1
|
Parry HA, Willingham TB, Giordano KA, Kim Y, Qazi S, Knutson JR, Combs CA, Glancy B. Impact of capillary and sarcolemmal proximity on mitochondrial structure and energetic function in skeletal muscle. J Physiol 2024; 602:1967-1986. [PMID: 38564214 PMCID: PMC11068488 DOI: 10.1113/jp286246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.
Collapse
Affiliation(s)
- Hailey A. Parry
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - T. Bradley Willingham
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- Shephard Center’s Virginia C. Crawford Research Institute, Atlanta, GA, USA
| | | | - Yuho Kim
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- University of Massachusetts, Lowell, MA,USA
| | - Shureed Qazi
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay R. Knutson
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Combs
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Tehrani KF, Park J, Chaney EJ, Tu H, Boppart SA. Nonlinear Imaging Histopathology: A Pipeline to Correlate Gold-Standard Hematoxylin and Eosin Staining With Modern Nonlinear Microscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2023; 29:6800608. [PMID: 37193134 PMCID: PMC10174331 DOI: 10.1109/jstqe.2022.3233523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hematoxylin and eosin (H&E) staining, the century-old technique, has been the gold standard tool for pathologists to detect anomalies in tissues and diseases such as cancer. H&E staining is a cumbersome, time-consuming process that delays and wastes precious minutes during an intraoperative diagnosis. However, even in the modern era, real-time label-free imaging techniques such as simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy have delivered several more layers of information to characterize a tissue with high precision. Still, they have yet to translate to the clinic. The slow translation rate can be attributed to the lack of direct comparisons between the old and new techniques. Our approach to solving this problem is to: 1) reduce dimensions by pre-sectioning the tissue in 500 μm slices, and 2) produce fiducial laser markings which appear in both SLAM and histological imaging. High peak-power femtosecond laser pulses enable ablation in a controlled and contained manner. We perform laser marking on a grid of points encompassing the SLAM region of interest. We optimize laser power, numerical aperture, and timing to produce axially extended marking, hence multilayered fiducial markers, with minimal damage to the surrounding tissues. We performed this co-registration over an area of 3 × 3 mm2 of freshly excised mouse kidney and intestine, followed by standard H&E staining. Reduced dimensionality and the use of laser markings provided a comparison of the old and new techniques, giving a wealth of correlative information and elevating the potential of translating nonlinear microscopy to the clinic for rapid pathological assessment.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA, and also with the Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA, and also with the Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Department of Bioengineering, Carle Illinois College of Medicine, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801-3028 USA
| |
Collapse
|
3
|
Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022; 136:1851-1871. [PMID: 36545931 DOI: 10.1042/cs20220636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The skeletal muscle is one of the largest organs in the mammalian body. Its remarkable ability to swiftly shift its substrate selection allows other organs like the brain to choose their preferred substrate first. Healthy skeletal muscle has a high level of metabolic flexibility, which is reduced in several metabolic diseases, including obesity and Type 2 diabetes (T2D). Skeletal muscle health is highly dependent on optimally functioning mitochondria that exist in a highly integrated network with the sarcoplasmic reticulum and sarcolemma. The three major mitochondrial processes: biogenesis, dynamics, and mitophagy, taken together, determine the quality of the mitochondrial network in the muscle. Since muscle health is primarily dependent on mitochondrial status, the mitochondrial processes are very tightly regulated in the skeletal muscle via transcription factors like peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptors, estrogen-related receptors, nuclear respiratory factor, and Transcription factor A, mitochondrial. Physiological stimuli that enhance muscle energy expenditure, like cold and exercise, also promote a healthy mitochondrial phenotype and muscle health. In contrast, conditions like metabolic disorders, muscle dystrophies, and aging impair the mitochondrial phenotype, which is associated with poor muscle health. Further, exercise training is known to improve muscle health in aged individuals or during the early stages of metabolic disorders. This might suggest that conditions enhancing mitochondrial health can promote muscle health. Therefore, in this review, we take a critical overview of current knowledge about skeletal muscle mitochondria and the regulation of their quality. Also, we have discussed the molecular derailments that happen during various pathophysiological conditions and whether it is an effect or a cause.
