1
|
Osnaya VG, Gómez-Romero L, Moreno-Hagelsieb G, Hernández G. AUGcontext DB: a comprehensive catalog of the mRNA AUG initiator codon context across eukaryotes. RNA Biol 2025; 22:1-5. [PMID: 39936323 PMCID: PMC11834415 DOI: 10.1080/15476286.2025.2465196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.
Collapse
Affiliation(s)
- Vincent G. Osnaya
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City, Mexico
| | - Laura Gómez-Romero
- Bioinformatics Department, National Institute of Genomic Medicine, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | | | - Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
2
|
Maeda N, Taylor LS, Nassar-Guifarro M, Monawar MYS, Dunn SM, Devanney NA, Li F, Johnson LA, Kayashima Y. Genomic and cellular context-dependent expression of the human ELMO1 gene transcript variants. Gene 2025; 954:149438. [PMID: 40147730 PMCID: PMC12147996 DOI: 10.1016/j.gene.2025.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Engulfment and cell motility protein 1 (Elmo1) forms a complex with Dedicator of cytokinesis (Dock) 1-5 and promotes GTP-loading of Rac1, the major agent of cell movement. While the pathophysiological roles of Elmo1 have expanded from apoptotic cell engulfment to cancer, inflammation, diabetic nephropathy and cardiomyopathy, little information is available on its transcriptional regulation. Genome databases indicate at least five transcript variants for human ELMO1: the variants V1, V4 and V5 encode a full-length 727 aa protein, whereas V2 and V3 encode a truncated Elmo1 of 247 aa that lacks N-terminal domains. A CpG island promoter drives the major V1 transcript, while an LTR12 drives V5 in intron 1, one of the three LTR12 family of retroviral elements in ELMO1. In contrast, the short-forms V2 and V3 contain CAT-TATA type promoters. Examination of various cell lines by RT-qPCR designed to detect individual transcripts showed that basal transcriptions of the variants were very low to undetectable in cultured cells. However, treatments with Trichostatin A, a histone deacetylase inhibitor, or with 5-Aza-2'-deoxycytidine, a DNA methyl transferase inhibitor, significantly upregulated V1, V4, V5 and V2 expression in a cell line-specific manner, indicating that these transcripts are epigenetically regulated. Another LTR12D transposon in intron 13 also drives an unannotated transcript stimulated by these inhibitors. Finally, we found the levels of V2 transcripts in the mouse and human brain exceed those of V1, suggesting a brain-specific regulation and role of V2 protein.
Collapse
Affiliation(s)
- Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren S Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melanie Nassar-Guifarro
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohamed-Yahia S Monawar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sierra M Dunn
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas A Devanney
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lance A Johnson
- Department of Physiology and Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Zhang K, Wang Y, Jiang S, Li Y, Xiang P, Zhang Y, Chen Y, Chen M, Su W, Liu L, Li S. dsDAP: An efficient method for high-abundance DNA-encoded library construction in mammalian cells. Int J Biol Macromol 2025; 298:140089. [PMID: 39842606 DOI: 10.1016/j.ijbiomac.2025.140089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
DNA-encoded libraries are invaluable tools for high-throughput screening and functional genomics studies. However, constructing high-abundance libraries in mammalian cells remains challenging. Here, we present dsDNA-assembly-PCR (dsDAP), a novel Gibson-assembly-PCR strategy for creating DNA-encoded libraries, offering improved flexibility and efficiency over previous methods. We demonstrated this approach by investigating the impact of translation initiation sequences (TIS) on protein expression in HEK293T cells. Both CRISPR-Cas9 and piggyBac systems were employed for genomic integration, allowing comparison of different integration methods. Our results confirmed the importance of specific nucleotides in the TIS region, particularly the preference for adenine at the -3 position in high-expression sequences. We also explored the effects of library dilution on genotype-phenotype correlations. This Gibson-assembly-PCR strategy overcomes limitations of existing methods, such as restriction enzyme dependencies, and provides a versatile tool for constructing high-abundance libraries in mammalian cells. Our approach has broad applications in functional genomics, drug discovery, and the study of gene regulation.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Liren Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
4
|
Martí-Gómez C, Zhou J, Chen WC, Kinney JB, McCandlish DM. Inference and visualization of complex genotype-phenotype maps with gpmap-tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642267. [PMID: 40161830 PMCID: PMC11952336 DOI: 10.1101/2025.03.09.642267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Multiplex assays of variant effect (MAVEs) allow the functional characterization of an unprecedented number of sequence variants in both gene regulatory regions and protein coding sequences. This has enabled the study of nearly complete combinatorial libraries of mutational variants and revealed the widespread influence of higher-order genetic interactions that arise when multiple mutations are combined. However, the lack of appropriate tools for exploratory analysis of this high-dimensional data limits our overall understanding of the main qualitative properties of complex genotype-phenotype maps. To fill this gap, we have developed gpmap-tools (https://github.com/cmarti/gpmap-tools), a python library that integrates Gaussian process models for inference, phenotypic imputation, and error estimation from incomplete and noisy MAVE data and collections of natural sequences, together with methods for summarizing patterns of higher-order epistasis and non-linear dimensionality reduction techniques that allow visualization of genotype-phenotype maps containing up to millions of genotypes. Here, we used gpmap-tools to study the genotype-phenotype map of the Shine-Dalgarno sequence, a motif that modulates binding of the 16S rRNA to the 5' untranslated region (UTR) of mRNAs through base pair complementarity during translation initiation in prokaryotes. We inferred full combinatorial landscapes containing 262,144 different sequences from the sequences of 5,311 5'UTRs in the E. coli genome and from experimental MAVE data. Visualizations of the inferred landscapes were largely consistent with each other, and unveiled a simple molecular mechanism underlying the highly epistatic genotype-phenotype map of the Shine-Dalgarno sequence.
