1
|
Xu J, Wang Y, Zhang J, Abdelmoneim AA, Liang Z, Wang L, Jin J, Dai Q, Ye F. Elastic network models and molecular dynamic simulations reveal the molecular basis of allosteric regulation in ubiquitin-specific protease 7 (USP7). Comput Biol Med 2023; 162:107068. [PMID: 37290391 DOI: 10.1016/j.compbiomed.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the most abundant deubiquitinases and plays an important role in various malignant tumors. However, the molecular mechanisms underlying USP7's structures, dynamics, and biological significance are yet to be investigated. In this study, we constructed the full-length models of USP7 in both the extended and compact state, and applied elastic network models (ENM), molecular dynamics (MD) simulations, perturbation response scanning (PRS) analysis, residue interaction networks as well as allosteric pocket prediction to investigate allosteric dynamics in USP7. Our analysis of intrinsic and conformational dynamics revealed that the structural transition between the two states is characterized by global clamp motions, during which the catalytic domain (CD) and UBL4-5 domain exhibit strong negative correlations. The PRS analysis, combined with the analysis of disease mutations and post-translational modifications (PTMs) further highlighted the allosteric potential of the two domains. The residue interaction network based on MD simulations captured an allosteric communication path which starts at CD domain and ends at UBL4-5 domain. Moreover, we identified a pocket at the TRAF-CD interface as a high-potential allosteric site for USP7. Overall, our studies not only provide molecular insights into the conformational changes of USP7, but also aid in the design of allosteric modulators that target USP7.
Collapse
Affiliation(s)
- Jing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jiali Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Amr Abbas Abdelmoneim
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Zhang J, Han J, Li L, Zhang Q, Feng Y, Jiang Y, Deng F, Zhang Y, Wu Q, Chen B, Hu J. Inwardly rectifying potassium channel 5.1: Structure, function, and possible roles in diseases. Genes Dis 2020; 8:272-278. [PMID: 33997174 PMCID: PMC8093645 DOI: 10.1016/j.gendis.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels make it easier for K+ to enter into a cell and subsequently regulate cellular biological functions. Kir5.1 (encoded by KCNJ16) alone can form a homotetramer and can form heterotetramers with Kir4.1 (encoded by KCNJ10) or Kir4.2 (encoded by KCNJ15). In most cases, homomeric Kir5.1 is non-functional, while heteromeric Kir5.1 on the cell membrane contributes to the inward flow of K+ ions, which can be regulated by intracellular pH and a variety of signaling mechanisms. In the form of a heterotetramer, Kir5.1 regulates Kir4.1/4.2 activity and is involved in the maintenance of nephron function. Actually, homomeric Kir5.1 may also play a very important role in diseases, including in the ventilatory response to hypoxia and hypercapnia, hearing impairment, cardiovascular disease and cancer. With an increase in the number of studies into the roles of Kir channels, researchers are paying more attention to the pathophysiological functions of Kir5.1. This minireview provides an overview regarding these Kir5.1 roles.
Collapse
Affiliation(s)
- Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jian Han
- Department of Obstetrics and Gynecology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yanhai Feng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Youzhao Jiang
- Department of Endocrinology, People's Hospital of Banan District, Chongqing, 401320, PR China
| | - Fang Deng
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yuping Zhang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qinan Wu
- Department of Endocrinology, Chongqing Cancer Hospital (Chongqing University Cancer Hospital), Chongqing, 40030, PR China
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiongyu Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.,Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
3
|
Zhang HY, Xu Q, Li F, Tian PC, Wang YH, Xiong Y, Zhang YH, Wei DQ. Recent progresses of simulations on passive membrane permeations in China. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1135333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel. PLoS One 2012; 7:e48725. [PMID: 23144945 PMCID: PMC3492408 DOI: 10.1371/journal.pone.0048725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.