Collapse
|
4
|
Chung DJ, Madison GP, Aponte AM, Singh K, Li Y, Pirooznia M, Bleck CKE, Darmani NA, Balaban RS. Metabolic design in a mammalian model of extreme metabolism, the North American least shrew (Cryptotis parva). J Physiol 2022; 600:547-567. [PMID: 34837710 PMCID: PMC10655134 DOI: 10.1113/jp282153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva). This was achieved through a combination of high-resolution 3D focused ion beam electron microscopy imaging and tandem mass tag mass spectrometry proteomics. We demonstrate that liver and kidney mitochondrial content are equivalent to the heart, permitting assessment of mitochondrial adaptations in different organs with similar metabolic demand. Muscle mitochondrial networks (cardiac and skeletal) are extensive, with a high incidence of nanotunnels - which collectively support the metabolism of large muscle cells. Mitochondrial networks were not detected in the liver and kidney as individual mitochondria are localized with sites of ATP consumption. This configuration is not observed in striated muscle, likely due to a homogeneous ATPase distribution and the structural requirements of contraction. These results demonstrate distinct, fundamental mitochondrial structural adaptations for similar metabolic demand that are dependent on the topology of energy utilization process in a mammalian model of extreme metabolism. KEY POINTS: Least shrews were studied to explore the relationship between metabolic function, mitochondrial morphology and protein content in different tissues. Liver and kidney mitochondrial content and enzymatic activity approaches that of the heart, indicating similar metabolic demand among tissues that contribute to basal and maximum metabolism. This allows an examination of mitochondrial structure and composition in tissues with similar maximum metabolic demands. Mitochondrial networks only occur in striated muscle. In contrast, the liver and kidney maintain individual mitochondria with limited reticulation. Muscle mitochondrial reticulation is the result of dense ATPase activity and cell-spanning myofibrils which require networking for adequate metabolic support. In contrast, liver and kidney ATPase activity is localized to the endoplasmic reticulum and basolateral membrane, respectively, generating a locally balanced energy conversion and utilization. Mitochondrial morphology is not driven by maximum metabolic demand, but by the cytosolic distribution of energy-utilizing systems set by the functions of the tissue.
Collapse
Affiliation(s)
- Dillon J. Chung
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Grey P. Madison
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angel M. Aponte
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Komudi Singh
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuesheng Li
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mehdi Pirooznia
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher K. E. Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Robert S. Balaban
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Meng H, Huang S, Yang Y, He X, Fei L, Xing Y. Association Between MTHFR Polymorphisms and the Risk of Essential Hypertension: An Updated Meta-analysis. Front Genet 2021; 12:698590. [PMID: 34899823 PMCID: PMC8662810 DOI: 10.3389/fgene.2021.698590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Since the 1990s, there have been a lot of research on single-nucleotide polymorphism (SNP) and different diseases, including many studies on 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphism and essential hypertension (EH). Nevertheless, their conclusions were controversial. So far, six previous meta-analyses discussed the internal relationship between the MTHFR polymorphism and EH, respectively. However, they did not evaluate the credibility of the positive associations. To build on previous meta-analyses, we updated the literature by including previously included papers as well as nine new articles, improved the inclusion criteria by also considering the quality of the papers, and applied new statistical techniques to assess the observed associations. OBJECTIVES This study aims to explore the degree of risk correlation between two MTHFR polymorphisms and EH. METHODS PubMed, EMBASE, the Cochrane Library, CNKI, and Wan Fang electronic databases were searched to identify relevant studies. We evaluated the relation between the MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms and EH by calculating the odds ratios (OR) as well as 95% confidence intervals (CI). Here we used subgroup analysis, sensitivity analysis, cumulative meta-analysis, assessment of publication bias, meta-regression meta, False-positive report probability (FPRP), Bayesian false discovery probability (BFDP), and Venice criterion. RESULTS Overall, harboring the variant of MTHFR C677T was associated with an increased risk of EH in the overall populations, East Asians, Southeast Asians, South Asians, Caucasians/Europeans, and Africans. After the sensitivity analysis, positive results were found only in the overall population (TT vs. CC: OR = 1.14, 95% CI: 1.00-1.30, P h = 0.032, I 2 = 39.8%; TT + TC vs. CC: OR = 1.15, 95% CI: 1.01-1.29, P h = 0.040, I 2 = 38.1%; T vs. C: OR = 1.14, 95% CI: 1.04-1.25, P h = 0.005, I 2 = 50.2%) and Asian population (TC vs. CC: OR = 1.14, 95% CI: 1.01-1.28, P h = 0.265, I 2 = 16.8%; TT + TC vs. CC: OR = 1.17, 95% CI: 1.04-1.30, P h = 0.105, I 2 = 32.9%; T vs. C: OR = 1.10, 95% CI: 1.02-1.19, P h = 0.018, I 2 = 48.6%). However, after further statistical assessment by FPRP, BFDP, and Venice criteria, the positive associations reported here could be deemed to be false-positives and present only weak evidence for a causal relationship. In addition, when we performed pooled analysis and sensitivity analysis on MTHFR A1298C; all the results were negative. CONCLUSION The positive relationships between MTHFR C677T and A1298C polymorphisms with the susceptibility to present with hypertension were not robust enough to withstand statistical interrogation by FPRP, BFDP, and Venice criteria. Therefore, these SNPs are probably not important in EH etiology.