Collapse
Affiliation(s)
- Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - Juannan Zhou
- Department of Biology, University of Florida, Gainesville, FL, 32611
| | - Wei-Chia Chen
- Department of Physics, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| |
Collapse
|
5
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
6
|
Andreev DE, Shatsky IN. A Portrait of Three Mammalian Bicistronic mRNA Transcripts, Derived from the Genes ASNSD1, SLC35A4, and MIEF1. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:32-43. [PMID: 40058972 DOI: 10.1134/s0006297924603630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 05/13/2025]
Abstract
Recent advances in functional genomics have allowed identification of thousands of translated short open reading frames (sORFs) in the 5' leaders of mammalian mRNA transcripts. While most sORFs are unlikely to encode functional proteins, a small number have been shown to have evolved as protein-coding genes. As a result, dozens of these sORFs have already been annotated as protein-coding ORFs. mRNAs that contain both a protein-coding sORF and an annotated coding sequence (CDS) are referred to as bicistronic transcripts. In this study, we focus on three genes - ASNSD1, SLC35A4, and MIEF1 - which give rise to bicistronic mRNAs. We discuss recent findings regarding functional investigation of the corresponding polypeptide products, as well as how their translation is regulated, and how this unusual genetic arrangement may have evolved.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
7
|
Strayer EC, Krishna S, Lee H, Vejnar C, Neuenkirchen N, Gupta A, Beaudoin JD, Giraldez AJ. NaP-TRAP reveals the regulatory grammar in 5'UTR-mediated translation regulation during zebrafish development. Nat Commun 2024; 15:10898. [PMID: 39738051 PMCID: PMC11685710 DOI: 10.1038/s41467-024-55274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP). NaP-TRAP measures translation in a frame-specific manner through the immunocapture of epitope tagged nascent peptides of reporter mRNAs. We benchmark NaP-TRAP to polysome profiling and use it to quantify Kozak strength and the regulatory landscapes of 5' UTRs in the developing zebrafish embryo and in human cells. Through this approach we identified general and developmentally dynamic cis-regulatory elements, as well as potential trans-acting proteins. We find that U-rich motifs are general enhancers, and upstream ORFs and GC-rich motifs are global repressors of translation. We also observe a translational switch during the maternal-to-zygotic transition, where C-rich motifs shift from repressors to prominent activators of translation. Conversely, we show that microRNA sites in the 5' UTR repress translation following the zygotic expression of miR-430. Together these results demonstrate that NaP-TRAP is a versatile, accessible, and powerful method to decode the regulatory functions of UTRs across different systems.
Collapse
Affiliation(s)
- Ethan C Strayer
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Srikar Krishna
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Haejeong Lee
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Amit Gupta
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
- Yale Stem Cell Center, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
| |
Collapse
|
8
|
Yordanova MM, Slattery C, Baranova-Gurvich M, Engels M, Ting O, Świrski M, Tierney JAS, Tjeldnes H, Mudge J, Loughran G, Andreev DE, Baranov PV. Triple coding in human SRD5A1 mRNA. RESEARCH SQUARE 2024:rs.3.rs-5390104. [PMID: 39764142 PMCID: PMC11702784 DOI: 10.21203/rs.3.rs-5390104/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far. Results We report simultaneous translation of mRNA transcripts derived from SRD5A1 locus in all three reading frames that result in the synthesis of long proteins. This occurs due to initiation at three nearby AUG codons occurring in all three-reading frame. Only one of the three proteoforms contains the conserved catalytical domain of SDRD5A1 produced either from the second or the third AUG codon depending on the transcript. Paradoxically, ribosome profiling data and expression reporters indicate that the most efficient translation produces catalytically inactive proteoforms. While phylogenetic analysis suggests that the long triple decoding region is specific to primates, occurrence of nearby AUGs in all three reading frames is ancestral to placental mammals. This suggests that their evolutionary significance belongs to regulation of translation rather than biological role of their products. By analysing multiple publicly available ribosome profiling data and with gene expression assays carried out in different cellular environments, we show that relative expression of these proteoforms is mutually dependent and vary across environments supporting this conjecture. A remarkable feature of triple decoding is its resistance to indel mutations with apparent implications to clinical interpretation of genomic variants. Conclusion We argue for the importance of identification, characterisation and annotation of productive RNA translation irrespective of the presumed biological roles of the products of this translation.
Collapse
|
9
|
Hang R, Li H, Liu W, Wang R, Hu H, Chen M, You C, Chen X. HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat Commun 2024; 15:9878. [PMID: 39543117 PMCID: PMC11564774 DOI: 10.1038/s41467-024-54194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies. We discovered that the most prevalent Kozak motif is associated with high I-E transition efficiency in Arabidopsis, rice, and wheat, thus implicating the potential of the Kozak motif in facilitating the I-E transition. Indeed, the effects of Kozak motifs in promoting translation depend on HOT3/eIF5B1 in Arabidopsis. HOT3 preferentially promotes the translation of photosynthesis-associated nuclear genes in a Kozak motif-dependent manner, which explains the chloroplast defects and reduced photosynthesis activity of hot3 mutants. Our study linked the Kozak motif to eIF5B-mediated I-E transition during translation and uncovered the function of HOT3 in the cytoplasmic translational control of chloroplast biogenesis and photosynthesis.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Hao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wenjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Runyu Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chenjiang You
- College of Life Sciences, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
10
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Lefèvre C, Cook GM, Dinan AM, Torii S, Stewart H, Gibbons G, Nicholson AS, Echavarría-Consuegra L, Meredith LW, Lulla V, McGovern N, Kenyon JC, Goodfellow I, Deane JE, Graham SC, Lakatos A, Lambrechts L, Brierley I, Irigoyen N. Zika viruses encode 5' upstream open reading frames affecting infection of human brain cells. Nat Commun 2024; 15:8822. [PMID: 39394194 PMCID: PMC11470053 DOI: 10.1038/s41467-024-53085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Zika virus (ZIKV), an emerging mosquito-borne flavivirus, is associated with congenital neurological complications. Here, we investigate potential pathological correlates of virus gene expression in representative ZIKV strains through RNA sequencing and ribosome profiling. In addition to the single long polyprotein found in all flaviviruses, we identify the translation of unrecognised upstream open reading frames (uORFs) in the genomic 5' region. In Asian/American strains, ribosomes translate uORF1 and uORF2, whereas in African strains, the two uORFs are fused into one (African uORF). We use reverse genetics to examine the impact on ZIKV fitness of different uORFs mutant viruses. We find that expression of the African uORF and the Asian/American uORF1 modulates virus growth and tropism in human cortical neurons and cerebral organoids, suggesting a potential role in neurotropism. Although the uORFs are expressed in mosquito cells, we do not see a measurable effect on transmission by the mosquito vector in vivo. The discovery of ZIKV uORFs sheds new light on the infection of the human brain cells by this virus and raises the question of their existence in other neurotropic flaviviruses.
Collapse
Affiliation(s)
- Charlotte Lefèvre
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georgia M Cook
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Shiho Torii
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - George Gibbons
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Alex S Nicholson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Luke W Meredith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Valeria Lulla
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Naomi McGovern
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Julia C Kenyon
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - András Lakatos
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Corrigendum to "Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control" [New Biotechnol 79 (2024) 1-19]. N Biotechnol 2024; 84:30-36. [PMID: 39332183 DOI: 10.1016/j.nbt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
13
|
Li ZM, Lin Y, Luo CH, Sun QL, Mi CL, Wang XY, Wang TY. Optimization of extended Kozak elements enhances recombinant proteins expression in CHO cells. J Biotechnol 2024; 392:96-102. [PMID: 38960098 DOI: 10.1016/j.jbiotec.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, -10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; College of Science and Technology, Nanchang University, Jiujiang 332020, China
| | - Yan Lin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Cong-Hui Luo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; School of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
14
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. J Biol Chem 2024; 300:107560. [PMID: 39002681 PMCID: PMC11342779 DOI: 10.1016/j.jbc.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| |
Collapse
|
15
|
Iyengar BR, Grandchamp A, Bornberg-Bauer E. How antisense transcripts can evolve to encode novel proteins. Nat Commun 2024; 15:6187. [PMID: 39043684 PMCID: PMC11266595 DOI: 10.1038/s41467-024-50550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs. In this study, we investigate how the evolution an ORF could be constrained by its overlap with an existing ORF in three different reading frames. Using a combination of mathematical modeling and genome/transcriptome data analysis in two different model organisms, we show that antisense overlap can increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, especially in one of the three reading frames. In addition to rationalising the repeatedly reported prevalence of de novo emerged genes in antisense transcripts, our work also provides a generic modeling and an analytical framework that can be used to understand evolution of antisense genes.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany.
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Aix-Marseille Université, INSERM, TAGC, Marseille, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, Germany
| |
Collapse
|
16
|
Biziaev N, Shuvalov A, Salman A, Egorova T, Shuvalova E, Alkalaeva E. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 2024; 52:7792-7808. [PMID: 38874498 PMCID: PMC11260481 DOI: 10.1093/nar/gkae510] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The poly(A) tail plays an important role in maintaining mRNA stability and influences translation efficiency via binding with PABP. However, the impact of poly(A) tail length on mRNA translation remains incompletely understood. This study explores the effects of poly(A) tail length on human translation. We determined the translation rates in cell lysates using mRNAs with different poly(A) tails. Cap-dependent translation was stimulated by the poly(A) tail, however, it was largely independent of poly(A) tail length, with an exception observed in the case of the 75 nt poly(A) tail. Conversely, cap-independent translation displayed a positive correlation with poly(A) tail length. Examination of translation stages uncovered the dependence of initiation and termination on the presence of the poly(A) tail, but the efficiency of initiation remained unaffected by poly(A) tail extension. Further study unveiled that increased binding of eRFs to the ribosome with the poly(A) tail extension induced more efficient hydrolysis of peptidyl-tRNA. Building upon these findings, we propose a crucial role for the 75 nt poly(A) tail in orchestrating the formation of a double closed-loop mRNA structure within human cells which couples the initiation and termination phases of translation.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Duan M, Dev I, Lu A, Ayrapetyan G, You MY, Shapiro MG. SEMPER: Stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes for compact, ratio-tunable multi-gene expression. Cell Syst 2024; 15:597-609.e4. [PMID: 38971149 PMCID: PMC11298409 DOI: 10.1016/j.cels.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Mengtong Duan
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Ishaan Dev
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Andrew Lu
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; UCLA-Caltech Medical Scientist Training Program, UCLA, Los Angeles, CA 90095, USA
| | - Goar Ayrapetyan
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Mei Yi You
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA; Andrew and Peggy Cherng Department of Medical Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
18
|
Akirtava C, May G, McManus CJ. Deciphering the cis-regulatory landscape of natural yeast Transcript Leaders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601937. [PMID: 39005336 PMCID: PMC11245039 DOI: 10.1101/2024.07.03.601937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-regulatory features that influence translation and mRNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts and uAUGs explained half of the variance in expression across transcript leaders, the addition of other features explained ~70% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- RNA Bioscience Initiative, University of Colorado - Anshutz, Aurora, CO, 80045, USA
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
19
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Wieder N, D'Souza EN, Martin-Geary AC, Lassen FH, Talbot-Martin J, Fernandes M, Chothani SP, Rackham OJL, Schafer S, Aspden JL, MacArthur DG, Davies RW, Whiffin N. Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes. Genome Biol 2024; 25:111. [PMID: 38685090 PMCID: PMC11057154 DOI: 10.1186/s13059-024-03248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5'UTRs, correlates with gene dosage sensitivity. RESULTS We investigate 5'UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5'UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5'UTR length and complexity. Genes that are most intolerant to LoF have longer 5'UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. CONCLUSIONS Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them.
Collapse
Affiliation(s)
- Nechama Wieder
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frederik H Lassen
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Maria Fernandes
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Robert W Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Wu TY, Li YR, Chang KJ, Fang JC, Urano D, Liu MJ. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved cis-regulatory codes in eukaryotes. Genome Res 2024; 34:272-285. [PMID: 38479836 PMCID: PMC10984385 DOI: 10.1101/gr.278100.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Kai-Jyun Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
22
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Hernández G, García A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M, Moreno-Hagelsieb G, Montiel-Dávalos A, Lasko P, Sonenberg N. Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes. Nucleic Acids Res 2024; 52:1064-1079. [PMID: 38038264 PMCID: PMC10853783 DOI: 10.1093/nar/gkad1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University. 75 University Ave. W, Waterloo, ON N2L 3C5, Canada
| | - Angélica Montiel-Dávalos
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University. Montreal, QC H3G 0B1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| |
Collapse
|
24
|
Monteagudo C, Pérez-Debén S, Pérez-Roda I, Giner F, Machado I. CD34-negative, STAT6-negative, Low-grade, Low-risk Solitary Fibrous Tumor. Am J Surg Pathol 2024; 48:247-249. [PMID: 37345671 DOI: 10.1097/pas.0000000000002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Carlos Monteagudo
- Department of Pathology, University Clinic Hospital, Valencia - INCLIVA Biomedical Research Institute
- Department of Pathology, University of Valencia
| | - Silvia Pérez-Debén
- Department of Pathology, University Clinic Hospital, Valencia - INCLIVA Biomedical Research Institute
| | | | - Francisco Giner
- Department of Pathology, University of Valencia
- Department of Pathology, La Fe University and Polytechnic Hospital
| | - Isidro Machado
- Department of Pathology, University of Valencia
- Department of Pathology, IVO Foundation, Valencia, Spain
| |
Collapse
|
25
|
Di Fraia D, Marino A, Lee JH, Kelmer Sacramento E, Baumgart M, Bagnoli S, Tomaz da Silva P, Kumar Sahu A, Siano G, Tiessen M, Terzibasi-Tozzini E, Gagneur J, Frydman J, Cellerino A, Ori A. Impaired biogenesis of basic proteins impacts multiple hallmarks of the aging brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.20.549210. [PMID: 38260253 PMCID: PMC10802395 DOI: 10.1101/2023.07.20.549210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.
Collapse
Affiliation(s)
- Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Antonio Marino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Amit Kumar Sahu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Max Tiessen
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alessandro Cellerino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
26
|
Zheng W, Fong JHC, Wan YK, Chu AHY, Huang Y, Wong ASL, Ho JWK. Discovery of regulatory motifs in 5' untranslated regions using interpretable multi-task learning models. Cell Syst 2023; 14:1103-1112.e6. [PMID: 38016465 DOI: 10.1016/j.cels.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
The sequence in the 5' untranslated regions (UTRs) is known to affect mRNA translation rates. However, the underlying regulatory grammar remains elusive. Here, we propose MTtrans, a multi-task translation rate predictor capable of learning common sequence patterns from datasets across various experimental techniques. The core premise is that common motifs are more likely to be genuinely involved in translation control. MTtrans outperforms existing methods in both accuracy and the ability to capture transferable motifs across species, highlighting its strength in identifying evolutionarily conserved sequence motifs. Our independent fluorescence-activated cell sorting coupled with deep sequencing (FACS-seq) experiment validates the impact of most motifs identified by MTtrans. Additionally, we introduce "GRU-rewiring," a technique to interpret the hidden states of the recurrent units. Gated recurrent unit (GRU)-rewiring allows us to identify regulatory element-enriched positions and examine the local effects of 5' UTR mutations. MTtrans is a powerful tool for deciphering the translation regulatory motifs.
Collapse
Affiliation(s)
- Weizhong Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John H C Fong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuk Kei Wan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Athena H Y Chu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China; Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Alan S L Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Data Discovery for Health (D24H) Limited, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
27
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572439. [PMID: 38187635 PMCID: PMC10769280 DOI: 10.1101/2023.12.19.572439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region (5'UTR). This exon is homologous to exon 2 in non-primate species, but contains a start codon that would yield an upstream open reading frame (uORF) with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
28
|
Shestakova ED, Tumbinsky RS, Andreev DE, Rozov FN, Shatsky IN, Terenin IM. The Roles of eIF4G2 in Leaky Scanning and Reinitiation on the Human Dual-Coding POLG mRNA. Int J Mol Sci 2023; 24:17149. [PMID: 38138978 PMCID: PMC10742948 DOI: 10.3390/ijms242417149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Upstream open reading frames (uORFs) are a frequent feature of eukaryotic mRNAs. Upstream ORFs govern main ORF translation in a variety of ways, but, in a nutshell, they either filter out scanning ribosomes or allow downstream translation initiation via leaky scanning or reinitiation. Previous reports concurred that eIF4G2, a long-known but insufficiently studied eIF4G1 homologue, can rescue the downstream translation, but disagreed on whether it is leaky scanning or reinitiation that eIF4G2 promotes. Here, we investigated a unique human mRNA that encodes two highly conserved proteins (POLGARF with unknown function and POLG, the catalytic subunit of the mitochondrial DNA polymerase) in overlapping reading frames downstream of a regulatory uORF. We show that the uORF renders the translation of both POLGARF and POLG mRNAs reliant on eIF4G2. Mechanistically, eIF4G2 enhances both leaky scanning and reinitiation, and it appears that ribosomes can acquire eIF4G2 during the early steps of reinitiation. This emphasizes the role of eIF4G2 as a multifunctional scanning guardian that replaces eIF4G1 to facilitate ribosome movement but not ribosome attachment to an mRNA.
Collapse
Affiliation(s)
- Ekaterina D. Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia (R.S.T.)
| | - Roman S. Tumbinsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia (R.S.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
| | - Dmitri E. Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia
| | - Fedor N. Rozov
- Department of Biochemistry, School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
| | - Ilya M. Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
- Translational Medicine Research Center, Sirius University of Science and Technology, Olimpiyskiy ave. b.1, 354349 Sochi, Russia
| |
Collapse
|
29
|
Feng H, Li F, Wang T, Xing XH, Zeng AP, Zhang C. Deep-learning-assisted Sort-Seq enables high-throughput profiling of gene expression characteristics with high precision. SCIENCE ADVANCES 2023; 9:eadg5296. [PMID: 37939173 PMCID: PMC10631719 DOI: 10.1126/sciadv.adg5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Owing to the nondeterministic and nonlinear nature of gene expression, the steady-state intracellular protein abundance of a clonal population forms a distribution. The characteristics of this distribution, including expression strength and noise, are closely related to cellular behavior. However, quantitative description of these characteristics has so far relied on arrayed methods, which are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of expression properties with high precision. We demonstrated the validity of dSort-Seq for large-scale assaying of the dose-response relationships of biosensors. In addition, we comprehensively investigated the contribution of transcription and translation to noise production in Escherichia coli, from which we found that the expression noise is strongly coupled with the mean expression level. We also found that the transcriptional interference caused by overlapping RpoD-binding sites contributes to noise production, which suggested the existence of a simple and feasible noise control strategy in E. coli.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianmin Wang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin-hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - An-ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. Nat Struct Mol Biol 2023; 30:1816-1825. [PMID: 37957305 DOI: 10.1038/s41594-023-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Capponi S, Daniels KG. Harnessing the power of artificial intelligence to advance cell therapy. Immunol Rev 2023; 320:147-165. [PMID: 37415280 DOI: 10.1111/imr.13236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Cell therapies are powerful technologies in which human cells are reprogrammed for therapeutic applications such as killing cancer cells or replacing defective cells. The technologies underlying cell therapies are increasing in effectiveness and complexity, making rational engineering of cell therapies more difficult. Creating the next generation of cell therapies will require improved experimental approaches and predictive models. Artificial intelligence (AI) and machine learning (ML) methods have revolutionized several fields in biology including genome annotation, protein structure prediction, and enzyme design. In this review, we discuss the potential of combining experimental library screens and AI to build predictive models for the development of modular cell therapy technologies. Advances in DNA synthesis and high-throughput screening techniques enable the construction and screening of libraries of modular cell therapy constructs. AI and ML models trained on this screening data can accelerate the development of cell therapies by generating predictive models, design rules, and improved designs.
Collapse
Affiliation(s)
- Sara Capponi
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, California, USA
- Center for Cellular Construction, San Francisco, California, USA
| | - Kyle G Daniels
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
32
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
33
|
Kondratov O, Zolotukhin S. Exploring the Comprehensive Kozak Sequence Landscape for AAV Production in Sf9 System. Viruses 2023; 15:1983. [PMID: 37896760 PMCID: PMC10612025 DOI: 10.3390/v15101983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The widespread successful use of recombinant Adeno-associated virus (rAAV) in gene therapy has driven the demand for scale-up manufacturing methods of vectors with optimized yield and transduction efficiency. The Baculovirus/Sf9 system is a promising platform for high yield production; however, a major drawback to using an invertebrate cell line compared to a mammalian system is a generally altered AAV capsid stoichiometry resulting in lower biological potency. Here, we introduce a term of the structural and biological "fitness" of an AAV capsid as a function of two interdependent parameters: (1) packaging efficiency (yield), and (2) transduction efficiency (infectivity). Both parameters are critically dependent on AAV capsid structural proteins VP1/2/3 stoichiometry. To identify an optimal AAV capsid composition, we developed a novel Directed Evolution (DE) protocol for assessing the structural and biological fitness of Sf9-manufactured rAAV for any given serotype. The approach involves the packaging of a combinatorial capsid library in insect Sf9 cells, followed by a library screening for high infectivity in human Cre-recombinase-expressing C12 cells. One single DE selection round, complemented by Next-Generation Sequencing (NGS) and guided by in silico analysis, identifies a small subset of VP1 translation initiation sites (known as Kozak sequence) encoding "fit" AAV capsids characterized by a high production yield and superior transduction efficiencies.