Collapse
Affiliation(s)
- Olga B. Popova
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tina P. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tri Le
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 2012; 3:617. [PMID: 22233627 PMCID: PMC4277880 DOI: 10.1038/ncomms1625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are physiologically regulated by a wide range of ligands that all act on a common gate, although structural details of gating are unclear. Here we show, using small molecule fluorescent probes attached to introduced cysteines, the molecular motions associated with gating of KirBac1.1 channels. The accessibility of the probes indicates a major barrier to fluorophore entry to the inner cavity. Changes in FRET between fluorophores attached to KirBac1.1 tetramers show that PIP2-induced closure involves tilting and rotational motions of secondary structural elements of the cytoplasmic domain that couple ligand binding to a narrowing of the cytoplasmic vestibule. The observed ligand-dependent conformational changes in KirBac1.1 provide a general model for ligand-induced Kir channel gating at the molecular level.
Collapse
|
6
|
Waschk DEJ, Fabian A, Budde T, Schwab A. Dual-color quantum dot detection of a heterotetrameric potassium channel (hKCa3.1). Am J Physiol Cell Physiol 2011; 300:C843-9. [PMID: 21228320 DOI: 10.1152/ajpcell.00053.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.
Collapse
|
7
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
8
|
Sun T, Liu M, Chen W, Wang C. Molecular dynamics simulation of the transmembrane subunit of BtuCD in the lipid bilayer. SCIENCE CHINA-LIFE SCIENCES 2010; 53:620-30. [PMID: 20596946 DOI: 10.1007/s11427-010-0103-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/23/2009] [Indexed: 10/19/2022]
Abstract
Based on the crystal structure of the vitamin B(12) transporter protein of Escherichia coli (BtuCD) a system consisting of the BtuCD transmembrane domain (BtuC) and the palmitoyloleoyl phosphatidylcholine (POPC) lipid bilayer was constructed in silica, and a more-than-57-nanosecond molecular dynamics (MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC. The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to match the embedded BtuC which underwent relatively complicated motions. These results may help to understand the mechanism of transmembrane substrate transport at the atomic level.
Collapse
Affiliation(s)
- Tingguang Sun
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | | | | | | |
Collapse
|
9
|
Anishkin A, Milac AL, Guy HR. Symmetry-restrained molecular dynamics simulations improve homology models of potassium channels. Proteins 2010; 78:932-49. [PMID: 19902533 DOI: 10.1002/prot.22618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most crystallized homo-oligomeric ion channels are highly symmetric, which dramatically decreases conformational space and facilitates building homology models (HMs). However, in molecular dynamics (MD) simulations channels deviate from ideal symmetry and accumulate thermal defects, which complicate the refinement of HMs using MD. In this work we evaluate the ability of symmetry constrained MD simulations to improve HMs accuracy, using an approach conceptually similar to Critical Assessment of techniques for protein Structure Prediction (CASP) competition: build HMs of channels with known structure and evaluate the efficiency of proposed methods in improving HMs accuracy (measured as deviation from experimental structure). Results indicate that unrestrained MD does not improve the accuracy of HMs, instantaneous symmetrization improves accuracy but not stability of HMs during subsequent unrestrained MD, while gradually imposing symmetry constraints improves both accuracy (by 5-50%) and stability of HMs. Moreover, accuracy and stability are strongly correlated, making stability a reliable criterion in predicting the accuracy of new HMs. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
10
|
Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 2010; 110:1463-97. [PMID: 19785456 PMCID: PMC2836427 DOI: 10.1021/cr900095e] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
11
|
Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model. PLoS One 2009; 4:e4799. [PMID: 19277199 PMCID: PMC2652109 DOI: 10.1371/journal.pone.0004799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022] Open
Abstract
Continuum models that describe the effects of solvent and biological membrane molecules on the structure and behavior of antimicrobial peptides, holds a promise to improve our understanding of the mechanisms of antimicrobial action of these peptides. In such methods, a lipid bilayer model membrane is implicitly represented by multiple layers of relatively low dielectric constant embedded in a high dielectric aqueous solvent, while an antimicrobial peptide is accounted for by a dielectric cavity with fixed partial charge at the center of each one of its atoms. In the present work, we investigate the ability of continuum approaches to predict the most probable orientation of the β-hairpin antimicrobial peptide Protegrin-1 (PG-1) in DLPC lipid bilayers by calculating the difference in the transfer free energy from an aqueous environment to a membrane-water environment for multiple orientations. The transfer free energy is computed as a sum of two terms; polar/electrostatic and non-polar. They both include energetic and entropic contributions to the free energy. We numerically solve the Poisson-Boltzmann equation to calculate the electrostatic contribution to the transfer free energy, while the non-polar contribution to the free energy is approximated using a linear solvent accessible surface area relationships. The most probable orientation of PG-1 is that with the lowest relative transfer free energy. Our simulation results indicate that PG-1 assumes an oblique orientation in DLPC lipid bilayers. The predicted most favorable orientation was with a tilt angle of 19°, which is in qualitative agreement with the experimentally observed orientations derived from solid-state NMR data.