Collapse
Affiliation(s)
- Hao Meng
- Department of Cardiovascular Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Shaoyan Huang
- Department of Endocrinology, Shaogauan First People's Hospital, Shaoguan, China
| | - Yali Yang
- Department of Cardiovascular Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaofeng He
- Department of science and education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Liping Fei
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuping Xing
- Neurology Department, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
6
|
Willingham TB, Ajayi PT, Glancy B. Subcellular Specialization of Mitochondrial Form and Function in Skeletal Muscle Cells. Front Cell Dev Biol 2021; 9:757305. [PMID: 34722542 PMCID: PMC8554132 DOI: 10.3389/fcell.2021.757305] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Across different cell types and within single cells, mitochondria are heterogeneous in form and function. In skeletal muscle cells, morphologically and functionally distinct subpopulations of mitochondria have been identified, but the mechanisms by which the subcellular specialization of mitochondria contributes to energy homeostasis in working muscles remains unclear. Here, we discuss the current data regarding mitochondrial heterogeneity in skeletal muscle cells and highlight potential new lines of inquiry that have emerged due to advancements in cellular imaging technologies.
Collapse
Affiliation(s)
- T. Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter T. Ajayi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
8
|
Borile G, Sandrin D, Filippi A, Anderson KI, Romanato F. Label-Free Multiphoton Microscopy: Much More Than Fancy Images. Int J Mol Sci 2021; 22:2657. [PMID: 33800802 PMCID: PMC7961783 DOI: 10.3390/ijms22052657] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.
Collapse
Affiliation(s)
- Giulia Borile
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Deborah Sandrin
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Kurt I. Anderson
- Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK;
| | - Filippo Romanato
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| |
Collapse
|
9
|
Affiliation(s)
- Robert S Balaban
- National Heath, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Haidarliu S, Bagdasarian K, Sardonicus S, Ahissar E. Interaction between muscles and fascia in the mystacial pad of whisking rodents. Anat Rec (Hoboken) 2020; 304:400-412. [DOI: 10.1002/ar.24409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Knarik Bagdasarian
- Department of Neurobiology The Weizmann Institute of Science Rehovot Israel
| | | | - Ehud Ahissar
- Department of Neurobiology The Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
11
|
Darby JRT, Sorvina A, Bader CA, Lock MC, Soo JY, Holman SL, Seed M, Kuchel T, Brooks DA, Plush SE, Morrison JL. Detecting metabolic differences in fetal and adult sheep adipose and skeletal muscle tissues. JOURNAL OF BIOPHOTONICS 2020; 13:e201960085. [PMID: 31793184 DOI: 10.1002/jbio.201960085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/05/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The primary metabolic pathway required to produce ATP differs as a result of tissue type, developmental stage and substrate availability. We utilized molecular and histological techniques to define the metabolic status in foetal and adult, adipose and skeletal muscle tissues. Redox ratios of these tissues were also determined optically by two-photon microscopy. Adult perirenal adipose tissue had a higher optical redox ratio than fetal perirenal adipose tissue, which aligned with glycolysis being used for ATP production; whereas adult skeletal muscle had a lower optical redox ratio than fetal skeletal muscle, which aligned with oxygen demanding oxidative phosphorylation activity being utilized for ATP production. We have compared traditional molecular and microscopy techniques of metabolic tissue characterization with optical redox ratios to provide a more comprehensive report on the dynamics of tissue metabolism.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, Australia
| | - Mike Seed
- The Hospital for Sick Kids, Toronto, Ontario, Canada
| | - Tim Kuchel
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Glancy B. Visualizing Mitochondrial Form and Function within the Cell. Trends Mol Med 2020; 26:58-70. [PMID: 31706841 PMCID: PMC6938546 DOI: 10.1016/j.molmed.2019.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
The specific cellular role of mitochondria is influenced by the surrounding environment because effective mitochondrial function requires the delivery of inputs (e.g., oxygen) and export of products (e.g., signaling molecules) to and from other cellular components, respectively. Recent technological developments in mitochondrial imaging have led to a more precise and comprehensive understanding of the spatial relationships governing the function of this complex organelle, opening a new era of mitochondrial research. Here, I highlight current imaging approaches for visualizing mitochondrial form and function within complex cellular environments. Increasing clarity of mitochondrial behavior within cells will continue to lend mechanistic insights into the role of mitochondria under normal and pathological conditions and point to spatially regulated processes that can be targeted to improve cellular function.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism. Nat Commun 2019; 10:3412. [PMID: 31363081 PMCID: PMC6667496 DOI: 10.1038/s41467-019-11265-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. To determine the relationship between these abnormalities, we created mice with muscle-specific knockout of the p110α or p110β catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110α, but not p110β, display impaired insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110αKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion, and increased PGC1α expression, especially PCG1α2 and PCG1α3. This leads to enhanced mitochondrial oxidative capacity, increased muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110α is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle. Diabetes is associated with decreased PI3K activation in skeletal muscle. Here, the authors show that p110a is the predominant PI3K subunit in muscle, and show that its ablation in muscle, but not ablation of p110beta, leads to insulin resistance, increased proteosomal and autophagic activity, and altered mitochondria homeostasis in mice.
Collapse
|
14
|
Schaefer PM, Kalinina S, Rueck A, von Arnim CAF, von Einem B. NADH Autofluorescence-A Marker on its Way to Boost Bioenergetic Research. Cytometry A 2018; 95:34-46. [PMID: 30211978 DOI: 10.1002/cyto.a.23597] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/20/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
More than 60 years ago, the idea was introduced that NADH autofluorescence could be used as a marker of cellular redox state and indirectly also of cellular energy metabolism. Fluorescence lifetime imaging microscopy of NADH autofluorescence offers a marker-free readout of the mitochondrial function of cells in their natural microenvironment and allows different pools of NADH to be distinguished within a cell. Despite its many advantages in terms of spatial resolution and in vivo applicability, this technique still requires improvement in order to be fully useful in bioenergetics research. In the present review, we give a summary of technical and biological challenges that have so far limited the spread of this powerful technology. To help overcome these challenges, we provide a comprehensible overview of biological applications of NADH imaging, along with a detailed summary of valid imaging approaches that may be used to tackle many biological questions. This review is meant to provide all scientists interested in bioenergetics with support on how to embed successfully NADH imaging in their research. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
15
|
A Highly Sensitive FRET Biosensor for AMPK Exhibits Heterogeneous AMPK Responses among Cells and Organs. Cell Rep 2018; 21:2628-2638. [PMID: 29186696 DOI: 10.1016/j.celrep.2017.10.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/28/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a master regulator of cellular metabolism, is a potential target for type 2 diabetes. Although extensive in vitro studies have revealed the complex regulation of AMPK, much remains unknown about the regulation in vivo. We therefore developed transgenic mice expressing a highly sensitive fluorescence resonance energy transfer (FRET)-based biosensor for AMPK, called AMPKAR-EV. AMPKAR-EV allowed us to readily examine the role of LKB1, a canonical stimulator of AMPK, in drug-induced activation and inactivation of AMPK in vitro. In transgenic mice expressing AMPKAR-EV, the AMP analog AICAR activated AMPK in muscle. In contrast, the antidiabetic drug metformin activated AMPK in liver, highlighting the organ-specific action of AMPK stimulators. Moreover, we found that AMPK was activated primarily in fast-twitch muscle fibers after tetanic contraction and exercise. These observations suggest that the AMPKAR-EV mouse will pave a way to understanding the heterogeneous responses of AMPK among cell types in vivo.
Collapse
|
16
|
Larcher V, Kunderfranco P, Vacchiano M, Carullo P, Erreni M, Salamon I, Colombo FS, Lugli E, Mazzola M, Anselmo A, Condorelli G. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc Res 2017; 114:409-416. [DOI: 10.1093/cvr/cvx239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Veronica Larcher
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Paolo Kunderfranco
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Marco Vacchiano
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Institute of Genetics and Biomedical Research (Milan Unit), National Research Council of Italy, via Fantoli, 15/16, 20138 Milan, Italy
| | - Marco Erreni
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Humanitas University, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Irene Salamon
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Humanitas University, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Enrico Lugli
- Flow Cytometry Core, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Marta Mazzola
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- School of Medicine, University of Verona, via dell'Artigliere, 8, 37129 Verona, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, via Manzoni, 56, Rozzano, 20089 Milan, Italy
- Institute of Genetics and Biomedical Research (Milan Unit), National Research Council of Italy, via Fantoli, 15/16, 20138 Milan, Italy
- Humanitas University, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
17
|
Schaefer PM, Hilpert D, Niederschweiberer M, Neuhauser L, Kalinina S, Calzia E, Rueck A, von Einem B, von Arnim CAF. Mitochondrial matrix pH as a decisive factor in neurometabolic imaging. NEUROPHOTONICS 2017; 4:045004. [PMID: 29181426 PMCID: PMC5685807 DOI: 10.1117/1.nph.4.4.045004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Alterations of cellular bioenergetics are a common feature in most neurodegenerative disorders. However, there is a selective vulnerability of different brain regions, cell types, and even mitochondrial populations to these metabolic disturbances. Thus, the aim of our study was to establish and validate an in vivo metabolic imaging technique to screen for mitochondrial function on the subcellular level. Based on nicotinamide adenine dinucleotide (phosphate) fluorescence lifetime imaging microscopy [NAD(P)H FLIM], we performed a quantitative correlation to high-resolution respirometry. Thereby, we revealed mitochondrial matrix pH as a decisive factor in imaging NAD(P)H redox state. By combining both parameters, we illustrate a quantitative, high-resolution assessment of mitochondrial function in metabolically modified cells as well as in an amyloid precursor protein-overexpressing model of Alzheimer's disease. Our metabolic imaging technique provides the basis for dissecting mitochondrial deficits not only in a range of neurodegenerative diseases, shedding light onto bioenergetic failures of cells remaining in their metabolic microenvironment.
Collapse
Affiliation(s)
| | - Diana Hilpert
- Ulm University, Department of Neurology, Ulm, Germany
| | | | | | - Sviatlana Kalinina
- Ulm University, Core Facility Confocal and Multiphoton Microscopy, Ulm, Germany
| | - Enrico Calzia
- University Medical School, Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
| | - Angelika Rueck
- Ulm University, Core Facility Confocal and Multiphoton Microscopy, Ulm, Germany
| | | | | |
Collapse
|
18
|
Frikha-Benayed D, Basta-Pljakic J, Majeska RJ, Schaffler MB. Regional differences in oxidative metabolism and mitochondrial activity among cortical bone osteocytes. Bone 2016; 90:15-22. [PMID: 27260646 PMCID: PMC4970923 DOI: 10.1016/j.bone.2016.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Metabolic oxidative stress has been implicated as a cause of osteocyte apoptosis, an essential step in triggering bone remodeling. However, little is known about the oxidative behavior of osteocytes in vivo. We assessed the redox status and distribution of total and active mitochondria in osteocytes of mouse metatarsal cortical bone in situ. Multiphoton microscopy (MPM) was used to measure fluorescence of reduced pyridine nucleotides (NADH) under normoxic conditions and acutely following extreme (postmortem) hypoxic stress. Under non-hypoxic conditions, osteocytes exhibited no detectable fluorescence, indicating rapid NADH re-oxidation. With hypoxia, NADH levels peaked and returned to near baseline levels over 3h. Cells near the periosteal surface reached maximum NADH levels twice as rapidly as osteocytes near the mid-cortex, due to the time required to initiate NADH accumulation; once started, NADH accumulation followed a similar exponential relationship at all sites. Osteocytes near periosteal and endosteal bone surfaces also had higher mitochondrial content than those in mid-cortex based on immunohistochemical staining for mitochondrial ATPase-5A (Complex V ATPase). The content of active mitochondria, assessed in situ using the potentiometric dye TMRM, was also high in osteocytes near periosteum, but low in osteocytes near endocortical surfaces, similar to levels in mid-cortex. These results demonstrate that cortical osteocytes maintain normal oxidative status utilizing mainly aerobic (mitochondrial) pathways but respond to hypoxic stress differently depending on their location in the cortex, a difference linked to mitochondrial content. An apparently high proportion of poorly functional mitochondria in osteocytes near endocortical surfaces, where increased apoptosis mainly occurs in response to bone remodeling stimuli, further suggest that regional differences in oxidative function may in part determine osteocyte susceptibility to undergo apoptosis in response to stimuli that trigger bone remodeling.
Collapse
Affiliation(s)
- Dorra Frikha-Benayed
- Department of Biomedical Engineering, The City College of New York, United States
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, The City College of New York, United States
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, United States
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York, United States
| |
Collapse
|
19
|
Lau J, Goh CC, Devi S, Keeble J, See P, Ginhoux F, Ng LG. Intravital multiphoton imaging of mouse tibialis anterior muscle. INTRAVITAL 2016; 5:e1156272. [PMID: 28243520 PMCID: PMC5226003 DOI: 10.1080/21659087.2016.1156272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Intravital imaging by multiphoton microscopy is a powerful tool to gain invaluable insight into tissue biology and function. Here, we provide a step-by-step tissue preparation protocol for imaging the mouse tibialis anterior skeletal muscle. Additionally, we include steps for jugular vein catheterization that allow for well-controlled intravenous reagent delivery. Preparation of the tibialis anterior muscle is minimally invasive, reducing the chances of inducing damage and inflammation prior to imaging. The tibialis anterior muscle is useful for imaging leukocyte interaction with vascular endothelium, and to understand muscle contraction biology. Importantly, this model can be easily adapted to study neuromuscular diseases and myopathies.
Collapse
Affiliation(s)
- Jasmine Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis, Singapore
| | - Sapna Devi
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne , Parkville, Victoria, Australia
| | - Jo Keeble
- Department of Medicine, University of Melbourne, Department of Rheumatology, Royal Melbourne Hospital, Inflammation Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
| | - Peter See
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis, Singapore
| |
Collapse
|
20
|
Glancy B, Hsu LY, Dao L, Bakalar M, French S, Chess DJ, Taylor JL, Picard M, Aponte A, Daniels MP, Esfahani S, Cushman S, Balaban RS. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. Microcirculation 2015; 21:131-47. [PMID: 25279425 DOI: 10.1111/micc.12098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. METHODS 3D volumes of in vivo murine TA muscles were imaged by MPM. Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of Mb-facilitated diffusion was examined in Mb KO mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. RESULTS MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by Mb KO. GLUT4 did not preferentially localize to embedded capillaries. CONCLUSIONS Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to PV regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, NHLBI, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam S, Balaban RS. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 2015. [PMID: 26223627 DOI: 10.1038/nature14614] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion; however, genetic evidence suggests that facilitated diffusion is not critical for normal function. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa M Hartnell
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniela Malide
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zu-Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christian A Combs
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Patricia S Connelly
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sriram Subramaniam
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Robert S Balaban
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B. Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 2015; 191:224-35. [PMID: 26057347 DOI: 10.1016/j.jsb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023]
Abstract
Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France; Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Charles Henri Hage
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Anissa Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| |
Collapse
|
23
|
Lucotte B, Balaban RS. Motion compensation for in vivo subcellular optical microscopy. J Microsc 2014; 254:9-12. [PMID: 24673143 DOI: 10.1111/jmi.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/26/2014] [Indexed: 11/27/2022]
Abstract
In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.
Collapse
Affiliation(s)
- B Lucotte
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - R S Balaban
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
24
|
Dao L, Lucotte B, Glancy B, Chang LC, Hsu LY, Balaban RS. Use of independent component analysis to improve signal-to-noise ratio in multi-probe fluorescence microscopy. J Microsc 2014; 256:133-44. [PMID: 25159193 DOI: 10.1111/jmi.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
In conventional multi-probe fluorescence microscopy, narrow bandwidth filters on detectors are used to avoid bleed-through artefacts between probes. The limited bandwidth reduces the signal-to-noise ratio of the detection, often severely compromising one or more channels. Herein, we describe a process of using independent component analysis to discriminate the position of different probes using only a dichroic mirror to differentiate the signals directed to the detectors. Independent component analysis was particularly effective in samples where the spatial overlap between the probes is minimal, a very common case in cellular microscopy. This imaging scheme collects nearly all of the emitted light, significantly improving the image signal-to-noise ratio. In this study, we focused on the detection of two fluorescence probes used in vivo, NAD(P)H and ANEPPS. The optimal dichroic mirror cutoff frequency was determined with simulations using the probes spectral emissions. A quality factor, defined as the cross-channel contrast-to-noise ratio, was optimized to maximize signals while maintaining spatial discrimination between the probes after independent component analysis post-processing. Simulations indicate that a ∼3 fold increase in signal-to-noise ratio using the independent component analysis approach can be achieved over the conventional narrow-band filtering approach without loss of spatial discrimination. We confirmed this predicted performance from experimental imaging of NAD(P)H and ANEPPS in mouse skeletal muscle, in vivo. For many multi-probe studies, the increased sensitivity of this 'full bandwidth' approach will lead to improved image quality and/or reduced excitation power requirements.
Collapse
Affiliation(s)
- L Dao
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A.; Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, U.S.A
| | | | | | | | | | | |
Collapse
|
25
|
Wengrowski AM, Kuzmiak-Glancy S, Jaimes R, Kay MW. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations. Am J Physiol Heart Circ Physiol 2013; 306:H529-37. [PMID: 24337462 DOI: 10.1152/ajpheart.00696.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Langendorff-perfused hearts and working hearts are established isolated heart preparation techniques that are advantageous for studying cardiac physiology and function, especially when fluorescence imaging is a key component. However, oxygen and energy requirements vary widely between isolated heart preparations. When energy supply and demand are not in harmony, such as when oxygen is not adequately available, the imbalance is reflected in NADH fluctuations. As such, NADH imaging can provide insight into the metabolic state of tissue. Hearts from New Zealand white rabbits were prepared as mechanically silenced Langendorff-perfused hearts, Langendorff-perfused hearts, or biventricular working hearts and subjected to sudden changes in workload, instantaneous global ischemia, and gradual hypoxia while heart rate, aortic pressure, and epicardial NADH fluorescence were monitored. Fast pacing resulted in a dip in NADH upon initiation and a spike in NADH when pacing was terminated in biventricular working hearts only, with the magnitude of the changes greatest at the fastest pacing rate. Working hearts were also most susceptible to changes in oxygen supply; NADH was at half-maximum value when perfusate oxygen was at 67.8 ± 13.7%. Langendorff-perfused and mechanically arrested hearts were the least affected by low oxygen supply, with half-maximum NADH occurring at 42.5 ± 5.0% and 23.7 ± 4.6% perfusate oxygen, respectively. Although the biventricular working heart preparation can provide a useful representation of mechanical in vivo heart function, it is not without limitations. Understanding the limitations of isolated heart preparations is crucial when studying cardiac function in the context of energy supply and demand.
Collapse
Affiliation(s)
- Anastasia M Wengrowski
- Department of Electrical and Computer Engineering, The George Washington University, Washington, District of Columbia; and
| | | | | | | |
Collapse
|
26
|
Sun Q, Li Y, He S, Situ C, Wu Z, Qu JY. Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development. BIOMEDICAL OPTICS EXPRESS 2013; 5:158-66. [PMID: 24466484 PMCID: PMC3891328 DOI: 10.1364/boe.5.000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 05/06/2023]
Abstract
We developed a label-free nonlinear optical (NLO) microscope integrating the stimulated Raman scattering, multi-color two-photon excited fluorescence and second harmonic generation. The system produces multimodal images of protein content, mitochondria distribution and sarcomere structure of fresh muscle samples. With the advanced imaging technique, we studied the mal-development of skeletal muscle caused by sarcomeric gene deficiency. In addition, important development processes of normal muscle from neonatal to adult stage were also clearly revealed based on the changing sarcomere structure, mitochondria distribution and muscle fiber size. The results demonstrate that the newly developed multimodal NLO microscope is a powerful tool to assess the muscle integrity and function.
Collapse
Affiliation(s)
- Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- These authors contributed equally to this work
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- These authors contributed equally to this work
| | - Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chenghao Situ
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
27
|
Combs CA, Smirnov A, Glancy B, Karamzadeh NS, Gandjbakhche AH, Redford G, Kilborn K, Knutson JR, Balaban RS. Compact non-contact total emission detection for in vivo multiphoton excitation microscopy. J Microsc 2013; 253:83-92. [PMID: 24251437 DOI: 10.1111/jmi.12099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/08/2013] [Indexed: 11/28/2022]
Abstract
We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed.
Collapse
Affiliation(s)
- Christian A Combs
- NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Aleksandr Smirnov
- NHLBI Laboratory of Molecular Biophysics, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Brian Glancy
- NHLBI Laboratory of Cardiac Energetics, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Nader S Karamzadeh
- NICHD Section on Biomedical Stochastic Physics, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Amir H Gandjbakhche
- NICHD Section on Biomedical Stochastic Physics, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Glen Redford
- Intelligent Imaging Innovations, Inc., Denver, CO 80216
| | - Karl Kilborn
- Intelligent Imaging Innovations, Inc., Denver, CO 80216
| | - Jay R Knutson
- NHLBI Laboratory of Molecular Biophysics, National Institutes of Health, Bethesda, Maryland 20892-1061
| | - Robert S Balaban
- NHLBI Laboratory of Cardiac Energetics, National Institutes of Health, Bethesda, Maryland 20892-1061
| |
Collapse
|
28
|
Chess DJ, Billings E, Covian R, Glancy B, French S, Taylor J, de Bari H, Murphy E, Balaban RS. Optical spectroscopy in turbid media using an integrating sphere: mitochondrial chromophore analysis during metabolic transitions. Anal Biochem 2013; 439:161-72. [PMID: 23665273 DOI: 10.1016/j.ab.2013.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 01/16/2023]
Abstract
Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation complexes (MOPCs) is modulated at multiple sites. Here, a method of optically monitoring electron distribution within and between MOPCs is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (∼465-630 nm) were modeled using linear least squares analysis with individual chromophore spectra. Classical mitochondrial activity transitions (e.g., ADP-induced increase in oxygen consumption) were used to characterize this approach. Most notable in these studies was the observation that intermediates of the catalytic cycle of cytochrome oxidase are dynamically modulated with metabolic state. The MOPC redox state, along with measurements of oxygen consumption and mitochondrial membrane potential, was used to evaluate the conductances of different sections of the electron transport chain. This analysis then was applied to mitochondria isolated from rabbit hearts subjected to ischemia/reperfusion (I/R). Surprisingly, I/R resulted in an inhibition of all measured MOPC conductances, suggesting a coordinated down-regulation of mitochondrial activity with this well-established cardiac perturbation.
Collapse
Affiliation(s)
- David J Chess
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bakalar M, Schroeder JL, Pursley R, Pohida TJ, Glancy B, Taylor J, Chess D, Kellman P, Xue H, Balaban RS. Three-dimensional motion tracking for high-resolution optical microscopy, in vivo. J Microsc 2012; 246:237-247. [PMID: 22582797 DOI: 10.1111/j.1365-2818.2012.03613.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
When conducting optical imaging experiments, in vivo, the signal to noise ratio and effective spatial and temporal resolution is fundamentally limited by physiological motion of the tissue. A three-dimensional (3D) motion tracking scheme, using a multiphoton excitation microscope with a resonant galvanometer, (512 × 512 pixels at 33 frames s(-1)) is described to overcome physiological motion, in vivo. The use of commercially available graphical processing units permitted the rapid 3D cross-correlation of sequential volumes to detect displacements and adjust tissue position to track motions in near real-time. Motion phantom tests maintained micron resolution with displacement velocities of up to 200 μm min(-1), well within the drift observed in many biological tissues under physiologically relevant conditions. In vivo experiments on mouse skeletal muscle using the capillary vasculature with luminal dye as a displacement reference revealed an effective and robust method of tracking tissue motion to enable (1) signal averaging over time without compromising resolution, and (2) tracking of cellular regions during a physiological perturbation.
Collapse
Affiliation(s)
- Matthew Bakalar
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | - James L Schroeder
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | | | | | - Brian Glancy
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | - Joni Taylor
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | - David Chess
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | - Peter Kellman
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| | - Hui Xue
- Siemens Corporate Research, Princeton, New Jersey, USA
| | - Robert S Balaban
- Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA
| |
Collapse
|
30
|
Gofman Y, Haliloglu T, Ben-Tal N. Monte Carlo simulations of peptide-membrane interactions with the MCPep web server. Nucleic Acids Res 2012; 40:W358-63. [PMID: 22695797 PMCID: PMC3394254 DOI: 10.1093/nar/gks577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The MCPep server (http://bental.tau.ac.il/MCPep/) is designed for non-experts wishing to perform Monte Carlo (MC) simulations of helical peptides in association with lipid membranes. MCPep is a web implementation of a previously developed MC simulation model. The model has been tested on a variety of peptides and protein fragments. The simulations successfully reproduced available empirical data and provided new molecular insights, such as the preferred locations of peptides in the membrane and the contribution of individual amino acids to membrane association. MCPep simulates the peptide in the aqueous phase and membrane environments, both described implicitly. In the former, the peptide is subjected solely to internal conformational changes, and in the latter, each MC cycle includes additional external rigid body rotational and translational motions to allow the peptide to change its location in the membrane. The server can explore the interaction of helical peptides of any amino-acid composition with membranes of various lipid compositions. Given the peptide’s sequence or structure and the natural width and surface charge of the membrane, MCPep reports the main determinants of peptide–membrane interactions, e.g. average location and orientation in the membrane, free energy of membrane association and the peptide’s helical content. Snapshots of example simulations are also provided.
Collapse
Affiliation(s)
- Yana Gofman
- Helmholtz-Zentrum, Department of Structure Research on Macromolecules, 21502 Geesthacht, Germany
| | | | | |
Collapse
|
31
|
Abstract
Optical microscopic imaging offers opportunities to perform noninvasive assessments of numerous parameters associated with the biochemistry, morphology, and functional state of biological samples. For example, it is possible to detect the endogenous fluorescence from a small number of important biomolecules, including NADH and FAD, which are two coenzymes involved in key metabolic pathways such as glycolysis, the Krebs cycle, and oxidative phosphorylation. Here, we review different imaging approaches to isolate the fluorescence from these chromophores in two- and three-dimensional samples and discuss the origins and potential interpretation of the observed signals in terms of cell metabolic status. Finally, we discuss the challenges and limitations of these approaches, as well as important research directions that we expect will evolve in the near future.
Collapse
Affiliation(s)
- Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
32
|
Heikal AA. A Multiparametric Imaging of Cellular Coenzymes for Monitoring Metabolic and Mitochondrial Activities. REVIEWS IN FLUORESCENCE 2010 2012. [DOI: 10.1007/978-1-4419-9828-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Palero JA, Bader AN, de Bruijn HS, der Ploeg van den Heuvel AV, Sterenborg HJCM, Gerritsen HC. In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2011; 2:1030-9. [PMID: 21559117 PMCID: PMC3087562 DOI: 10.1364/boe.2.001030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/19/2011] [Accepted: 03/29/2011] [Indexed: 05/20/2023]
Abstract
Nonlinear spectral imaging microscopy (NSIM) allows simultaneous morphological and spectroscopic investigation of intercellular events within living animals. In this study we used NSIM for in vivo time-lapse in-depth spectral imaging and monitoring of protein-bound and free reduced nicotinamide adenine dinucleotide (NADH) in mouse keratinocytes following total acute ischemia for 3.3 h at ~3 min time intervals. The high spectral resolution of NSIM images allows discrimination between the two-photon excited fluorescence emission of protein-bound and free NAD(P)H by applying linear spectral unmixing to the spectral image data. Results reveal the difference in the dynamic response between protein-bound and free NAD(P)H to ischemia-induced hypoxia/anoxia. Our results demonstrate the capability of nonlinear spectral imaging microscopy in unraveling dynamic cellular metabolic events within living animals for long periods of time.
Collapse
Affiliation(s)
- Jonathan A. Palero
- Molecular BioPhysics, Utrecht University, 3584 CC Utrecht, The Netherlands
- Currently with ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Arjen N. Bader
- Molecular BioPhysics, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Henriëtte S. de Bruijn
- Department of Radiation Oncology,Center of Optical Diagnostics and Therapy, Erasmus Medical Center,3008 AE Rotterdam, The Netherlands
| | | | - Henricus J. C. M. Sterenborg
- Department of Radiation Oncology,Center of Optical Diagnostics and Therapy, Erasmus Medical Center,3008 AE Rotterdam, The Netherlands
| | - Hans C. Gerritsen
- Molecular BioPhysics, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
34
|
Haidarliu S, