1
|
Haller DJ, Castillo-Hair SM, Tabor JJ. Optogenetic Control of B. subtilis Gene Expression Using the CcaSR System. Methods Mol Biol 2025; 2840:1-17. [PMID: 39724340 DOI: 10.1007/978-1-0716-4047-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Optogenetics enables precise control of gene expression in a variety of organisms. We recently developed the first system for optogenetic control of transcription in Bacillus subtilis. This system is based on CcaSR, a light-responsive two-component regulatory system originally derived from Synechocystis PCC 6803. The so-called B. subtilis CcaSR v1.0 enables activation of gene expression with green light and deactivation with red. As a result, B. subtilis CcaSR v1.0 can be used to program gene expression with high quantitative, spatial, and temporal resolution. The expression levels of the CcaS light sensing histidine kinase and the CcaR response regulator are set by the addition of chemical inducers in B. subtilis CcaSR v1.0, enabling adjustment of the basal expression level and optimization of the magnitude of gene expression induction. In principle, B. subtilis CcaSR v1.0 should be compatible with expression of any target gene of interest. Here, we provide growth, strain engineering, and light treatment protocols for working with B. subtilis CcaSR.
Collapse
Affiliation(s)
- Daniel J Haller
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Sebastian M Castillo-Hair
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jeffrey J Tabor
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Dwijayanti A, Yeoh JW, Zhang C, Poh CL, Lautier T. Optimizing HMG-CoA Synthase Expression for Enhanced Limonene Production in Escherichia coli through Temporal Transcription Modulation Using Optogenetics. ACS Synth Biol 2024; 13:3621-3634. [PMID: 39498890 DOI: 10.1021/acssynbio.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Overexpression of a single enzyme in a multigene heterologous pathway may be out of balance with the other enzymes in the pathway, leading to accumulated toxic intermediates, imbalanced carbon flux, reduced productivity of the pathway, or an inhibited growth phenotype. Therefore, optimal, balanced, and synchronized expression levels of enzymes in a particular metabolic pathway is critical to maximize production of desired compounds while maintaining cell fitness in a growing culture. Furthermore, the optimal intracellular concentration of an enzyme is determined by the expression strength, specific timing/duration, and degradation rate of the enzyme. Here, we modulated the intracellular concentration of a key enzyme, namely HMG-CoA synthase (HMGS), in the heterologous mevalonate pathway by tuning its expression level and period of transcription to enhance limonene production in Escherichia coli. Facilitated by the tuned blue-light inducible BLADE/pBad system, we observed that limonene production was highest (160 mg/L) with an intermediate transcription level of HMGS from moderate light illumination (41 au, 150 s ON/150 s OFF) throughout the growth. Owing to the easy penetration and removal of blue-light illumination from the growing culture which is hard to obtain using conventional chemical-based induction, we further explored different induction patterns of HMGS under strong light illumination (2047 au, 300 s ON) for different durations along the growth phases. We identified a specific timing of HMGS expression in the log phase (3-9 h) that led to optimal limonene production (200 mg/L). This is further supported by a mathematical model that predicts several periods of blue-light illumination (3-9 h, 0-9 h, 3-12 h, 0-12 h) to achieve an optimal expression level of HMGS that maximizes limonene production and maintains cell fitness. Compared to moderate and prolonged transcription (41 au, 150 s ON/150 s OFF, 0-73 h), strong but time-limited transcription (2047 au, 300 s ON, 3-9 h) of HMGS could maintain its optimal intracellular concentration and further increased limonene production up to 92% (250 mg/L) in the longer incubation (up to 73 h) without impacting cell fitness. This work has provided new insight into the "right amount" and "just-in-time" expression of a critical metabolite enzyme in the upper module of the mevalonate pathway using optogenetics. This study would complement previous findings in modulating HMGS expression and potentially be applicable to heterologous production of other terpenoids in E. coli.
