1
|
Papadatou I, Geropeppa M, Piperi C, Spoulou V, Adamopoulos C, Papavassiliou AG. Deciphering Immune Responses to Immunization via Transcriptional Analysis: A Narrative Review of the Current Evidence towards Personalized Vaccination Strategies. Int J Mol Sci 2024; 25:7095. [PMID: 39000206 PMCID: PMC11240890 DOI: 10.3390/ijms25137095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.
Collapse
Affiliation(s)
- Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.P.); (M.G.); (V.S.)
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.G.P.)
| |
Collapse
|
2
|
Gonzalez Dias Carvalho PC, Dominguez Crespo Hirata T, Mano Alves LY, Moscardini IF, do Nascimento APB, Costa-Martins AG, Sorgi S, Harandi AM, Ferreira DM, Vianello E, Haks MC, Ottenhoff THM, Santoro F, Martinez-Murillo P, Huttner A, Siegrist CA, Medaglini D, Nakaya HI. Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts. Front Immunol 2023; 14:1259197. [PMID: 38022684 PMCID: PMC10663260 DOI: 10.3389/fimmu.2023.1259197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.
Collapse
Affiliation(s)
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Yukio Mano Alves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - André G. Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Artificial Intelligence and Analytics Department, Institute for Technological Research, São Paulo, Brazil
| | - Sara Sorgi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Daniela M. Ferreira
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Angela Huttner
- Centre for Vaccinology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Infectious Diseases Service, Geneva University Hospitals, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Centre for Vaccinology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Helder I. Nakaya
- Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
3
|
Habgood-Coote D, Wilson C, Shimizu C, Barendregt AM, Philipsen R, Galassini R, Calle IR, Workman L, Agyeman PKA, Ferwerda G, Anderson ST, van den Berg JM, Emonts M, Carrol ED, Fink CG, de Groot R, Hibberd ML, Kanegaye J, Nicol MP, Paulus S, Pollard AJ, Salas A, Secka F, Schlapbach LJ, Tremoulet AH, Walther M, Zenz W, Van der Flier M, Zar HJ, Kuijpers T, Burns JC, Martinón-Torres F, Wright VJ, Coin LJM, Cunnington AJ, Herberg JA, Levin M, Kaforou M. Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature. MED 2023; 4:635-654.e5. [PMID: 37597512 DOI: 10.1016/j.medj.2023.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.
Collapse
Affiliation(s)
- Dominic Habgood-Coote
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Clare Wilson
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Chisato Shimizu
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Anouk M Barendregt
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ria Philipsen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Rachel Galassini
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Irene Rivero Calle
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Lesley Workman
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gerben Ferwerda
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Suzanne T Anderson
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke Emonts
- Great North Children's Hospital, Department of Paediatric Immunology, Infectious Diseases & Allergy and NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Colin G Fink
- Micropathology Ltd Research and Diagnosis, Coventry, UK; University of Warwick, Coventry, UK
| | - Ronald de Groot
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - John Kanegaye
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mark P Nicol
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Stéphane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Antonio Salas
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
| | - Fatou Secka
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Luregn J Schlapbach
- Pediatric and Neonatal Intensive Care Unit, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, and Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Walther
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Werner Zenz
- University Clinic of Paediatrics and Adolescent Medicine, Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Michiel Van der Flier
- Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Paediatric Infectious Diseases and Immunology Amalia Children's Hospital, Radboudumc, Nijmegen, the Netherlands
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner Laboratory of Amsterdam UMC (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Federico Martinón-Torres
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Jethro A Herberg
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Zhu H, Chelysheva I, Cross DL, Blackwell L, Jin C, Gibani MM, Jones E, Hill J, Trück J, Kelly DF, Blohmke CJ, Pollard AJ, O’Connor D. Molecular correlates of vaccine-induced protection against typhoid fever. J Clin Invest 2023; 133:e169676. [PMID: 37402153 PMCID: PMC10425215 DOI: 10.1172/jci169676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Deborah L. Cross
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
5
|
O'Connor D. The omics strategy: the use of systems vaccinology to characterise immune responses to childhood immunisation. Expert Rev Vaccines 2022; 21:1205-1214. [PMID: 35786291 DOI: 10.1080/14760584.2022.2093193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccines have had a transformative impact on child health. Despite this impact the immunological processes involved in protective responses are not entirely understood and vaccine development has been largely empirical. Recent technological advances offer the opportunity to reveal the immunology underlying vaccine response at an unprecedented resolution. These data could revolutionise the way vaccines are developed and tested and further augment their role in securing the health of children around the world. AREAS COVERED Systems level information and the tools are now being deployed by vaccinologists at all stages of the vaccine development pathway; however, this review will specifically describe some of the key findings that have be gleaned from multi-omics datasets collected in the context of childhood immunisation. EXPERT OPINION Despite the success of vaccines there remains hard-to-target pathogens, refractory to current vaccination strategies. Moreover, zoonotic diseases with pandemic potential are a threat to global health, as recently illustrated by COVID-19. Systems vaccinology holds a great deal of promise in revealing a greater understanding of vaccine responses and consequently modernising vaccinology. However, there is a need for future studies -particularly in vulnerable populations that are targets for vaccination programmes - if this potential is to be fulfilled.
Collapse
Affiliation(s)
- Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
6
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
de Armas LR, George V, Filali-Mouhim A, Steel C, Parmigiani A, Cunningham CK, Weinberg A, Trautmann L, Sekaly RP, Cameron MJ, Pahwa S. Transcriptional and Immunologic Correlates of Response to Pandemic Influenza Vaccine in Aviremic, HIV-Infected Children. Front Immunol 2021; 12:639358. [PMID: 33868267 PMCID: PMC8044856 DOI: 10.3389/fimmu.2021.639358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PWH) often exhibit poor responses to influenza vaccination despite effective combination anti-retroviral (ART) mediated viral suppression. There exists a paucity of data in identifying immune correlates of influenza vaccine response in context of HIV infection that would be useful in improving its efficacy in PWH, especially in younger individuals. Transcriptomic data were obtained by microarray from whole blood isolated from aviremic pediatric and adolescent HIV-infected individuals (4-25 yrs) given two doses of Novartis/H1N1 09 vaccine during the pandemic H1N1 influenza outbreak. Supervised clustering and gene set enrichment identified contrasts between individuals exhibiting high and low antibody responses to vaccination. High responders exhibited hemagglutination inhibition antibody titers >1:40 post-first dose and 4-fold increase over baseline. Baseline molecular profiles indicated increased gene expression in metabolic stress pathways in low responders compared to high responders. Inflammation-related and interferon-inducible gene expression pathways were higher in low responders 3 wks post-vaccination. The broad age range and developmental stage of participants in this study prompted additional analysis by age group (e.g. <13yrs and ≥13yrs). This analysis revealed differential enrichment of gene pathways before and after vaccination in the two age groups. Notably, CXCR5, a homing marker expressed on T follicular helper (Tfh) cells, was enriched in high responders (>13yrs) following vaccination which was accompanied by peripheral Tfh expansion. Our results comprise a valuable resource of immune correlates of vaccine response to pandemic influenza in HIV infected children that may be used to identify favorable targets for improved vaccine design in different age groups.
Collapse
Affiliation(s)
- Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Varghese George
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Courtney Steel
- Collaborative Genomics Center, Vaccine and Gene Therapy Institute, Port St. Lucie, FL, United States
| | - Anita Parmigiani
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Coleen K Cunningham
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Adriana Weinberg
- Departments of Medicine, Pathology, and Pediatric Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rafick-Pierre Sekaly
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|