Collapse
|
12
|
Tayefeh S, Kloss T, Kreim M, Gebhardt M, Baumeister D, Hertel B, Richter C, Schwalbe H, Moroni A, Thiel G, Kast SM. Model development for the viral Kcv potassium channel. Biophys J 2009; 96:485-98. [PMID: 19167299 DOI: 10.1016/j.bpj.2008.09.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022] Open
Abstract
A computational model for the open state of the short viral Kcv potassium channel was created and tested based on homology modeling and extensive molecular-dynamics simulation in a membrane environment. Particular attention was paid to the structure of the highly flexible N-terminal region and to the protonation state of membrane-exposed lysine residues. Data from various experimental sources, NMR spectroscopy, and electrophysiology, as well as results from three-dimensional reference interaction site model integral equation theory were taken into account to select the most reasonable model among possible variants. The final model exhibits spontaneous ion transitions across the complete pore, with and without application of an external field. The nonequilibrium transport events could be induced reproducibly without abnormally large driving potential and without the need to place ions artificially at certain key positions along the transition path. The transport mechanism through the filter region corresponds to the classic view of single-file motion, which in our case is coupled to frequent exchange of ions between the innermost filter position and the cavity.
Collapse
Affiliation(s)
- Sascha Tayefeh
- Eduard Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
ATP-sensitive potassium (KATP) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 μM.
Collapse
Affiliation(s)
- Tim J Craig
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
14
|
Lee CH, Huang PT, Lou KL, Liou HH. Functional and structural characterization of PKA-mediated pHi gating of ROMK1 channels. J Mol Graph Model 2008; 27:332-41. [PMID: 18620882 DOI: 10.1016/j.jmgm.2008.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/26/2008] [Accepted: 06/02/2008] [Indexed: 11/19/2022]
Abstract
Hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS) is a severe salt-losing renal tubular disorder and results from the mutation of renal outer medullary K(+) (ROMK1) channels. The aberrant ROMK1 function induces alterations in intracellular pH (pH(i)) gating under physiological conditions. We investigate the role of protein kinase A (PKA) in the pH(i) gating of ROMK1 channels. Using giant patch clamp with Xenopus oocytes expressing wild-type and mutant ROMK1 channels, PKA-mediated phosphorylation decreased the sensitivity of ROMK1 channels to pH(i). A homology model of ROMK1 reveals that a PKA phosphorylation site (S219) is spatially juxtaposed to the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding residues (R188, R217, and K218). Molecular dynamics simulations suggest a stable transition state, in which the shortening of distance between S219 and R217 and the movement of K218 towards the membrane after the PKA-phosphorylation can be observed. Such conformational change may bring the PIP(2) binding residues (K218) more accessible to the membrane-bound PIP(2). In addition, PIP(2) dose-dependently reactivates the acidification-induced rundown channels only when ROMK1 channels have been phosphorylated by PKA. This implies a sequence regulatory episode reflecting the role of PIP(2) in the pH(i) gating of ROMK1 channels by PKA-mediated phosphorylation. Our results provide new insights into the molecular mechanisms underlying the ROMK1 channel regulation associated with HPS/aBS.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taiwan
| | | | | | | |
Collapse
|
15
|
Abstract
K(ATP) channels (ATP-sensitive potassium channels), comprising four subunits each of Kir6.2 (inwardly rectifying potassium channel 6.2) and the SUR1 (sulfonylurea receptor 1), play a central role in glucose-stimulated insulin secretion by the pancreatic beta-cell. Changes in the number of channels at the cell surface are associated with genetic diseases of aberrant insulin secretion, including CHI (congenital hyperinsulinism) and NDM (neonatal diabetes mellitus). The present review summarizes advances in our understanding of the vesicular trafficking of normal K(ATP) channels and how genetic mutations in Kir6.2 interfere with such trafficking. A mutation, E282K, causing CHI, was found to disrupt a DXE [di-acidic ER (endoplasmic reticulum)-exit signal], thereby preventing its assembly into COPII (coatamer protein II)-coated vesicles and subsequent ER exit. The resultant decrease in the cell-surface density of the channel could explain the disease phenotype. Two mutations, Y330C and F333I, reported in patients with NDM, disrupted an endocytic traffic signal, thereby impairing CCV (clathrin-coated vesicle) formation and endocytosis. The consequent increase in the density of K(ATP) channels, together with an attenuated sensitivity to ATP reported previously, may account for the severe form of NDM.
Collapse
|
16
|
Jarosławski S, Zadek B, Ashcroft F, Vénien-Bryan C, Scheuring S. Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J Mol Biol 2007; 374:500-5. [PMID: 17936299 DOI: 10.1016/j.jmb.2007.09.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/12/2007] [Accepted: 09/17/2007] [Indexed: 11/28/2022]
Abstract
KirBac3.1 belongs to a family of transmembrane potassium (K(+)) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP(2)), G-proteins, nucleotides (such as ATP) and ions (e.g. H(+), Mg(2+), Ca(2+)). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg(2+), the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg(2+), a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg(2+), indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K(+) channel. This is the first time AFM has been used as an interactive tool to study K(+) channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.
Collapse
|
17
|
Haider S, Tarasov AI, Craig TJ, Sansom MSP, Ashcroft FM. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J 2007; 26:3749-59. [PMID: 17673911 PMCID: PMC1952224 DOI: 10.1038/sj.emboj.7601809] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 07/03/2007] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.
Collapse
Affiliation(s)
- Shozeb Haider
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Tim J Craig
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
18
|
Babakhani A, Gorfe AA, Gullingsrud J, Kim JE, Andrew McCammon J. Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation. Biopolymers 2007; 85:490-7. [PMID: 17274025 DOI: 10.1002/bip.20698] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide insertion, positioning, and stabilization in a model membrane are probed via an all-atom molecular dynamics (MD) simulation. One peptide (WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) membrane. Within the first 5 ns, the peptides spontaneously insert into the membrane and then stabilize during the remaining 70 ns of simulation time. In both leaflets, the peptides localize to the membrane interface, and this localization is attributed to the formation of peptide-lipid hydrogen bonds. We show that the single tryptophan residue in each peptide contributes significantly to these hydrogen bonds; specifically, the nitrogen heteroatom of the indole ring plays a critical role. The tilt angles of the indole rings relative to the membrane normal in the upper and lower leaflets are approximately 26 degrees and 54 degrees , respectively. The tilt angles of the entire peptide chain are 62 degrees and 74 degrees . The membrane induces conformations of the peptide that are characteristic of beta-sheets, and the peptide enhances the lipid ordering in the membrane. Finally, the diffusion rate of the peptides in the membrane plane is calculated (based on experimental peptide concentrations) to be approximately 6 A(2)/ns, thus suggesting a 500 ns time scale for intermolecular interactions.
Collapse
Affiliation(s)
- Arneh Babakhani
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, CA 92093-0365,USA.