Collapse
Affiliation(s)
- Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | |
Collapse
|
34
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
35
|
Wang Y, Zhang K, Zhao Y, Li Y, Su W, Li S. Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries. ACS Synth Biol 2023; 12:1874-1888. [PMID: 37315219 DOI: 10.1021/acssynbio.3c00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA-encoded peptide/protein libraries are the starting point for protein evolutionary modification and functional peptide/antibody selection. Different display technologies, protein directed evolution, and deep mutational scanning (DMS) experiments employ DNA-encoded libraries to provide sequence variations for downstream affinity- or function-based selections. Mammalian cells promise the inherent post-translational modification and near-to-natural conformation of exogenously expressed mammalian proteins and thus are the best platform for studying transmembrane proteins or human disease-related proteins. However, due to the current technical bottlenecks of constructing mammalian cell-based large size DNA-encoded libraries, the advantages of mammalian cells as screening platforms have not been fully exploited. In this review, we summarize the current efforts in constructing DNA-encoded libraries in mammalian cells and the existing applications of these libraries in different fields.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
36
|
O'Connell RW, Rai K, Piepergerdes TC, Wang Y, Samra KD, Wilson JA, Lin S, Zhang TH, Ramos E, Sun A, Kille B, Curry KD, Rocks JW, Treangen TJ, Mehta P, Bashor CJ. Ultra-high throughput mapping of genetic design space. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532704. [PMID: 36993481 PMCID: PMC10055055 DOI: 10.1101/2023.03.16.532704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.
Collapse
|
37
|
Nicolle R, Altin N, Siquier-Pernet K, Salignac S, Blanc P, Munnich A, Bole-Feysot C, Malan V, Caron B, Nitschké P, Desguerre I, Boddaert N, Rio M, Rausell A, Cantagrel V. A non-coding variant in the Kozak sequence of RARS2 strongly decreases protein levels and causes pontocerebellar hypoplasia. BMC Med Genomics 2023; 16:143. [PMID: 37344844 DOI: 10.1186/s12920-023-01582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Bi-allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early-onset encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant (NM_020320.3:c.-2A > G) in the promoter and 5'UTR of the RARS2 gene has been previously identified in a family with PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non-dosage-sensitive, this observation is not conclusive in regard of the pathogenicity of the variant.We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agreement with the previous study, we measured RARS2 mRNA levels in patient's fibroblasts and detected a partially preserved gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction of variants located in the translation initiation region.
Collapse
Affiliation(s)
- Romain Nicolle
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Nami Altin
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Karine Siquier-Pernet
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Sherlina Salignac
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
| | - Pierre Blanc
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Arnold Munnich
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Christine Bole-Feysot
- Genomics Platform, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Valérie Malan
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Barthélémy Caron
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
| | - Patrick Nitschké
- Bioinformatics Core Facility, Université Paris Cité, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
| | - Isabelle Desguerre
- Département de Neurologie Pédiatrique, AP-HP, Necker Hospital for Sick Children, 75015, Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, AP-HP, Necker Hospital for Sick Children and Université Paris Cité, INSERM UMR 1163 and INSERM U1299, Imagine Institute, Paris, 75015, France
| | - Marlène Rio
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Antonio Rausell
- Clinical Bioinformatics Laboratory, Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, 75015, France
- Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, Paris, 75015, France
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France.
| |
Collapse
|
38
|
Di Blasi R, Pisani M, Tedeschi F, Marbiah MM, Polizzi K, Furini S, Siciliano V, Ceroni F. Resource-aware construct design in mammalian cells. Nat Commun 2023; 14:3576. [PMID: 37328476 PMCID: PMC10275982 DOI: 10.1038/s41467-023-39252-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Resource competition can be the cause of unintended coupling between co-expressed genetic constructs. Here we report the quantification of the resource load imposed by different mammalian genetic components and identify construct designs with increased performance and reduced resource footprint. We use these to generate improved synthetic circuits and optimise the co-expression of transfected cassettes, shedding light on how this can be useful for bioproduction and biotherapeutic applications. This work provides the scientific community with a framework to consider resource demand when designing mammalian constructs to achieve robust and optimised gene expression.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Mara Pisani
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- Open University affiliated centre, Milton Keynes, UK
| | - Fabiana Tedeschi
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- University of Naples Federico II, Naples, Italy
| | - Masue M Marbiah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering ″Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Velia Siciliano
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
39
|
Yeckes AR, Victor AR, Zhu Z, Narayanan M, Srinivasan B, Bruce B, Kaye J. The Tox Gene Encodes Two Proteins with Distinct and Shared Roles in Gene Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1889-1898. [PMID: 37115203 PMCID: PMC10247481 DOI: 10.4049/jimmunol.2200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Here we report that the murine Tox gene encodes two proteins from a single mRNA, and we investigate the mechanism of production and function of these proteoforms. The annotated thymocyte selection-associated HMG-box protein (TOX) coding sequence is predicted to produce a 526-aa protein (TOXFL). However, Western blots reveal two bands. We found that the lower band consists of an N-terminally truncated variant of TOX (TOXΔN), whereas the slower-migrating band is TOXFL. The TOXΔN proteoform is alternatively translated via leaky ribosomal scanning from an evolutionarily conserved translation initiation site downstream of the annotated translation initiation site. When expressed exogenously from a cDNA in murine CD8 T cells or HEK cells, or endogenously from the murine Tox locus, both forms are translated, although the ratio of TOXFL/TOXΔN significantly varies with cellular context. This includes regulation of proteoform production during development of murine CD4 T cells in the thymus, where the positive selection of CD4+CD8+ cells and subsequent differentiation to CD4+CD8lo transitional and CD4SP cell subsets is associated with both an increase in total TOX protein and increased TOXΔN production relative to TOXFL. Finally, we found that sole expression of TOXFL had a greater effect on gene regulation during chronic stimulation of murine CD8 T cells in culture mimicking exhaustion than did TOXΔN, including uniquely regulated cell cycle and other genes.
