 months), that reported an age acceleration when applied to progeroid mice, indicating that these mice exhibit an "old" plasma proteomic signature. Furthermore, when compared to naturally-aged mice, a great proportion of differentially expressed circulating proteins in progeroid mice were specific to premature aging, highlighting secretome-associated differences between physiological and accelerated aging. This is the first large-scale profiling of the plasma proteome in progeroid mice, which provides an extensive list of candidate circulating plasma proteins as potential biomarkers and/or therapeutic targets for further exploration and hypothesis generation in the context of both physiological and premature aging.
Collapse
Affiliation(s)
- Diego Quintana‐Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alejandra Valle‐Cao
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Pablo Bousquets‐Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Sandra Freitas‐Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Francisco Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES) and Instituto de Investigación 12 de Octubre (i+12)MadridSpain
- Faculty of Sport SciencesUniversidad EuropeaMadridSpain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
| | - Alejandro López‐Soto
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Alicia R. Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
17
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
18
|
Kaw K, Chattopadhyay A, Guan P, Chen J, Majumder S, Duan XY, Ma S, Zhang C, Kwartler CS, Milewicz DM. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells. Eur Heart J 2023; 44:2713-2726. [PMID: 37377039 PMCID: PMC10393072 DOI: 10.1093/eurheartj/ehad373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.
Collapse
Affiliation(s)
- Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Xue-yan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuangtao Ma
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Medicine, Michigan State University, 1355 Bogue St, B226B Life Sciences, East Lansing, MI 48824, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
19
|
Chen Q, He J, Liu H, Huang Q, Wang S, Yin A, Chen S, Shen X, Xiao Y, Hu H, Jiang J, Chen W, Wang S, Huang Z, Li J, Peng Y, Wang X, Yang X, Wang Z, Zhong M. Small extracellular vesicles-transported lncRNA TDRKH-AS1 derived from AOPPs-treated trophoblasts initiates endothelial cells pyroptosis through PDIA4/DDIT4 axis in preeclampsia. J Transl Med 2023; 21:496. [PMID: 37488572 PMCID: PMC10364420 DOI: 10.1186/s12967-023-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Substantial studies have demonstrated that oxidative stress placenta and endothelial injury are considered to inextricably critical events in the pathogenesis of preeclampsia (PE). Systemic inflammatory response and endothelial dysfunction are induced by the circulating factors released from oxidative stress placentae. As a novel biomarker of oxidative stress, advanced oxidation protein products (AOPPs) levels are strongly correlated with PE characteristics. Nevertheless, the molecular mechanism underlying the effect of factors is still largely unknown. METHODS With the exponential knowledge on the importance of placenta-derived extracellular vesicles (pEVs), we carried out lncRNA transcriptome profiling on small EVs (sEVs) secreted from AOPPs-treated trophoblast cells and identified upregulated lncRNA TDRKH-AS1 as a potentially causative factor for PE. We isolated and characterized sEVs from plasma and trophoblast cells by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. The expression and correlation of lncRNA TDRKH-AS1 were evaluated using qRT-PCR in plasmatic sEVs and placentae from patients. Pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs was performed to detect the TDRKH-AS1 function in vivo. To investigate the potential effect of sEVs-derived TDRKH-AS1 on endothelial function in vitro, transcriptome sequencing, scanning electron Microscopy (SEM), immunofluorescence, ELISA and western blotting were conducted in HUVECs. RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP) and coimmunoprecipitation (Co-IP) were used to reveal the latent mechanism of TDRKH-AS1 on endothelial injury. RESULTS The expression level of TDRKH-AS1 was significantly increased in plasmatic sEVs and placentae from patients, and elevated TDRKH-AS1 in plasmatic sEVs was positively correlated with clinical severity of the patients. Moreover, pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs exhibited a hallmark feature of PE with increased blood pressure and systemic inflammatory responses. Pyroptosis, an inflammatory form of programmed cell death, is involved in the development of PE. Indeed, our in vitro study indicated that sEVs-derived TDRKH-AS1 secreted from AOPPs-induced trophoblast elevated DDIT4 expression levels to trigger inflammatory response of pyroptosis in endothelial cells through interacting with PDIA4. CONCLUSIONS Herein, results in the present study supported that TDRKH-AS1 in sEVs isolated from oxidative stress trophoblast may be implicated in the pathogenesis of PE via inducing pyroptosis and aggravating endothelial dysfunction.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiexing He
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Huang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuoshi Wang
- Department of Obstetrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ailan Yin
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuying Chen
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xinyang Shen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanxuan Xiao
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Jiang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenqin Huang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Li
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - You Peng
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaocong Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinping Yang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhijian Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci 2023; 24:11701. [PMID: 37511460 PMCID: PMC10380637 DOI: 10.3390/ijms241411701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in the maintenance of aortic wall integrity. VSMCs have been suggested to have contractile and synthetic phenotypes and undergo phenotypic switching to contribute to the deteriorating aortic wall structure. Recently, the unprecedented heterogeneity and diversity of VSMCs and their complex relationship to aortic aneurysms (AAs) have been revealed by high-resolution research methods, such as lineage tracing and single-cell RNA sequencing. The aortic wall consists of VSMCs from different embryonic origins that respond unevenly to genetic defects that directly or indirectly regulate VSMC contractile phenotype. This difference predisposes to hereditary AAs in the aortic root and ascending aorta. Several VSMC phenotypes with different functions, for example, secreting VSMCs, proliferative VSMCs, mesenchymal stem cell-like VSMCs, immune-related VSMCs, proinflammatory VSMCs, senescent VSMCs, and stressed VSMCs are identified in non-hereditary AAs. The transformation of VSMCs into different phenotypes is an adaptive response to deleterious stimuli but can also trigger pathological remodeling that exacerbates the pathogenesis and development of AAs. This review is intended to contribute to the understanding of VSMC diversity in health and aneurysmal diseases. Papers that give an update on VSMC phenotype diversity in health and aneurysmal disease are summarized and recent insights on the role of VSMCs in AAs are discussed.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
21
|
Vidak S, Serebryannyy LA, Pegoraro G, Misteli T. Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2. Cell Rep 2023; 42:112534. [PMID: 37210724 DOI: 10.1016/j.celrep.2023.112534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
One of the major cellular mechanisms to ensure cellular protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is triggered by accumulation of misfolded proteins in the ER lumen. The ER stress response is also activated in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we explore the mechanism of activation of the ER stress response in HGPS. We find that aggregation of the diseases-causing progerin protein at the nuclear envelope triggers ER stress. Induction of ER stress is dependent on the inner nuclear membrane protein SUN2 and its ability to cluster in the nuclear membrane. Our observations suggest that the presence of nucleoplasmic protein aggregates can be sensed, and signaled to the ER lumen, via clustering of SUN2. These results identify a mechanism of communication between the nucleus and the ER and provide insight into the molecular disease mechanisms of HGPS.
Collapse
Affiliation(s)
- Sandra Vidak
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Gianluca Pegoraro
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Kristiani L, Kim Y. The Interplay between Oxidative Stress and the Nuclear Lamina Contributes to Laminopathies and Age-Related Diseases. Cells 2023; 12:cells12091234. [PMID: 37174634 PMCID: PMC10177617 DOI: 10.3390/cells12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.
Collapse
Affiliation(s)
- Lidya Kristiani
- Department of Biomedicine, School of Life Science, Indonesia International Institute for Life Science, Jakarta 13210, Indonesia
| | - Youngjo Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
23
|
SONG XIAOSU, GAO FEN, LI HONG, QIN WEIWEI, CHAI CHANJUAN, SHI GUOJUAN, YANG HUIYU. Semaphorin 7A promotes human vascular smooth muscle cell proliferation and migration through the β-catenin signaling pathway. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
24
|
Hamczyk MR, Nevado RM. Vascular smooth muscle cell aging: Insights from Hutchinson-Gilford progeria syndrome. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:42-51. [PMID: 35125249 DOI: 10.1016/j.arteri.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) constitute the principal cellular component of the medial layer of arteries and are responsible for vessel contraction and relaxation in response to blood flow. Alterations in VSMCs can hinder vascular system function, leading to vascular stiffness, calcification and atherosclerosis, which in turn may result in life-threatening complications. Pathological changes in VSMCs typically correlate with chronological age; however, there are certain conditions and diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that can accelerate this process, resulting in premature vascular aging. HGPS is a rare genetic disorder characterized by severe VSMC loss, accelerated atherosclerosis and death from myocardial infarction or stroke during the adolescence. Because experiments with mouse models have demonstrated that alterations in VSMCs are responsible for early atherosclerosis in HGPS, studies on this disease can provide insights into the mechanisms of vascular aging and assess the relative contribution of VSMCs to this process.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Rosa M Nevado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
25
|
Zhou J, Weng J, Huang X, Sun S, Yang Q, Lin H, Yang J, Guo H, Chi J. Repair effect of the poly (D,L-lactic acid) nanoparticle containing tauroursodeoxycholic acid-eluting stents on endothelial injury after stent implantation. Front Cardiovasc Med 2022; 9:1025558. [PMID: 36426231 PMCID: PMC9678935 DOI: 10.3389/fcvm.2022.1025558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic endoplasmic reticulum stress (ERS) plays a crucial role in cardiovascular diseases. Thus, it can be considered a therapeutic target for these diseases. In this study, poly (D,L-lactic acid) (PDLLA) nanoparticle-eluting stents loaded with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was fabricated to assess their ability to reduce endothelial cell apoptosis and promote re-endothelialization after stent implantation. Materials and methods PDLLA nanoparticles loaded with TUDCA were prepared via the emulsification-solvent evaporation method. The cumulative release rates of TUDCA were measured in vitro via high-performance liquid chromatography. The carotid arteries of rabbits were subsequently implanted with stents in vivo. The rabbits were then sacrificed after 4 weeks for scanning electron microscopy. Meanwhile, TUDCA concentration in the homogenate of the peripheral blood and distal vascular tissue after stent implantation was measured. The effect of TUDCA on ERS, apoptosis, and human umbilical vein endothelial cell (HUVEC) function was investigated in vitro by performing cell migration assay, wound healing assay, cell proliferation assays, endoplasmic reticulum (ER)-specific fluorescence staining, immunofluorescence, and western blotting. Results TUDCA nanoparticles were released slowly over 28 days. In addition, TUDCA-eluting stents enhanced re-endothelialization and accelerated the recovery of endotheliocytes in vivo. ERS and apoptosis significantly increased in H2O2-treated HUVECs in vitro. Meanwhile, TUDCA reduced apoptosis and improved function by inhibiting ERS in H2O2-treated HUVECs. Decreased rates of apoptosis and ERS were observed after silencing XBP-1s in H2O2-treated HUVECs. Conclusion TUDCA can inhibit apoptosis and promote re-endothelialization after stent implantation by inhibiting IRE/XBP1s-related ERS. These results indicate the potential therapeutic application of TUDCA as a drug-coated stent.
Collapse
Affiliation(s)
- Jiedong Zhou
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jingfan Weng
- Zhejiang Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Yang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jinjin Yang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Shaoxing University School of Medicine, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Jufang Chi,
| |
Collapse
|
26
|
Inesta-Vaquera F, Weiland F, Henderson CJ, Wolf CR. In vivo stress reporters as early biomarkers of the cellular changes associated with progeria. J Cell Mol Med 2022; 26:5463-5472. [PMID: 36201626 PMCID: PMC9639039 DOI: 10.1111/jcmm.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Age‐related diseases account for a high proportion of the total global burden of disease. Despite recent advances in understanding their molecular basis, there is a lack of suitable early biomarkers to test selected compounds and accelerate their translation to clinical trials. We have investigated the utility of in vivo stress reporter systems as surrogate early biomarkers of the degenerative disease progression. We hypothesized that cellular stress observed in models of human degenerative disease preceded overt cellular damage and at the same time will identify potential cytoprotective pathways. To test this hypothesis, we generated novel accelerated ageing (progeria) reporter mice by crossing the LmnaG609G mice into our oxidative stress/inflammation (Hmox1) and DNA damage (p21) stress reporter models. Histological analysis of reporter expression demonstrated a time‐dependent and tissue‐specific activation of the reporters in tissues directly associated with Progeria, including smooth muscle cells, the vasculature and gastrointestinal tract. Importantly, reporter expression was detected prior to any perceptible deleterious phenotype. Reporter expression can therefore be used as an early marker of progeria pathogenesis and to test therapeutic interventions. This work also demonstrates the potential to use stress reporter approaches to study and find new treatments for other degenerative diseases.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| | - Florian Weiland
- Department of Microbial and Molecular Systems (M2S), Centre for Food and Microbial Technology (CLMT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), Technology Campus Ghent, Ghent, Belgium
| | - Colin J Henderson
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| | - Charles Roland Wolf
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
27
|
Catarinella G, Nicoletti C, Bracaglia A, Procopio P, Salvatori I, Taggi M, Valle C, Ferri A, Canipari R, Puri PL, Latella L. SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome. Cell Death Dis 2022; 13:737. [PMID: 36028501 PMCID: PMC9418244 DOI: 10.1038/s41419-022-05168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis.
Collapse
Affiliation(s)
| | - Chiara Nicoletti
- grid.479509.60000 0001 0163 8573Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Andrea Bracaglia
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.6530.00000 0001 2300 0941PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Procopio
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.10253.350000 0004 1936 9756Present Address: BPC, Pharmakologisches Institut, Philipps-Universität Marburg, Marburg, Germany
| | - Illari Salvatori
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.7841.aDepartment of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Marilena Taggi
- grid.7841.aDAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Cristiana Valle
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Alberto Ferri
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Rita Canipari
- grid.7841.aDAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Pier Lorenzo Puri
- grid.479509.60000 0001 0163 8573Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Lucia Latella
- grid.417778.a0000 0001 0692 3437IRCCS Fondazione Santa Lucia, Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
28
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
29
|
Chattopadhyay A, Guan (关蒲骏) P, Majumder S, Kaw K, Zhou (周桢) Z, Zhang C, Prakash SK, Kaw A, Buja LM, Kwartler CS, Milewicz DM. Preventing Cholesterol-Induced Perk (Protein Kinase RNA-Like Endoplasmic Reticulum Kinase) Signaling in Smooth Muscle Cells Blocks Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2022; 42:1005-1022. [PMID: 35708026 PMCID: PMC9311463 DOI: 10.1161/atvbaha.121.317451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling. METHODS We generated an SMC-specific Perk knockout mouse model, induced hyperlipidemia in the mice by AAV-PCSK9DY injection, and subjected them to a high-fat diet. We then assessed atherosclerotic plaque formation and performed single-cell transcriptomic studies using aortic tissue from these mice. RESULTS SMC-specific deletion of Perk reduces atherosclerotic plaque formation in male hyperlipidemic mice by 80%. Single-cell transcriptomic data identify 2 clusters of modulated SMCs in hyperlipidemic mice, one of which is absent when Perk is deleted in SMCs. The 2 modulated SMC clusters have significant overlap of transcriptional changes, but the Perk-dependent cluster uniquely shows a global decrease in the number of transcripts. SMC-specific Perk deletion also prevents migration of both contractile and modulated SMCs from the medial layer of the aorta. CONCLUSIONS Our results indicate that hypercholesterolemia drives both Perk-dependent and Perk-independent SMC modulation and that deficiency of Perk significantly blocks atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Pujun Guan (关蒲骏)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston (P.G.)
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (C.Z.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston (C.Z.)
| | - Siddharth K. Prakash
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - L. Maximillian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston (L.M.B.)
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., S.K.P.‚ A.K., C.S.K., D.M.M.)
| |
Collapse
|
30
|
Jiang B, Wu X, Meng F, Si L, Cao S, Dong Y, Sun H, Lv M, Xu H, Bai N, Guo Q, Song X, Yu Y, Guo W, Yi F, Zhou T, Li X, Feng Y, Wang Z, Zhang D, Guan Y, Ma M, Liu J, Li X, Zhao W, Liu B, Finkel T, Cao L. Progerin modulates the IGF-1R/Akt signaling involved in aging. SCIENCE ADVANCES 2022; 8:eabo0322. [PMID: 35857466 PMCID: PMC9269893 DOI: 10.1126/sciadv.abo0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Progerin, a product of LMNA mutation, leads to multiple nuclear abnormalities in patients with Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disorder. Progerin also accumulates during physiological aging. Here, we demonstrate that impaired insulin-like growth factor 1 receptor (IGF-1R)/Akt signaling pathway results in severe growth retardation and premature aging in Zmpste24-/- mice, a mouse model of progeria. Mechanistically, progerin mislocalizes outside of the nucleus, interacts with the IGF-1R, and down-regulates its expression, leading to inhibited mitochondrial respiration, retarded cell growth, and accelerated cellular senescence. Pharmacological treatment with the PTEN (phosphatase and tensin homolog deleted on chromosome 10) inhibitor bpV (HOpic) increases Akt activity and improves multiple abnormalities in Zmpste24-deficient mice. These findings provide previously unidentified insights into the role of progerin in regulating the IGF-1R/Akt signaling in HGPS and might be useful for treating LMNA-associated progeroid disorders.
Collapse
Affiliation(s)
- Bo Jiang
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuan Wu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Fang Meng
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Limiao Si
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Sunrun Cao
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuqing Dong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huayi Sun
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hongde Xu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ning Bai
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiqiang Guo
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaoyu Song
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Wendong Guo
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fei Yi
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Tingting Zhou
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaoman Li
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanling Feng
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zhuo Wang
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Guan
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mengtao Ma
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jingwei Liu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xining Li
- Department of Pathology, School of Medicine, Huzhou University, Zhejiang Province, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Baohua Liu
- Center for Anti-Aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Toren Finkel
- Aging Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Corresponding author. (T.F.); (L.C.)
| | - Liu Cao
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
- Corresponding author. (T.F.); (L.C.)
| |
Collapse
|
31
|
Zhang X, Xu P, Lin B, Deng X, Zhu J, Chen X, Liu S, Li R, Wang N, Chen L. Chimonanthus salicifolius attenuated vascular remodeling by alleviating endoplasmic reticulum stress in spontaneously hypertensive rats. Food Funct 2022; 13:6293-6305. [PMID: 35611700 DOI: 10.1039/d1fo04381a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chimonanthus salicifolius (CS), the leaves of Chimonanthus salicifolius S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation in vivo. Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The in vivo experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Jiazhen Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Xinyi Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Shuang Liu
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Rui Li
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Liping Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
32
|
Shamoon L, Romero A, De la Cuesta F, Sánchez-Ferrer CF, Peiró C. Angiotensin-(1-7), a protective peptide against vascular aging. Peptides 2022; 152:170775. [PMID: 35231551 DOI: 10.1016/j.peptides.2022.170775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Vascular aging is a complex and multifaceted process that provokes profound molecular, structural, and functional changes in the vasculature. Eventually, these profound aging alterations make arteries more prone to vascular disease, including hypertension, atherosclerosis and other arterial complications that impact the organism beyond the cardiovascular system and accelerate frailty. For these reasons, preventing or delaying the hallmarks of vascular aging is nowadays a major health goal, especially in our aged societies. In this context, angiotensin(Ang)-(1-7), a major player of the protective branch of the renin-angiotensin system, has gained relevance over recent years as growing knowledge on its anti-aging properties is being unveiled. Here, we briefly review the main actions of Ang-(1-7) against vascular aging. These include protection against vascular cell senescence, anti-inflammatory and antioxidant effects together with the induction of cytoprotective systems. Ang-(1-7) further ameliorates endothelial dysfunction, a hallmark of vascular aging and disease, attenuates fibrosis and calcification and promotes protective angiogenesis and repair. Although further research is needed to better understand the anti-aging properties of Ang-(1-7) on the vasculature, this heptapeptide arises as a promising pharmacological tool for preventing vascular aging and frailty.
Collapse
Affiliation(s)
- L Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain
| | - A Romero
- German Center for the Study of Diabetes, Düsseldorf, Germany
| | - F De la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - C F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain.
| | - C Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain.
| |
Collapse
|
33
|
Benedicto I, Chen X, Bergo MO, Andrés V. Progeria: a perspective on potential drug targets and treatment strategies. Expert Opin Ther Targets 2022; 26:393-399. [DOI: 10.1080/14728222.2022.2078699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
34
|
Wang C, Zhang Y. Endoplasmic Reticulum Stress: A New Research Direction for Polycystic Ovary Syndrome? DNA Cell Biol 2022; 41:356-367. [PMID: 35353637 DOI: 10.1089/dna.2021.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders, with sporadic ovulation, excessive androgens, and polycystic ovarian changes as the main clinical manifestations. Due to the high heterogeneity of its clinical manifestations, the discussion on its pathogenesis has not been unified. Current research has found that genetic factors, hyperandrogenism, chronic inflammation and oxidative stress, insulin resistance, and obesity are strongly associated with PCOS. Recently, when studying the specific mechanisms of the abovementioned factors in PCOS, the biological response process of endoplasmic reticulum stress (ERS) has gradually come to researchers' attention, and several studies have confirmed the involvement of ERS in the pathogenesis of PCOS and the improvement of a series of pathological manifestations of PCOS after the application of ERS inhibitors, which may be a new entry point for the treatment of PCOS. In this article, we review the relationship between ERS and various pathogenic factors of PCOS.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yingjie Zhang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| |
Collapse
|
35
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
36
|
González-Blanco C, Marqués P, Burillo J, Jiménez B, García G, Benito M, Guillén C. Cell immortalization facilitates prelamin A clearance by increasing both cell proliferation and autophagic flux. Aging (Albany NY) 2022; 14:2047-2061. [PMID: 35306483 PMCID: PMC8954962 DOI: 10.18632/aging.203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
Hutchinson-Gilford Progeria Syndrome is an ultrarare disease which is characterized by an accelerated senescence phenotype with deleterious consequences to people suffering this pathology. The production of an abnormal protein derived from lamin A, called progerin, presents a farnesylated domain, which is not eliminated by the causal mutation of the disease, and accumulates in the interior of the nucleus, provoking a disruption of nuclear membrane, chromatin organization and an altered gene expression. The mutation in these patients occurs in a single nucleotide change, which creates a de novo splicing site, producing a shorter version of the protein. Apart from this mutation, an alteration in the metalloproteinase Zmpste24, involved in the maturation of lamin A, causing a similar alteration than in progeria. However, in this case, patients accumulate a protein, called prelamin A, which generates similar alterations in the nucleus than progerin. The reduction of prelamin A protein levels facilitates the recovery of the phenotype in different mice models of the disease, reducing the aging process. Different strategies have been studied for eliminating this toxic protein. Here, we report that immortalization of primary cells derived from the Zmpste24 KO mice, facilitates prelamin A degradation by different mechanisms, being essential, the enhancing proliferative capacity that the immortalized cells present. Then, these data suggest that using different treatments for increasing proliferative capacity of these cells, potentially could have a beneficial effect, facilitating prelamin A toxicity.
Collapse
Affiliation(s)
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Jesús Burillo
- Department of Biochemistry, Complutense University, Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Gema García
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| |
Collapse
|
37
|
Danielsson BE, Peters HC, Bathula K, Spear LM, Noll NA, Dahl KN, Conway DE. Progerin-expressing endothelial cells are unable to adapt to shear stress. Biophys J 2022; 121:620-628. [PMID: 34999130 PMCID: PMC8873939 DOI: 10.1016/j.bpj.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a single-point mutation in the lamin A gene, resulting in a truncated and farnesylated form of lamin A. This mutant lamin A protein, known as progerin, accumulates at the periphery of the nuclear lamina, resulting in both an abnormal nuclear morphology and nuclear stiffening. Patients with HGPS experience rapid onset of atherosclerosis, with death from heart attack or stroke as teenagers. Progerin expression has been shown to cause dysfunction in both vascular smooth muscle cells and endothelial cells (ECs). In this study, we examined how progerin-expressing endothelial cells adapt to fluid shear stress, the principal mechanical force from blood flow. We compared the response to shear stress for progerin-expressing, wild-type lamin A overexpressing, and control endothelial cells to physiological levels of fluid shear stress. Additionally, we also knocked down ZMPSTE24 in endothelial cells, which results in increased farnesylation of lamin A and similar phenotypes to HGPS. Our results showed that endothelial cells either overexpressing progerin or with ZMPSTE24 knockdown were unable to adapt to shear stress, experiencing significant cell loss at a longer duration of exposure to shear stress (3 days). Endothelial cells overexpressing wild-type lamin A also exhibited similar impairments in adaptation to shear stress, including similar levels of cell loss. Quantification of nuclear morphology showed that progerin-expressing endothelial cells had similar nuclear abnormalities in both static and shear conditions. Treatment of progerin-expressing cells and ZMPSTE24 KD cells with lonafarnib and methystat, drugs previously shown to improve HGPS nuclear morphology, resulted in improvements in adaptation to shear stress. Additionally, the prealignment of cells to shear stress before progerin-expression prevented cell loss. Our results demonstrate that changes in nuclear lamins can affect the ability of endothelial cells to properly adapt to shear stress.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Hannah C Peters
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthi Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Lindsay M Spear
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie A Noll
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department, Thornton Tomasetti, New York City, New York
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
38
|
Jia J, Wang Y, Huang R, Du F, Shen X, Yang Q, Li J. Protein disulfide-isomerase A3 knockdown attenuates oxidized low-density lipoprotein-induced oxidative stress, inflammation and endothelial dysfunction in human umbilical vein endothelial cells by downregulating activating transcription factor 2. Bioengineered 2022; 13:1436-1446. [PMID: 34983301 PMCID: PMC8805980 DOI: 10.1080/21655979.2021.2018980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease implicated in oxidative stress and endothelial dysfunction. Protein disulfide-isomerase A3 (PDIA3) has been reported to regulate oxidative stress and suppress inflammation. This study aimed to explore the function of PDIA3 in atherosclerosis and the underlying mechanisms. PDIA3 expression in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) was detected using RT-qPCR and Western blotting. Following PDIA3 knockdown through transfection with small interfering RNA targeting PDIA3, cell viability, oxidative stress and inflammation in ox-LDL-induced HUVECs was examined using a Cell Counting Kit-8, corresponding kits and ELISA, respectively. The levels of CD31, α-smooth muscle, iNOS, p-eNOS, eNOS and NO were assessed using RT-qPCR, Western blotting and an NO kit to reflect endothelial dysfunction in ox-LDL-induced HUVECs. The relationship between PDIA3 and the activating transcription factor 2 (ATF2) was confirmed using co-immunoprecipitation. In addition, ATF2 expression was examined following PDIA3 silencing. The results indicated that PDIA3 was highly expressed in ox-LDL-induced HUVECs. PDIA3 silencing increased cell viability, and reduced oxidative stress and inflammation, as evidenced by the decreased levels of reactive oxygen species, malondialdehyde, TNF-α, IL-1β and IL-6, and increased superoxide dismutase and glutathione peroxidase activity. In addition, PDIA3 deletion improved endothelial dysfunction. PDIA3 interacted with ATF2, and PDIA3 deletion downregulated ATF2 expression. Furthermore, ATF2 overexpression reversed the effects of PDIA3 knockdown on ox-LDL-induced damage of HUVECs. Collectively, PDIA3 knockdown was found to attenuate ox-LDL-induced oxidative stress, inflammation and endothelial dysfunction in HUVECs by downregulating ATF2 expression, showing promise for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Jia
- Department of Anesthetic Surgery, Baotou Steel Hospital, Baotou, China
| | - Yueping Wang
- Department of Cardiology, Baotou Steel Hospital, Baotou, China
| | - Ruijuan Huang
- Laser Treatment Center, Baotou Steel Hospital, Baotou, China
| | - Fengxia Du
- Department of Intensive Medicine, Baotou Steel Hospital, Baotou, China
| | - Xiaozhu Shen
- Department of Geriatrics, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Qiurong Yang
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Juan Li
- Nursing Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
39
|
Sánchez-López A, Espinós-Estévez C, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Fanjul V, Riquelme-Borja R, Hamczyk MR, Macías Á, Del Campo L, Camafeita E, Vázquez J, Barkaway A, Rolas L, Nourshargh S, Dorado B, Benedicto I, Andrés V. Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome. Circulation 2021; 144:1777-1794. [PMID: 34694158 PMCID: PMC8614561 DOI: 10.1161/circulationaha.121.055313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life. Assessing the reversibility of progerin-induced damage and the relative contribution of specific cell types is critical to determining the potential benefits of late treatment and to developing new therapies. METHODS We used CRISPR-Cas9 technology to generate LmnaHGPSrev/HGPSrev (HGPSrev) mice engineered to ubiquitously express progerin while lacking lamin A and allowing progerin suppression and lamin A restoration in a time- and cell type-specific manner on Cre recombinase activation. We characterized the phenotype of HGPSrev mice and crossed them with Cre transgenic lines to assess the effects of suppressing progerin and restoring lamin A ubiquitously at different disease stages as well as specifically in vascular smooth muscle cells and cardiomyocytes. RESULTS Like patients with HGPS, HGPSrev mice appear healthy at birth and progressively develop HGPS symptoms, including failure to thrive, lipodystrophy, vascular smooth muscle cell loss, vascular fibrosis, electrocardiographic anomalies, and precocious death (median lifespan of 15 months versus 26 months in wild-type controls, P<0.0001). Ubiquitous progerin suppression and lamin A restoration significantly extended lifespan when induced in 6-month-old mildly symptomatic mice and even in severely ill animals aged 13 months, although the benefit was much more pronounced on early intervention (84.5% lifespan extension in mildly symptomatic mice, P<0.0001, and 6.7% in severely ill mice, P<0.01). It is remarkable that major vascular alterations were prevented and lifespan normalized in HGPSrev mice when progerin suppression and lamin A restoration were restricted to vascular smooth muscle cells and cardiomyocytes. CONCLUSIONS HGPSrev mice constitute a new experimental model for advancing knowledge of HGPS. Our findings suggest that it is never too late to treat HGPS, although benefit is much more pronounced when progerin is targeted in mice with mild symptoms. Despite the broad expression pattern of progerin and its deleterious effects in many organs, restricting its suppression to vascular smooth muscle cells and cardiomyocytes is sufficient to prevent vascular disease and normalize lifespan.
Collapse
Affiliation(s)
- Amanda Sánchez-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Carla Espinós-Estévez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Cristina González-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - María J Andrés-Manzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Raquel Riquelme-Borja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.).,Now with Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H.)
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Lara Del Campo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.).,Now with Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.d.C.)
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.B., L.R., S.N.)
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| | - Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (A.S.-L., C.E.-E., C.G.-G., P.G., M.J.A.-M., V.F., R.R.-B., M.R.H., A.M., L.d.C., E.C., J.V., B.D., I.B., V.A.)
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain (A.S.-L., C.G.-G., P.G., M.J.A.-M., V.F., M.R.H., A.M., L.d.C., E.C., J.V., B.D., V.A.)
| |
Collapse
|
40
|
Ge P, Gao M, Du J, Yu J, Zhang L. Downregulation of microRNA-512-3p enhances the viability and suppresses the apoptosis of vascular endothelial cells, alleviates autophagy and endoplasmic reticulum stress as well as represses atherosclerotic lesions in atherosclerosis by adjusting spliced/unspliced ratio of X-box binding protein 1 (XBP-1S/XBP-1U). Bioengineered 2021; 12:12469-12481. [PMID: 34783632 PMCID: PMC8810154 DOI: 10.1080/21655979.2021.2006862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
AS is an important pathological basis of cardiovascular disease. It has been reported that miRNAs are involved in almost all steps of AS, including the injury and dysfunction of endothelial cells and vascular smooth muscle cells. This work was designed to elucidate the biological functions of miR-512-3p in the pathological process of AS and probe into the underlying molecular mechanism. In the present work, ox-LDL-treated HUVECs served as the in vitro model of AS and ApoE-/- mice were nourished with a high-fat diet to establish an in vivo model of AS. Proliferation, apoptosis and migration of HUVECs were evaluated by performing CCK-8, TUNEL staining, western blot and transwell assays. Immunofluorescence examined LC3 expression and levels of autophagy-related and ER stress-related proteins were determined by western blot assay. In addition, starBase predicted the complementary binding sites of XBP-1 to miR-512-3p and luciferase reporter assay confirmed the interaction between miR-512-3p and XBP-1. Moreover, H&E staining was employed to evaluate atherosclerotic lesions in AS model mice. Results revealed that ox-LDL treatment decreased the proliferative and migrative activities and promoted the apoptosis of HUVECs as well as induced autophagy and ER stress, which were abrogated by miR-512-3p silencing. Importantly, ox-LDL treatment elevated miR-512-3p expression and XBP-1 was a direct target of miR-512-3p. Mechanistically, knockdown of miR-512-3p enhanced the viability, suppressed the apoptosis and promoted the migration of ox-LDL-treated HUVECs, alleviated atherosclerotic lesions in AS model mice as well as repressed autophagy and ER stress by targeting XBP-1 to manipulate the ratio of XBP-1S/XBP-1U.
Collapse
Affiliation(s)
- Peipei Ge
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, People's Republic of China
| | - Mingxiao Gao
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, People's Republic of China
| | - Juan Du
- Department of Cardiology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong Province, People's Republic of China
| | - Jingbin Yu
- Department of Cardiology, Zibo Central Hospital, No54 Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiology, Zibo Central Hospital, No54 Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| |
Collapse
|
41
|
Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R, Cooke JP. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. Eur Heart J 2021; 42:4352-4369. [PMID: 34389865 PMCID: PMC8603239 DOI: 10.1093/eurheartj/ehab547] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/29/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated ageing syndrome associated with premature vascular disease and death due to heart attack and stroke. In HGPS a mutation in lamin A (progerin) alters nuclear morphology and gene expression. Current therapy increases the lifespan of these children only modestly. Thus, greater understanding of the underlying mechanisms of HGPS is required to improve therapy. Endothelial cells (ECs) differentiated from induced pluripotent stem cells (iPSCs) derived from these patients exhibit hallmarks of senescence including replication arrest, increased expression of inflammatory markers, DNA damage, and telomere erosion. We hypothesized that correction of shortened telomeres may reverse these measures of vascular ageing. METHODS AND RESULTS We generated ECs from iPSCs belonging to children with HGPS and their unaffected parents. Telomerase mRNA (hTERT) was used to treat HGPS ECs. Endothelial morphology and functions were assessed, as well as proteomic and transcriptional profiles with attention to inflammatory markers, DNA damage, and EC identity genes. In a mouse model of HGPS, we assessed the effects of lentiviral transfection of mTERT on measures of senescence, focusing on the EC phenotype in various organs. hTERT treatment of human HGPS ECs improved replicative capacity; restored endothelial functions such as nitric oxide generation, acetylated low-density lipoprotein uptake and angiogenesis; and reduced the elaboration of inflammatory cytokines. In addition, hTERT treatment improved cellular and nuclear morphology, in association with a normalization of the transcriptional profile, effects that may be mediated in part by a reduction in progerin expression and an increase in sirtuin 1 (SIRT1). Progeria mice treated with mTERT lentivirus manifested similar improvements, with a reduction in inflammatory and DNA damage markers and increased SIRT1 in their vasculature and other organs. Furthermore, mTERT therapy increased the lifespan of HGPS mice. CONCLUSION Vascular rejuvenation using telomerase mRNA is a promising approach for progeria and other age-related diseases.
Collapse
Affiliation(s)
- Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Brandon K Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77840, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianfranco Matrone
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Qiu Xu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Elisa Morales
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| | - Rongfu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., R10-South, Houston, TX 77030, USA
| |
Collapse
|
42
|
Li BW, Liu Y, Zhang L, Guo XQ, Wen C, Zhang F, Luo XY, Xia YP. Cytotoxin-associated gene A (CagA) promotes aortic endothelial inflammation and accelerates atherosclerosis through the NLRP3/caspase-1/IL-1β axis. FASEB J 2021; 35:e21942. [PMID: 34670018 DOI: 10.1096/fj.202100695rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease. Pathophysiological similarities between chronic infections and atherosclerosis triggered interests between these conditions. The seroepidemiological study showed that Helicobacter pylori strains that express cytotoxin-associated gene A (CagA), an oncoprotein and a major virulence factor, was positively correlated with atherosclerosis and related clinical events. Nevertheless, the underlying mechanism is poorly understood. In this study, the seroprevalence of infection by H. pylori and by strains express CagA assessed by enzyme-linked immunosorbent assay (ELISA) showed that the prevalence of CagA strains rather than H. pylori in patients was positively correlated with atherogenesis. Correspondingly, we found that CagA augmented the growth of plaque of ApoE-/- mice in the early stage of atherosclerosis and promoted the expression of adhesion molecules and inflammatory cytokines in mouse aortic endothelial cells (MAECs). Mechanistically, both si-NLRP3 and si-IL-1β mitigated the promoting effect of CagA on the inflammatory activation of HAECs. In vivo, the inhibition of NLRP3 by MCC950 significantly attenuated the promoting effect of CagA on plaque growth of ApoE-/- mice. We also propose NLRP3 as a potential therapeutic target for CagA-positive H. pylori infection-related atherosclerosis and emphasize the importance of inflammation in atherosclerosis pathology.
Collapse
Affiliation(s)
- Bo-Wei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Qing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Ying Luo
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Cabral WA, Tavarez UL, Beeram I, Yeritsyan D, Boku YD, Eckhaus MA, Nazarian A, Erdos MR, Collins FS. Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford Progeria syndrome. Aging Cell 2021; 20:e13457. [PMID: 34453483 PMCID: PMC8441492 DOI: 10.1111/acel.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Urraca L. Tavarez
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Indeevar Beeram
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Diana Yeritsyan
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Yoseph D. Boku
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Michael A. Eckhaus
- Diagnostic and Research Services Branch Division of Veterinary Resources Office of the Director National Institutes of Health Bethesda MD USA
| | - Ara Nazarian
- Translational Musculoskeletal Innovation Initiative Carl J. Shapiro Department of Orthopedic Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA
| | - Michael R. Erdos
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| | - Francis S. Collins
- Molecular Genetics Section Center for Precision Health Research National Human Genome Research Institute National Institutes of Health Bethesda MD USA
| |
Collapse
|
44
|
Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, Ortega-Nogales FJ, Balabasquer M, Gonzalo P, Khiar-Fernández N, Rolas L, Barkaway A, Nourshargh S, Andrés V, Martín-Fontecha M, López-Rodríguez ML, Ortega-Gutiérrez S. Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome. ACS CENTRAL SCIENCE 2021; 7:1300-1310. [PMID: 34471675 PMCID: PMC8393201 DOI: 10.1021/acscentsci.0c01698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.