Collapse
Affiliation(s)
- Ari Dwijayanti
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
| | - Jing Wui Yeoh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Thomas Lautier
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| |
Collapse
|
3
|
Haynes KA, Andrews LB, Beisel CL, Chappell J, Cuba Samaniego CE, Dueber JE, Dunlop MJ, Franco E, Lucks JB, Noireaux V, Savage DF, Silver PA, Smanski M, Young E. Ten Years of the Synthetic Biology Summer Course at Cold Spring Harbor Laboratory. ACS Synth Biol 2024; 13:2635-2642. [PMID: 39300908 PMCID: PMC11421210 DOI: 10.1021/acssynbio.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Cold Spring Harbor Laboratory (CSHL) Summer Course on Synthetic Biology, established in 2013, has emerged as a premier platform for immersive education and research in this dynamic field. Rooted in CSHL's rich legacy of biological discovery, the course offers a comprehensive exploration of synthetic biology's fundamentals and applications. Led by a consortium of faculty from diverse institutions, the course structure seamlessly integrates practical laboratory sessions, exploratory research rotations, and enriching seminars by leaders in the field. Over the years, the curriculum has evolved to cover essential topics such as cell-free transcription-translation, DNA construction, computational modeling of gene circuits, engineered gene regulation, and CRISPR technologies. In this review, we describe the history, development, and structure of the course, and discuss how elements of the course might inform the development of other short courses in synthetic biology. We also demonstrate the course's impact beyond the lab with a summary of alumni contributions to research, education, and entrepreneurship. Through these efforts, the CSHL Summer Course on Synthetic Biology remains at the forefront of shaping the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30345, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - James Chappell
- Biosciences Department, Rice University, Houston, Texas 77005, United States
| | - Christian E Cuba Samaniego
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - John E Dueber
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Elisa Franco
- Mechanical and Aerospace Engineering, Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eric Young
- Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
4
|
Akagi H, Shimizu H, Toya Y. Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli. Biotechnol Bioeng 2024; 121:1016-1025. [PMID: 38116710 DOI: 10.1002/bit.28628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Optogenetics is an attractive synthetic biology tool for controlling the metabolic flux distribution. Here, we demonstrated optogenetic flux ratio control of glycolytic pathways consisting of the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways by illuminating multicolor lights using blue light-responsive EL222 and green/red light-responsive CcaSR in Escherichia coli. EL222 forms a dimer and binds to a particular DNA sequence under blue light; therefore, target gene expression can be reduced or induced by inserting a recognition sequence into its promoter regions. First, a flux ratio between the PP and ED pathways was controlled by blue light using EL222. After blocking the EMP pathway, the EL222-recognition sequence was inserted between the -35 and -10 regions of gnd to repress the PP flux and was also inserted upstream of the -35 region of edd to induce ED flux. After adjusting light intensity, the PP:ED flux ratios were 60:39% and 29:70% under dark and blue light conditions, respectively. Finally, a CcaSR-based pgi expression system was implemented to control the flux ratio between the EMP and PP + ED pathways by illuminating green/red light. The EMP:PP:ED flux ratios were 80:9:11%, 14:35:51%, and 33:5:62% under green, red, and red and blue light, respectively.
Collapse
Affiliation(s)
- Hayato Akagi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Chen KN, Ma BG. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range. ACS Synth Biol 2023; 12:1708-1715. [PMID: 37217315 DOI: 10.1021/acssynbio.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
Collapse
Affiliation(s)
- Ke-Ning Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Braniff N, Pearce T, Lu Z, Astwood M, Forrest WSR, Receno C, Ingalls B. NLoed: A Python Package for Nonlinear Optimal Experimental Design in Systems Biology. ACS Synth Biol 2022; 11:3921-3928. [PMID: 36473701 PMCID: PMC9765746 DOI: 10.1021/acssynbio.2c00131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Modeling in systems and synthetic biology relies on accurate parameter estimates and predictions. Accurate model calibration relies, in turn, on data and on how well suited the available data are to a particular modeling task. Optimal experimental design (OED) techniques can be used to identify experiments and data collection procedures that will most efficiently contribute to a given modeling objective. However, implementation of OED is limited by currently available software tools that are not well suited for the diversity of nonlinear models and non-normal data commonly encountered in biological research. Moreover, existing OED tools do not make use of the state-of-the-art numerical tools, resulting in inefficient computation. Here, we present the NLoed software package and demonstrate its use with in vivo data from an optogenetic system in Escherichia coli. NLoed is an open-source Python library providing convenient access to OED methods, with particular emphasis on experimental design for systems biology research. NLoed supports a wide variety of nonlinear, multi-input/output, and dynamic models and facilitates modeling and design of experiments over a wide variety of data types. To support OED investigations, the NLoed package implements maximum likelihood fitting and diagnostic tools, providing a comprehensive modeling workflow. NLoed offers an accessible, modular, and flexible OED tool set suited to the wide variety of experimental scenarios encountered in systems biology research. We demonstrate NLoed's capabilities by applying it to experimental design for characterization of a bacterial optogenetic system.
Collapse
Affiliation(s)
- Nathan Braniff
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Taylor Pearce
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Zixuan Lu
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Michael Astwood
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - William S. R. Forrest
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Cody Receno
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
7
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Real-time detection of response regulator phosphorylation dynamics in live bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201204119. [PMID: 35994658 PMCID: PMC9436347 DOI: 10.1073/pnas.2201204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria utilize two-component system (TCS) signal transduction pathways to sense and adapt to changing environments. In a typical TCS, a stimulus induces a sensor histidine kinase (SHK) to phosphorylate a response regulator (RR), which then dimerizes and activates a transcriptional response. Here, we demonstrate that oligomerization-dependent depolarization of excitation light by fused mNeonGreen fluorescent protein probes enables real-time monitoring of RR dimerization dynamics in live bacteria. Using inducible promoters to independently express SHKs and RRs, we detect RR dimerization within seconds of stimulus addition in several model pathways. We go on to combine experiments with mathematical modeling to reveal that TCS phosphosignaling accelerates with SHK expression but decelerates with RR expression and SHK phosphatase activity. We further observe pulsatile activation of the SHK NarX in response to addition and depletion of the extracellular electron acceptor nitrate when the corresponding TCS is expressed from both inducible systems and the native chromosomal operon. Finally, we combine our method with polarized light microscopy to enable single-cell measurements of RR dimerization under changing stimulus conditions. Direct in vivo characterization of RR oligomerization dynamics should enable insights into the regulation of bacterial physiology.
Collapse
|
9
|
Gutiérrez Mena J, Kumar S, Khammash M. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback. Nat Commun 2022; 13:4808. [PMID: 35973993 PMCID: PMC9381578 DOI: 10.1038/s41467-022-32392-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 12/19/2022] Open
Abstract
Communities of microbes play important roles in natural environments and hold great potential for deploying division-of-labor strategies in synthetic biology and bioproduction. However, the difficulty of controlling the composition of microbial consortia over time hinders their optimal use in many applications. Here, we present a fully automated, high-throughput platform that combines real-time measurements and computer-controlled optogenetic modulation of bacterial growth to implement precise and robust compositional control of a two-strain E. coli community. In addition, we develop a general framework for dynamic modeling of synthetic genetic circuits in the physiological context of E. coli and use a host-aware model to determine the optimal control parameters of our closed-loop compositional control system. Our platform succeeds in stabilizing the strain ratio of multiple parallel co-cultures at arbitrary levels and in changing these targets over time, opening the door for the implementation of dynamic compositional programs in synthetic bacterial communities.
Collapse
Affiliation(s)
- Joaquín Gutiérrez Mena
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
10
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
12
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Lovelett RJ, Zhao EM, Lalwani MA, Toettcher JE, Kevrekidis IG, L Avalos J. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications. ACS Synth Biol 2021; 10:219-227. [PMID: 33492138 PMCID: PMC10410538 DOI: 10.1021/acssynbio.0c00372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.
Collapse
Affiliation(s)
- Robert J Lovelett
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Evan M Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Makoto A Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Clinger JA, Chen E, Kliger DS, Phillips GN. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. J Phys Chem B 2021; 125:202-210. [PMID: 33355472 DOI: 10.1021/acs.jpcb.0c04822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bilin-containing photoreceptor TePixJ, a member of the cyanobacteriochrome (CBCR) family of phytochromes, switches between blue-light-absorbing and green-light-absorbing states in order to drive phototaxis in Thermosynechococcus elongatus. Its photoswitching process involves the formation of a thioether linkage between the C10 carbon of phycoviolobilin and the sidechain of Cys494 during the change in state from green-absorbing to blue-absorbing forms. Complex changes in the binding pocket propagate the signal to other domains for downstream signaling. Here, we report time-resolved circular dichroism experiments in addition to pump-probe absorption measurements for interpretation of the biophysical mechanism of the green-to-blue photoconversion process of this receptor.
Collapse
Affiliation(s)
- Jonathan A Clinger
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
16
|
Hartsough LA, Park M, Kotlajich MV, Lazar JT, Han B, Lin CCJ, Musteata E, Gambill L, Wang MC, Tabor JJ. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 2020; 9:56849. [PMID: 33325823 PMCID: PMC7744093 DOI: 10.7554/elife.56849] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Gut microbial metabolism is associated with host longevity. However, because it requires direct manipulation of microbial metabolism in situ, establishing a causal link between these two processes remains challenging. We demonstrate an optogenetic method to control gene expression and metabolite production from bacteria residing in the host gut. We genetically engineer an Escherichia coli strain that secretes colanic acid (CA) under the quantitative control of light. Using this optogenetically-controlled strain to induce CA production directly in the Caenorhabditis elegans gut, we reveal the local effect of CA in protecting intestinal mitochondria from stress-induced hyper-fragmentation. We also demonstrate that the lifespan-extending effect of this strain is positively correlated with the intensity of green light, indicating a dose-dependent CA benefit on the host. Thus, optogenetics can be used to achieve quantitative and temporal control of gut bacterial metabolism in order to reveal its local and systemic effects on host health and aging.
Collapse
Affiliation(s)
| | | | | | - John Tyler Lazar
- Department of Chemical and Biomolecular Engineering, Houston, United States
| | - Bing Han
- Huffington Center on Aging, Houston, United States
| | - Chih-Chun J Lin
- Huffington Center on Aging, Houston, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Elena Musteata
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States
| | - Lauren Gambill
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States
| | - Meng C Wang
- Huffington Center on Aging, Houston, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Houston, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, Houston, United States.,Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States.,Department of Biosciences, Houston, United States
| |
Collapse
|
17
|
Raghavan AR, Salim K, Yadav VG. Optogenetic Control of Heterologous Metabolism in E. coli. ACS Synth Biol 2020; 9:2291-2300. [PMID: 32786352 DOI: 10.1021/acssynbio.9b00454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiobjective optimization of microbial chassis for the production of xenobiotic compounds requires the implementation of metabolic control strategies that permit dynamic distribution of cellular resources between biomass and product formation. We addressed this need in a previous study by engineering the T7 RNA polymerase to be thermally responsive. The modified polymerase is activated only after the temperature of the host cell falls below 18 °C, and Escherichia coli cells that employ the protein to transcribe the heterologous lycopene biosynthetic pathway exhibit impressive improvements in productivity. We have expanded our toolbox of metabolic switches in the current study by engineering a version of the T7 RNA polymerase that drives the transition between biomass and product formation upon stimulation with red light. The engineered polymerase is expressed as two distinct polypeptide chains. Each chain comprises one of two photoactive components from Arabidopsis thaliana, phytochrome B (PhyB) and phytochrome-integrating factor 3 (PIF3), as well as the N- or C-terminus domains of both, the vacuolar ATPase subunit (VMA) intein of Saccharomyces cerevisiae and the polymerase. Red light drives photodimerization of PhyB and PIF3, which then brings together the N- and C-terminus domains of the VMA intein. Trans-splicing of the intein follows suit and produces an active form of the polymerase that subsequently transcribes any sequence that is under the control of a T7 promoter. The photodimerization also involves a third element, the cyanobacterial chromophore phycocyanobilin (PCB), which too is expressed heterologously by E. coli. We deployed this version of the T7 RNA polymerase to control the production of lycopene in E. coli and observed tight control of pathway expression. We tested a variety of expression configurations to identify one that imposes the lowest metabolic burden on the strain, and we subsequently optimized key parameters such as the source, moment, and duration of photostimulation. We also identified targets for future refinement of the circuit. In summary, our work is a significant advance for the field and greatly expands on previous work by other groups that have used optogenetic circuits to control heterologous metabolism in prokaryotic hosts.