| | | | | | | | | |
Collapse
|
19
|
Tayefeh S, Kloss T, Thiel G, Hertel B, Moroni A, Kast SM. Molecular Dynamics Simulation of the Cytosolic Mouth in Kcv-Type Potassium Channels. Biochemistry 2007; 46:4826-39. [PMID: 17397187 DOI: 10.1021/bi602468r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functional effect of mutations near the intracellular mouth of the short viral Kcv potassium channel was studied by molecular dynamics simulations. As a model system we used the analogously mutated and truncated KirBac1.1, a channel with known crystal structure that shares genuine local sequence motifs with Kcv. By a novel simulated annealing methodology for structural averaging, information about the structure and dynamics of the intracellular mouth was extracted and complemented by Poisson-Boltzmann and 3D-RISM (reference interaction site model) integral equation theory for the determination of the K+ free energy surface. Besides the wild-type analogue of Kcv with its experimental reference activity (truncated KirBac1.1), two variants were studied: a deletion mutant where the N-terminus is further truncated by eight amino acids, showing inactivity in the Kcv reference system, and a point mutant where the kink-forming proline at position 13 is substituted by alanine, resulting in hyperactivity. The computations reveal that the change of activity is closely related to a hydrophilic intracellular constriction formed by the C-terminal residues of the monomers. Hyperactivity of the point mutant is correlated with both sterical and electrostatic factors, while inactivity of the deletion mutant is related to a loss of specific salt bridge patterns between the C- and N-terminus at the constriction and to the consequences for ion passage barriers, as revealed by integral equation theory. The cytosolic gate, however, is probably formed by the N-terminal segment up to the proline kink and not by the constriction. The results are compared with design principles found for other channels.
Collapse
Affiliation(s)
- Sascha Tayefeh
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Ivetac A, Campbell JD, Sansom MSP. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 2007; 46:2767-78. [PMID: 17302441 DOI: 10.1021/bi0622571] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABC transporters are integral membrane proteins which couple the energy of ATP hydrolysis to the translocation of solutes across cell membranes. BtuCD is a approximately 1100-residue protein found in the inner membrane of Gram-negative bacteria which transports vitamin B12. Vitamin B12 is bound in the periplasm by BtuF, which delivers the solute to the periplasmic entrance of the transporter protein complex BtuCD. Molecular dynamics simulations of the BtuCD and BtuCDF complexes (in a lipid bilayer) and of the isolated BtuD and BtuF proteins (in water) have been used to explore the conformational dynamics of this complex transport system. Overall, seven simulations have been performed, with and without bound ATP, corresponding to a total simulation time of 0.1 micros. Binding of ATP drives closure of the nucleotide-binding domains (NBDs) in BtuD in a symmetrical fashion, but not in BtuCD. It seems that ATP constrains the flexibility of the NBDs in BtuCD such that their closure may only occur upon binding of BtuF to the complex. Upon introduction of BtuF, and concomitant with NBD association, one ATP-binding site displays a closure, while the opposite site remains relatively unchanged. This asymmetry may reflect an initial step in the "alternating hydrolysis" mechanism and is consistent with measurements of nucleotide-binding stoichiometries. Principal components analysis of the simulation of BtuCD reveals motions that are comparable to those suggested in current transport models.
Collapse
Affiliation(s)
- Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | |
Collapse
|
21
|
Carrillo-Tripp M, San-Román ML, Hernańdez-Cobos J, Saint-Martin H, Ortega-Blake I. Ion hydration in nanopores and the molecular basis of selectivity. Biophys Chem 2006; 124:243-50. [PMID: 16765508 DOI: 10.1016/j.bpc.2006.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/26/2006] [Accepted: 04/27/2006] [Indexed: 11/25/2022]
Abstract
Using a simple model, it is shown that the cost of constraining a hydrated potassium ion inside a narrow pore is smaller than the cost of constraining hydrated sodium or lithium ions in pores of radius around 1.5 A. The opposite is true for pores of radius around 2.5 A. The reason for the selectivity in the first region is that the potassium ion allows for a greater distortion of its hydration shell and can therefore maintain a better coordination, and the reason for the reverse selectivity in the second region is that the smaller ions retain their hydration shells in these pores. This is relevant to the molecular basis of ion selective channels, and since this mechanism does not depend on the molecular details of the pore, it could also operate in all sorts of nanotubes.