Collapse
Affiliation(s)
- Beatriz Marcos-Ramiro
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Ana Gil-Ordóñez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Nagore I. Marín-Ramos
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- CEI
Campus Moncloa, UCM-UPM and CSIC, E-28040 Madrid, Spain
| | - Francisco J. Ortega-Nogales
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Moisés Balabasquer
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Pilar Gonzalo
- Vascular
Pathophysiology Area, Centro Nacional de
Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), 28029 Madrid, Spain
| | - Nora Khiar-Fernández
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Loïc Rolas
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anna Barkaway
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sussan Nourshargh
- Centre
for Microvascular Research, William Harvey
Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vicente Andrés
- Vascular
Pathophysiology Area, Centro Nacional de
Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), 28029 Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María L. López-Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
45
|
Kim PH, Chen NY, Heizer PJ, Tu Y, Weston TA, Fong JLC, Gill NK, Rowat AC, Young SG, Fong LG. Nuclear membrane ruptures underlie the vascular pathology in a mouse model of Hutchinson-Gilford progeria syndrome. JCI Insight 2021; 6:151515. [PMID: 34423791 PMCID: PMC8409987 DOI: 10.1172/jci.insight.151515] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The mutant nuclear lamin protein (progerin) produced in Hutchinson-Gilford progeria syndrome (HGPS) results in loss of arterial smooth muscle cells (SMCs), but the mechanism has been unclear. We found that progerin induces repetitive nuclear membrane (NM) ruptures, DNA damage, and cell death in cultured SMCs. Reducing lamin B1 expression and exposing cells to mechanical stress - to mirror conditions in the aorta - triggered more frequent NM ruptures. Increasing lamin B1 protein levels had the opposite effect, reducing NM ruptures and improving cell survival. Remarkably, raising lamin B1 levels increased nuclear compliance in cells and was able to offset the increased nuclear stiffness caused by progerin. In mice, lamin B1 expression in aortic SMCs is normally very low, and in mice with a targeted HGPS mutation (LmnaG609G), levels of lamin B1 decrease further with age while progerin levels increase. Those observations suggest that NM ruptures might occur in aortic SMCs in vivo. Indeed, studies in LmnaG609G mice identified NM ruptures in aortic SMCs, along with ultrastructural abnormalities in the cell nucleus that preceded SMC loss. Our studies identify NM ruptures in SMCs as likely causes of vascular pathology in HGPS.
Collapse
Affiliation(s)
- Paul H. Kim
- Department of Medicine
- Department of Bioengineering
| | - Natalie Y. Chen
- Department of Medicine
- Department of Integrative Biology and Physiology, and
| | | | | | | | | | | | - Amy C. Rowat
- Department of Bioengineering
- Department of Integrative Biology and Physiology, and
| | - Stephen G. Young
- Department of Medicine
- Department of Human Genetics, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
46
|
Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021; 22:7190. [PMID: 34281245 PMCID: PMC8267806 DOI: 10.3390/ijms22137190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.
Collapse
Affiliation(s)
| | | | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.M.); (B.M.-R.)
| |
Collapse
|
47
|
Qiu J, Fu Y, Chen Z, Zhang L, Li L, Liang D, Wei F, Wen Z, Wang Y, Liang S. BTK Promotes Atherosclerosis by Regulating Oxidative Stress, Mitochondrial Injury, and ER Stress of Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9972413. [PMID: 34136067 PMCID: PMC8175170 DOI: 10.1155/2021/9972413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic metabolic disease in arterial walls, characterized by lipid deposition and persistent aseptic inflammation. AS is regarded as the basis of a variety of cardiovascular and cerebrovascular diseases. It is widely acknowledged that macrophages would become foam cells after internalizing lipoprotein particles, which is an initial factor in atherogenesis. Here, we showed the influences of Bruton's tyrosine kinase (BTK) in macrophage-mediated AS and how BTK regulates the inflammatory responses of macrophages in AS. Our bioinformatic results suggested that BTK was a potential hub gene, which is closely related to oxidative stress, ER stress, and inflammation in macrophage-induced AS. Moreover, we found that BTK knockdown could restrain ox-LDL-induced NK-κB signaling activation in macrophages and repressed M1 polarization. The mechanistic studies revealed that oxidative stress, mitochondrial injury, and ER stress in macrophages were also suppressed by BTK knockdown. Furthermore, we found that sh-BTK adenovirus injection could alleviate the severity of AS in ApoE-/- mice induced by a high-fat diet in vivo. Our study suggested that BTK promoted ox-LDL-induced ER stress, oxidative stress, and inflammatory responses in macrophages, and it may be a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Lisui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Ling Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yajing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| |
Collapse
|
48
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
49
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
50
|
Ji C, Yi H, Huang J, Zhang W, Zheng M. Propofol alleviates inflammation and apoptosis in HCY‑induced HUVECs by inhibiting endoplasmic reticulum stress. Mol Med Rep 2021; 23:333. [PMID: 33760174 PMCID: PMC7974316 DOI: 10.3892/mmr.2021.11972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic vascular inflammatory disease, and is associated with oxidative stress and endothelial dysfunction. Homocysteine (HCY) can cause damage to endothelial cells via the enhancement of the endoplasmic reticulum stress (ERS) pathway. Propofol has a protective effect on endothelial injury and can suppress inflammation and oxidation. The purpose of the present study was to investigate the protective effect of propofol on HCY-induced inflammation and apoptosis of human umbilical vein endothelial cells (HUVECs). HCY was used to establish the endothelial injury model. Cell Counting Kit-8 assays and flow cytometry were used to detect cell viability and apoptosis, respectively. Then, ELISA was performed to examine the expression levels of inflammatory cytokines, and the expression levels of proteins related to inflammation, apoptosis and ERS were determined via western blotting. Results showed that propofol increased cell viability, suppressed NF-κB signaling pathway activation and decreased the expression levels of inflammatory factors in HUVECs induced by HCY. Moreover, propofol could inhibit the expression of proteins involved in ERS, including ER chaperone BiP (Bip), C/EBP-homologous protein, protein kinase R-like ER kinase and inositol-requiring 1α, and reduce cell apoptosis of HCY-induced HUVECs. However, the overexpression of Bip could reactivate ERS and the NF-κB signaling pathway, as well as promote inflammation and cell apoptosis, when compared with HCY-treated groups. In conclusion, propofol can ameliorate inflammation and cell apoptosis of HUVECs induced by HCY via inhibiting ERS, which may provide a novel insight into the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cunliang Ji
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hu Yi
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jing Huang
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Wenzhong Zhang
- School of Safety Engineering, North China Institute of Science and Technology, Langfang, Hebei 065201, P.R. China
| | - Mingzhi Zheng
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|