Collapse
Affiliation(s)
- Adhithi R. Raghavan
- Department of Chemical and Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Kevin Salim
- Department of Chemical and Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Vikramaditya G. Yadav
- Department of Chemical and Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
18
|
Steel H, Habgood R, Kelly CL, Papachristodoulou A. In situ characterisation and manipulation of biological systems with Chi.Bio. PLoS Biol 2020; 18:e3000794. [PMID: 32730242 PMCID: PMC7419009 DOI: 10.1371/journal.pbio.3000794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
The precision and repeatability of in vivo biological studies is predicated upon methods for isolating a targeted subsystem from external sources of noise and variability. However, in many experimental frameworks, this is made challenging by nonstatic environments during host cell growth, as well as variability introduced by manual sampling and measurement protocols. To address these challenges, we developed Chi.Bio, a parallelised open-source platform that represents a new experimental paradigm in which all measurement and control actions can be applied to a bulk culture in situ. In addition to continuous-culturing capabilities, it incorporates tunable light outputs, spectrometry, and advanced automation features. We demonstrate its application to studies of cell growth and biofilm formation, automated in silico control of optogenetic systems, and readout of multiple orthogonal fluorescent proteins in situ. By integrating precise measurement and actuation hardware into a single low-cost platform, Chi.Bio facilitates novel experimental methods for synthetic, systems, and evolutionary biology and broadens access to cutting-edge research capabilities.
Collapse
Affiliation(s)
- Harrison Steel
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Robert Habgood
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ciarán L. Kelly
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
19
|
Sexton JT, Tabor JJ. Multiplexing cell-cell communication. Mol Syst Biol 2020; 16:e9618. [PMID: 32672881 PMCID: PMC7365139 DOI: 10.15252/msb.20209618] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022] Open
Abstract
The engineering of advanced multicellular behaviors, such as the programmed growth of biofilms or tissues, requires cells to communicate multiple aspects of physiological information. Unfortunately, few cell-cell communication systems have been developed for synthetic biology. Here, we engineer a genetically encoded channel selector device that enables a single communication system to transmit two separate intercellular conversations. Our design comprises multiplexer and demultiplexer sub-circuits constructed from a total of 12 CRISPRi-based transcriptional logic gates, an acyl homoserine lactone-based communication module, and three inducible promoters that enable small molecule control over the conversations. Experimentally parameterized mathematical models of the sub-components predict the steady state and dynamical performance of the full system. Multiplexed cell-cell communication has applications in synthetic development, metabolic engineering, and other areas requiring the coordination of multiple pathways among a community of cells.
Collapse
Affiliation(s)
- John T Sexton
- Department of BioengineeringRice UniversityHoustonTXUSA
| | - Jeffrey J Tabor
- Department of BioengineeringRice UniversityHoustonTXUSA
- Department of BioSciencesRice UniversityHoustonTXUSA
| |
Collapse
|
20
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
21
|
Buhrke D, Battocchio G, Wilkening S, Blain-Hartung M, Baumann T, Schmitt FJ, Friedrich T, Mroginski MA, Hildebrandt P. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Biochemistry 2019; 59:509-519. [PMID: 31840994 DOI: 10.1021/acs.biochem.9b00931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptor proteins that photoconvert between two parent states and thereby regulate various biological processes. An intriguing property is their variable ultraviolet-visible (UV-vis) absorption that covers the entire spectral range from the far-red to the near-UV region and thus makes CBCRs promising candidates for optogenetic applications. Here, we have studied Slr1393, a CBCR that photoswitches between red- and green-absorbing states (Pr and Pg, respectively). Using UV-vis absorption, fluorescence, and resonance Raman (RR) spectroscopy, a further orange-absorbing state O600 that is in thermal equilibrium with Pr was identified. The different absorption properties of the three states were attributed to the different lengths of the conjugated π-electron system of the phycocyanobilin chromophore. In agreement with available crystal structures and supported by quantum mechanics/molecular mechanics (QM/MM) calculations, the most extended conjugation holds for Pr whereas it is substantially reduced in Pg. Here, the two outer pyrrole rings D and A are twisted out of the plane defined by inner pyrrole rings B and C. For the O600 state, the comparison of the experimental RR spectra with QM/MM-calculated spectra indicates a partially distorted ZZZssa geometry in which ring A is twisted while ring D and the adjacent methine bridge display essentially the same geometry as Pr. The quantitative analysis of temperature-dependent spectra yields an enthalpy barrier of ∼30 kJ/mol for the transition from Pr to O600. This reaction is associated with the movement of a conserved tryptophan residue from the chromophore binding pocket to a solvent-exposed position.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Giovanni Battocchio
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Svea Wilkening
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Matthew Blain-Hartung
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Tobias Baumann
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thomas Friedrich
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Peter Hildebrandt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| |
Collapse
|
22
|
Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metab Eng 2019; 55:68-75. [DOI: 10.1016/j.ymben.2019.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
|
23
|
Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ. Optogenetic control of Bacillus subtilis gene expression. Nat Commun 2019; 10:3099. [PMID: 31308373 PMCID: PMC6629627 DOI: 10.1038/s41467-019-10906-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.
Collapse
Affiliation(s)
| | - Elliot A Baerman
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd., Houston, TX, 77004, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Theoretical Biophysics, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
24
|
Scott TD, Sweeney K, McClean MN. Biological signal generators: integrating synthetic biology tools and in silico control. ACTA ACUST UNITED AC 2019; 14:58-65. [PMID: 31673669 DOI: 10.1016/j.coisb.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.
Collapse
Affiliation(s)
- Taylor D Scott
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Kieran Sweeney
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| |
Collapse
|
25
|
DIY optogenetics: Building, programming, and using the Light Plate Apparatus. Methods Enzymol 2019; 624:197-226. [DOI: 10.1016/bs.mie.2019.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Ong NT, Tabor JJ. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range. Chembiochem 2018; 19:1255-1258. [PMID: 29420866 DOI: 10.1002/cbic.201800007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Genetically engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and deactivated by red, into Escherichia coli, resulting in a sensor with a sixfold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and to increase the dynamic range to approximately 120-fold. These CcaSR v 1.0 and v 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, other workers deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a system similar to CcaSR v 1.0. Here we apply these deletions to CcaSR v 2.0, resulting in a v 3.0 light sensor with an output four times less leaky and a dynamic range of nearly 600-fold. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v 3.0 is the best-performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.
Collapse
Affiliation(s)
- Nicholas T Ong
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.,Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
27
|
Abstract
Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosynthetic bacteria, senses NIR light and activates transcription of photosystem promoters by binding to and inhibiting the transcriptional repressor PpsR2. Here, we examine the response of a library of output promoters to increasing levels of Rhodopseudomonas palustris PpsR2 expression, and we identify that of Bradyrhizobium sp. BTAi1 crtE as the most strongly repressed in Escherichia coli. Next, we optimize Rps. palustris bphP1 and ppsR2 expression in a strain engineered to produce the required chromophore biliverdin IXα in order to demonstrate NIR-activated transcription. Unlike a previously engineered bacterial NIR photoreceptor, our system does not require production of a second messenger, and it exhibits rapid response dynamics. It is also the most red-shifted bacterial optogenetic tool yet reported by approximately 50 nm. Accordingly, our BphP1-PpsR2 system has numerous applications in bacterial optogenetics.
Collapse
Affiliation(s)
- Nicholas T. Ong
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Evan J. Olson
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering, ‡Department of Biosciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Olson EJ, Tzouanas CN, Tabor JJ. A photoconversion model for full spectral programming and multiplexing of optogenetic systems. Mol Syst Biol 2017; 13:926. [PMID: 28438832 PMCID: PMC5408778 DOI: 10.15252/msb.20167456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Optogenetics combines externally applied light signals and genetically engineered photoreceptors to control cellular processes with unmatched precision. Here, we develop a mathematical model of wavelength‐ and intensity‐dependent photoconversion, signaling, and output gene expression for our two previously engineered light‐sensing Escherichia coli two‐component systems. To parameterize the model, we develop a simple set of spectral and dynamical calibration experiments using our recent open‐source “Light Plate Apparatus” device. In principle, the parameterized model should predict the gene expression response to any time‐varying signal from any mixture of light sources with known spectra. We validate this capability experimentally using a suite of challenging light sources and signals very different from those used during the parameterization process. Furthermore, we use the model to compensate for significant spectral cross‐reactivity inherent to the two sensors in order to develop a new method for programming two simultaneous and independent gene expression signals within the same cell. Our optogenetic multiplexing method will enable powerful new interrogations of how metabolic, signaling, and decision‐making pathways integrate multiple input signals.
Collapse
Affiliation(s)
- Evan J Olson
- Graduate Program in Applied Physics, Rice University, Houston, TX, USA
| | | | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA .,Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|