1
|
Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L, Zanin Venturini DI, Chianese D, Santander N, Salaroglio IC, Hentschel A, Quarta E, Genova T, McKinney AA, Allocco AL, Fiorito V, Petrillo S, Ammirata G, De Giorgio F, Dennis E, Allington G, Maier F, Shoukier M, Gloning KP, Munaron L, Mussano F, Salsano E, Pareyson D, di Rocco M, Altruda F, Panagiotakos G, Kahle KT, Gressens P, Riganti C, Pinton PP, Roos A, Arnold T, Tolosano E, Chiabrando D. Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus. Cell Rep Med 2024; 5:101647. [PMID: 39019006 PMCID: PMC11293339 DOI: 10.1016/j.xcrm.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 07/19/2024]
Abstract
Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.
Collapse
Affiliation(s)
- Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Christoph Bagowski
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Livia Metani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diletta Isabella Zanin Venturini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Iris Chiara Salaroglio
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Elisa Quarta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Arpana Arjun McKinney
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Lucia Allocco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Francesco De Giorgio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felicitas Maier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | - Moneef Shoukier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maja di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Genoa, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Georgia Panagiotakos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristopher T Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Chiara Riganti
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Paolo P Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany; Brain and Mind Research Institute, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
3
|
Islam KN, Ajao A, Venkataramani K, Rivera J, Pathania S, Henke K, Siegfried KR. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet 2023; 19:e1010589. [PMID: 37552671 PMCID: PMC10437952 DOI: 10.1371/journal.pgen.1010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Anuoluwapo Ajao
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Kavita Venkataramani
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joshua Rivera
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Shailja Pathania
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kellee Renee Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Luo L, Guo Y, Chen L, Zhu J, Li C. Crosstalk between cholesterol metabolism and psoriatic inflammation. Front Immunol 2023; 14:1124786. [PMID: 37234169 PMCID: PMC10206135 DOI: 10.3389/fimmu.2023.1124786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Psoriasis is a chronic autoinflammatory skin disease associated with multiple comorbidities, with a prevalence ranging from 2 to 3% in the general population. Decades of preclinical and clinical studies have revealed that alterations in cholesterol and lipid metabolism are strongly associated with psoriasis. Cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-17), which are important in the pathogenesis of psoriasis, have been shown to affect cholesterol and lipid metabolism. Cholesterol metabolites and metabolic enzymes, on the other hand, influence not only the biofunction of keratinocytes (a primary type of cell in the epidermis) in psoriasis, but also the immune response and inflammation. However, the relationship between cholesterol metabolism and psoriasis has not been thoroughly reviewed. This review mainly focuses on cholesterol metabolism disturbances in psoriasis and their crosstalk with psoriatic inflammation.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lihao Chen
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Yang X, Guo T, Du Z, Qin X, Wang K, Kebreab E, Wang D, Lyu L. Protective effects of MNQ against Lipopolysaccharide-induced inflammatory damage in bovine ovarian follicular granulosa cells in Vitro. J Steroid Biochem Mol Biol 2023; 230:106274. [PMID: 36813140 DOI: 10.1016/j.jsbmb.2023.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Inflammation of the reproductive tract in dairy cows lead to functional disorders of follicular granulosa cells (GCs) in mammalian ovaries resulting in infertility and serious losses to the livestock industry. Lipopolysaccharide (LPS) can induce an inflammatory response in follicular granulosa cells in vitro. The aim of this study was to investigate the cellular regulatory mechanism of MNQ (2-methoxy-1,4-naphthoquinone) on eliminating the inflammatory response and restoring normal functions for bovine ovarian follicular GCs cultured in vitro exposed to LPS. The cytotoxicity of MNQ and LPS on GCs were detected by MTT method to determine the safe concentration. The relative expression of inflammatory factors and steroid synthesis-related genes were detected by qRT-PCR. The concentration of steroid hormones in the culture broth were detected by ELISA. Differential gene expressions were analyzed by RNA-seq. There were no toxic effects on GCs at MNQ and LPS concentrations of less than 3 µM and 10 µg/mL, respectively and treated in 12 h. The relative expressions of IL-6, IL-1β and TNF-α were significantly higher in the LPS group compared with the CK group when GCs cultured in vitro were treated with the above concentrations and times (P < 0.05), but significantly lower in the MNQ+LPS group compared with the LPS group (P < 0.05). The levels of E2 and P4 in the culture solution were significantly reduced in the LPS group compared to the CK group (P < 0.05), and restored in the MNQ+LPS group. The relative expressions of CYP19A1, CYP11A1, 3β-HSD, and STAR were significantly decreased in the LPS group compared with the CK group (P < 0.05), while the MNQ+LPS group also recovered to some extent. There were 407 differential genes shared by LPS vs CK and MNQ+LPS vs LPS by RNA-seq analysis, which were mainly enriched in steroid biosynthesis and TNF signaling pathway. We screened 10 genes for analysis and found consistent results for RNA-seq and qRT-PCR. In this study, we confirmed the protective effect of MNQ, an extract from Impatiens balsamina L, on LPS-induced inflammatory responses in bovine follicular granulosa cells in vitro as well as functional damage, and acted through steroid biosynthesis and TNF signaling pathways.