Collapse
|
22
|
Sumikama T, Saito S, Ohmine I. Mechanism of Ion Permeation in a Model Channel: Free Energy Surface and Dynamics of K+Ion Transport in an Anion-Doped Carbon Nanotube. J Phys Chem B 2006; 110:20671-7. [PMID: 17034258 DOI: 10.1021/jp062547r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of the ion permeation is investigated for an anion-doped carbon nanotube, as a model of the K+ channel, by analyzing the free energy surface and the dynamics of the ion permeation through the model channel. It is found that the main rate-determining step is how an ion enters the channel. The entrance of the ion is mostly blocked by a water molecule located at this entrance. Only about 10% of K+ ions which reach the mouth of the channel can really enter the channel. The rejection rate sensitively depends on the location of this water molecule, which is easily controlled by the charge of the carbon nanotube; for example, the maximum permeation is obtained when the anion charge is at a certain value, -5.4e in the present model. At this charge, the facile translocation of the ion inside the channel is also induced due to the number of fluctuations of the ions inside the channel. Therefore, the so-called "Newton's balls", a toy model, combined with a simple ion diffusion model for explaining the fast ion permeation should be modified. The present analysis thus suggests that there exists an optimum combination of the length and the charge of the carbon nanotube for the most efficient ion permeation.
Collapse
Affiliation(s)
- Takashi Sumikama
- Department of Chemistry, Faculty of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | |
Collapse
|
23
|
Gloyn AL, Siddiqui J, Ellard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27:220-31. [PMID: 16416420 DOI: 10.1002/humu.20292] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta-cell ATP-sensitive potassium channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events, bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis, it is not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1. It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinemia (HI) of infancy; however, heterozygous activating mutations in KCNJ11 that result in the opposite phenotype of diabetes have recently been described. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment when patients are diagnosed with mutations in these genes.
Collapse
Affiliation(s)
- Anna L Gloyn
- Diabetes Research Laboratories, Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
24
|
Abstract
In responding to cytoplasmic nucleotide levels, ATP-sensitive potassium (K(ATP)) channel activity provides a unique link between cellular energetics and electrical excitability. Over the past ten years, a steady drumbeat of crystallographic and electrophysiological studies has led to detailed structural and kinetic models that define the molecular basis of channel activity. In parallel, the uncovering of disease-causing mutations of K(ATP) has led to an explanation of the molecular basis of disease and, in turn, to a better understanding of the structural basis of channel function.
Collapse
Affiliation(s)
- Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.
| |
Collapse
|
25
|
Shrivastava IH, Bahar I. Common mechanism of pore opening shared by five different potassium channels. Biophys J 2006; 90:3929-40. [PMID: 16533848 PMCID: PMC1459499 DOI: 10.1529/biophysj.105.080093] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental question associated with the function of ion channels is the conformational changes that allow for reversibly opening/occluding the pore through which the cations permeate. The recently elucidated crystal structures of potassium channels reveal similar structural motifs at their pore-forming regions, suggesting that they share a common gating mechanism. The validity of this hypothesis is explored by analyzing the collective dynamics of five known K(+) channel structures. Normal-mode analysis using the Gaussian network model strikingly reveals that all five structures display the same intrinsic motions at their pore-forming region despite the differences in their sequences, structures, and activation mechanisms. Superposition of the most cooperative mode profiles shows that the identified common mechanism is a global corkscrew-like counterrotation of the extracellular and cytoplasmic (CP) regions, leading to the opening of the CP end of the pore. A second cooperative mode shared by all five K(+) channels is the extension of the extracellular and/or CP ends via alternating anticorrelated fluctuations of pairs of diagonally opposite monomers. Residues acting as hinges/anchors in both modes are highly conserved across the members of the family of K(+) channel proteins, consistent with their presently disclosed critical mechanical role in pore gating.
Collapse
Affiliation(s)
- Indira H Shrivastava
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
26
|
Berrera M, Pantano S, Carloni P. cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations. Biophys J 2006; 90:3428-33. [PMID: 16500960 PMCID: PMC1440727 DOI: 10.1529/biophysj.105.071621] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) cation channels are opened by membrane hyperpolarization, while their activation is modulated by the binding of cyclic adenosine monophosphate (cAMP) in the cytoplasm. Here we investigate the molecular basis of cAMP channel modulation by performing molecular dynamics simulations of a segment comprising the C-linker and the cyclic nucleotide binding domain (CNBD) in the presence and absence of cAMP, based on the available crystal structure of HCN2 from mouse. In presence of cAMP, the protein undergoes an oscillation of the quaternary structure on the order of 10 ns, not observed in the apoprotein. In contrast, the absence of ligand causes conformational rearrangements within the CNBDs, driving these domains to a more flexible state, similar to that described in CNBDs of other proteins. This increased flexibility causes a rather disordered movement of the CNBDs, resulting in an inhibitory effect on the channel. We propose that the cAMP-triggered large-scale oscillation plays an important role for the channel's function, being coupled to a motion of the C-linker which, in turn, modulates the gating of the channel.