Collapse
Affiliation(s)
- Alyson R. Yeckes
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
| | - Aaron R. Victor
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
- Department of Pathology and Laboratory Medicine, Los Angeles, CA 90048
| | - Zheng Zhu
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
| | - Meena Narayanan
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
| | - Bharani Srinivasan
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
| | - Bethany Bruce
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
40
|
May GE, Akirtava C, Agar-Johnson M, Micic J, Woolford J, McManus J. Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning. eLife 2023; 12:e69611. [PMID: 37227054 PMCID: PMC10259493 DOI: 10.7554/elife.69611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
Upstream open-reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.
Collapse
Affiliation(s)
- Gemma E May
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Matthew Agar-Johnson
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - John Woolford
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
- Computational Biology Department, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
41
|
Chen Y, Hu R, Li K, Zhang Y, Fu L, Zhang J, Si T. Deep Mutational Scanning of an Oxygen-Independent Fluorescent Protein CreiLOV for Comprehensive Profiling of Mutational and Epistatic Effects. ACS Synth Biol 2023; 12:1461-1473. [PMID: 37066862 PMCID: PMC10204710 DOI: 10.1021/acssynbio.2c00662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/18/2023]
Abstract
Oxygen-independent, flavin mononucleotide-based fluorescent proteins (FbFPs) are promising alternatives to green fluorescent protein in anaerobic contexts. Deep mutational scanning performs systematic profiling of protein sequence-function relationships but has not been applied to FbFPs. Focusing on CreiLOV from Chlamydomonas reinhardtii, we created and analyzed two comprehensive mutant collections: (1) single-residue, site-saturation mutagenesis libraries covering all 118 residues; and (2) a full combinatorial metagenesis library among 20 mutations at 15 residues, where mutation and residue selection was based on single-site mutagenesis results. Notably, the second type of library is indispensable to study higher-order epistasis but underrepresented in the literature. Using optimized FACS-seq assays, 2,185 (>92.5%) out of 2,360 possible single-site mutants and 165,428 (>89.7%) out of 184,320 possible combinatorial mutants were reliably assigned with fitness values. We constructed statistical and machine-learning models to analyze the CreiLOV data set, enabling accurate fitness prediction of higher-order mutants using lower-order mutagenesis data. In addition, we successfully isolated CreiLOV variants with improved fluorescence quantum yield and thermostability. This work provides new empirical data and design rules to engineer combinatorial protein variants.
Collapse
Affiliation(s)
- Yongcan Chen
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruyun Hu
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keyi Li
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yating Zhang
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihao Fu
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhi Zhang
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS
Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- BGI-Shenzhen, Shenzhen 518083, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Iyengar BR, Bornberg-Bauer E. Neutral Models of De Novo Gene Emergence Suggest that Gene Evolution has a Preferred Trajectory. Mol Biol Evol 2023; 40:msad079. [PMID: 37011142 PMCID: PMC10118301 DOI: 10.1093/molbev/msad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
New protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features. Stable transcription requires promoters and a polyadenylation signal, while translation requires at least an open reading frame. We develop mathematical models based on mutation probabilities, and the assumption of neutral evolution, to find out how quickly genes emerge and are lost. We also investigate the effect of the order by which DNA features evolve, and if sequence composition is biased by mutation rate. We rationalize how genes are lost much more rapidly than they emerge, and how they preferentially arise in regions that are already transcribed. Our study not only answers some fundamental questions on the topic of de novo emergence but also provides a modeling framework for future studies.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA (NEW YORK, N.Y.) 2023; 29:282-299. [PMID: 36517212 PMCID: PMC9945437 DOI: 10.1261/rna.079462.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.
Collapse
Affiliation(s)
- Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Sirius University of Science and Technology, Sochi 354349, Russia
| |
Collapse
|
44
|
Lin CH, Shyu CL, Wu ZY, Wang CM, Chiou SH, Chen JY, Tseng SY, Lin TE, Yuan YP, Ho SP, Tung KC, Mao FC, Lee HJ, Tu WC. Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3-11 Amphipathic Helices to Favor Membrane Interaction. MEMBRANES 2023; 13:251. [PMID: 36837754 PMCID: PMC9961542 DOI: 10.3390/membranes13020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7. Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3-11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 μg mL-1 for E. coli O157:H7 and four to eight μg mL-1 for the latter two isolates. Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5'-poly(A) leader sequence at the 5'-UTR known for the advantage in cap-independent translation. This is the first report about the 3-11 amphipathic helix structure of mastoparans to facilitate membrane interaction. Mastoparan-AF could potentially be employed to combat multiple antibiotic-resistant hemolytic E. coli O157:H7 and other pathogenic E. coli.
Collapse
Affiliation(s)
- Chun-Hsien Lin
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Lin Shyu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zong-Yen Wu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Yeu Chen
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ying Tseng
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Er Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Po Yuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Peng Ho
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 40227, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Kaohsiung 801301, Taiwan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
| |
Collapse
|
45
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528768. [PMID: 36824937 PMCID: PMC9949036 DOI: 10.1101/2023.02.15.528768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. The start codon-associated ribosome frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra unannotated from human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational "noise" in nutrient stress adaptation.
Collapse
|
46
|
Collins L, Ponnazhagan S, Curiel DT. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth Biol 2023; 12:17-26. [PMID: 36627108 PMCID: PMC9872172 DOI: 10.1021/acssynbio.2c00589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 01/12/2023]
Abstract
Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.
Collapse
Affiliation(s)
- Logan
Thrasher Collins
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
| | - Selvarangan Ponnazhagan
- Department
of Pathology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, Alabama 35233, United States
| | - David T. Curiel
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
- Department
of Radiation Oncology, Washington University
in St. Louis, 4950 Childrens
Place, St. Louis, Missouri 63110, United States
| |
Collapse
|
47
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice and protein isoform levels of transcription factor C/EBP α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524343. [PMID: 36711859 PMCID: PMC9882168 DOI: 10.1101/2023.01.16.524343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the hematopoietic transcription factor CCAAT-enhancer binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This alternative initiation depends on sequence features of the CEBPA transcript, including a regulatory upstream open reading frame (uORF), but the molecular basis is not fully understood. Here we identify trans-acting factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescence reporter coupled with CRISPRi screening. Our screen uncovered a role for the ribosome rescue factor PELOTA (PELO) in promoting expression of the longer C/EBPα isoform, by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin (mTOR) kinase. Our work provides further mechanistic insights into coupling between ribosome recycling and translation reinitiation in regulation of a key transcription factor, with implications for normal hematopoiesis and leukemiagenesis.
Collapse
Affiliation(s)
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley
| |
Collapse
|
48
|
Chattopadhyay G, Ahmed S, Srilatha NS, Asok A, Varadarajan R. Ter-Seq: A high-throughput method to stabilize transient ternary complexes and measure associated kinetics. Protein Sci 2023; 32:e4514. [PMID: 36382921 PMCID: PMC9793979 DOI: 10.1002/pro.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.
Collapse
Affiliation(s)
- Gopinath Chattopadhyay
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Institute for Evolutionary Biology and Environmental SciencesUniversity of ZurichZurichSwitzerland
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- St. Jude Children's Research HospitalTennesseeUSA
| | | | - Aparna Asok
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
49
|
Li K, Kong J, Zhang S, Zhao T, Qian W. Distance-dependent inhibition of translation initiation by downstream out-of-frame AUGs is consistent with a Brownian ratchet process of ribosome scanning. Genome Biol 2022; 23:254. [PMID: 36510274 PMCID: PMC9743702 DOI: 10.1186/s13059-022-02829-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5'-3' movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5' proximal AUG codon (i.e., the first-AUG rule). RESULTS We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5'-3' and 3'-5' oscillations with a net 5'-3' movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans. CONCLUSIONS Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhui Kong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Ambrosini C, Destefanis E, Kheir E, Broso F, Alessandrini F, Longhi S, Battisti N, Pesce I, Dassi E, Petris G, Cereseto A, Quattrone A. Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Res 2022; 50:10756-10771. [PMID: 36165847 PMCID: PMC9561285 DOI: 10.1093/nar/gkac799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
A variety of single-gene human diseases are caused by haploinsufficiency, a genetic condition by which mutational inactivation of one allele leads to reduced protein levels and functional impairment. Translational enhancement of the spare allele could exert a therapeutic effect. Here we developed BOOST, a novel gene-editing approach to rescue haploinsufficiency loci by the change of specific single nucleotides in the Kozak sequence, which controls translation by regulating start codon recognition. We evaluated for translational strength 230 Kozak sequences of annotated human haploinsufficient genes and 4621 derived variants, which can be installed by base editing, by a high-throughput reporter assay. Of these variants, 149 increased the translation of 47 Kozak sequences, demonstrating that a substantial proportion of haploinsufficient genes are controlled by suboptimal Kozak sequences. Validation of 18 variants for 8 genes produced an average enhancement in an expression window compatible with the rescue of the genetic imbalance. Base editing of the NCF1 gene, whose monoallelic loss causes chronic granulomatous disease, resulted in the desired increase of NCF1 (p47phox) protein levels in a relevant cell model. We propose BOOST as a fine-tuned approach to modulate translation, applicable to the correction of dozens of haploinsufficient monogenic disorders independently of the causing mutation.
Collapse
Affiliation(s)
- Chiara Ambrosini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eyemen Kheir
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Federica Alessandrini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Nicolò Battisti
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge CB2 0QH, UK
| | - Anna Cereseto
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|