Collapse
Affiliation(s)
- Xiaofeng Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Tong Guo
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhangsheng Du
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowei Qin
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Kai Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ermias Kebreab
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
7
|
Salaroglio IC, Belisario DC, Akman M, La Vecchia S, Godel M, Anobile DP, Ortone G, Digiovanni S, Fontana S, Costamagna C, Rubinstein M, Kopecka J, Riganti C. Mitochondrial ROS drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. J Exp Clin Cancer Res 2022; 41:243. [PMID: 35953814 PMCID: PMC9373288 DOI: 10.1186/s13046-022-02447-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Solid tumors subjected to intermittent hypoxia are characterized by resistance to chemotherapy and immune-killing by effector T-lymphocytes, particularly tumor-infiltrating Vγ9Vδ2 T-lymphocytes. The molecular circuitries determining this double resistance are not known. Methods We analyzed a panel of 28 human non-small cell lung cancer (NSCLC) lines, using an in vitro system simulating continuous and intermittent hypoxia. Chemosensitivity to cisplatin and docetaxel was evaluated by chemiluminescence, ex vivo Vγ9Vδ2 T-lymphocyte expansion and immune-killing by flow cytometry. Targeted transcriptomics identified efflux transporters and nuclear factors involved in this chemo-immuno-resistance. The molecular mechanism linking Hypoxia-inducible factor-1α (HIF-1α), CCAAT/Enhancer Binding Protein-β (C/EBP-β) isoforms LAP and LIP, ABCB1, ABCC1 and ABCA1 transporters were evaluated by immunoblotting, RT-PCR, RNA-IP, ChIP. Oxidative phosphorylation, mitochondrial ATP, ROS, depolarization, O2 consumption were monitored by spectrophotometer and electronic sensors. The role of ROS/HIF-1α/LAP axis was validated in knocked-out or overexpressing cells, and in humanized (Hu-CD34+NSG) mice bearing LAP-overexpressing tumors. The clinical meaning of LAP was assessed in 60 NSCLC patients prospectively enrolled, treated with chemotherapy. Results By up-regulating ABCB1 and ABCC1, and down-regulating ABCA1, intermittent hypoxia induced a stronger chemo-immuno-resistance than continuous hypoxia in NSCLC cells. Intermittent hypoxia impaired the electron transport chain and reduced O2 consumption, increasing mitochondrial ROS that favor the stabilization of C/EBP-β mRNA mediated by HIF-1α. HIF-1α/C/EBP-β mRNA binding increases the splicing of C/EBP-β toward the production of LAP isoform that transcriptionally induces ABCB1 and ABCC1, promoting the efflux of cisplatin and docetaxel. LAP also decreases ABCA1, limiting the efflux of isopentenyl pyrophosphate, i.e. the endogenous activator of Vγ9Vδ2 T-cells, and reducing the immune-killing. In NSCLC patients subjected to cisplatin-based chemotherapy, C/EBP-β LAP was abundant in hypoxic tumors and was associated with lower response to treatment and survival. LAP-overexpressing tumors in Hu-CD34+NSG mice recapitulated the patients’ chemo-immuno-resistant phenotype. Interestingly, the ROS scavenger mitoquinol chemo-immuno-sensitized immuno-xenografts, by disrupting the ROS/HIF-1α/LAP cascade. Conclusions The impairment of mitochondrial metabolism induced by intermittent hypoxia increases the ROS-dependent stabilization of HIF-1α/LAP complex in NSCLC, producing chemo-immuno-resistance. Clinically used mitochondrial ROS scavengers may counteract such double resistance. Moreover, we suggest C/EBP-β LAP as a new predictive and prognostic factor in NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02447-6.
Collapse
|
8
|
Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/Differentiation Program. Front Oncol 2021; 11:707066. [PMID: 34504787 PMCID: PMC8421684 DOI: 10.3389/fonc.2021.707066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from lysosomes and causing inappropriate proteolysis. Our study found that CSTB was downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells compared with normal controls. Immunohistochemical analysis showed that CSTB was mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity was related to the grade classification. A correlation analysis between CSTB and clinical prognosis was performed using gene expression data and clinical information acquired from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of CSTB had shorter disease-free survival times and poorer clinicopathological features (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed based on the TCGA data to explore potential mechanisms, and CSTB appeared to correlate with squamous epithelial proliferation-differentiation processes, such as epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module most associated with CSTB expression (i.e., the brown module) was also the one most associated with grade classification. Upregulation of CSTB promoted the expression levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for differentiation and keratinization in vitro. Gene expression profile data of the overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq) technology. By comparing the GSEA enrichment results of RNA-seq data (from the OSCC models overexpressing CSTB) and existing public database data, three gene sets (i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the data from both sources. Overall, our study shows that CSTB is downregulated in OSCC and might regulate the malignant characteristics of OSCC via the epithelial proliferation/differentiation program.
Collapse
Affiliation(s)
- Tian-Tian Xu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xin-Hong Wang
- Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lu-Xi Yang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Luo
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|