Collapse
Affiliation(s)
- Marco Berrera
- Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale per la Fisica della Materia, Democritos Modeling Center for Research in Atomic Simulation, Trieste, Italy
| | | | | |
Collapse
|
27
|
Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 2006; 15:586-92. [PMID: 16143512 PMCID: PMC1482533 DOI: 10.1016/j.sbi.2005.08.007] [Citation(s) in RCA: 531] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/09/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The realization that experimentally observed functional motions of proteins can be predicted by coarse-grained normal mode analysis has renewed interest in applications to structural biology. Notable applications include the prediction of biologically relevant motions of proteins and supramolecular structures driven by their structure-encoded collective dynamics; the refinement of low-resolution structures, including those determined by cryo-electron microscopy; and the identification of conserved dynamic patterns and mechanically key regions within protein families. Additionally, hybrid methods that couple atomic simulations with deformations derived from coarse-grained normal mode analysis are able to sample collective motions beyond the range of conventional molecular dynamics simulations. Such applications have provided great insight into the underlying principles linking protein structures to their dynamics and their dynamics to their functions.
Collapse
Affiliation(s)
- Ivet Bahar
- Department of Computational Biology, University of Pittsburgh, W1043 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
28
|
Chapter 13 Principal Components Analysis: A Review of its Application on Molecular Dynamics Data. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2006. [DOI: 10.1016/s1574-1400(06)02013-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Enkvetchakul D, Jeliazkova I, Nichols CG. Direct Modulation of Kir Channel Gating by Membrane Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2005; 280:35785-8. [PMID: 16144841 DOI: 10.1074/jbc.c500355200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple ion channels have now been shown to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) at the cytoplasmic face of the membrane. However, direct evidence for a specific interaction between phosphoinositides and ion channels is critically lacking. We reconstituted pure KirBac1.1 and KcsA protein into liposomes of defined composition (3:1 phosphatidylethanolamine:phosphatidylglycerol) and examined channel activity using a 86Rb+ uptake assay. We demonstrate direct modulation by PIP2 of KirBac1.1 but not KcsA activity. In marked contrast to activation of eukaryotic Kir channels by PIP2, KirBac1.1 is inhibited by PIP2 incorporated in the membrane (K(1/2) = 0.3 mol %). The dependence of inhibition on the number of phosphate groups and requirement for a lipid tail matches that for activation of eukaryotic Kir channels, suggesting a fundamentally similar interaction mechanism. The data exclude the possibility of indirect modulation via cytoskeletal or other intermediary elements and establish a direct interaction of the channel with PIP2 in the membrane.
Collapse
Affiliation(s)
- Decha Enkvetchakul
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Barrett CP, Noble MEM. Dynamite extended: two new services to simplify protein dynamic analysis. Bioinformatics 2005; 21:3174-5. [PMID: 15855246 DOI: 10.1093/bioinformatics/bti464] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe two additional services now available as part of the previously described Dynamite protein dynamics web service. Dynatraj provides principle component analysis and visualization of modes of motion for a user's own ensemble of protein structures, e.g. from Molecular Dynamics, NMR or experimental ensembles. Dynapocket predicts probable configurations of a protein pocket from a single known structure. Both have been provided in response to requests from users for additional functionality from the Dynamite server. Like Dynamite, both are available free of charge to all users.
Collapse
Affiliation(s)
- C Paul Barrett
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford Oxford OX1 3QU, UK
| | | |
Collapse
|
31
|
Hung A, Tai K, Sansom MSP. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. Biophys J 2005; 88:3321-33. [PMID: 15722430 PMCID: PMC1305480 DOI: 10.1529/biophysj.104.052878] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.
Collapse
Affiliation(s)
- Andrew Hung
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|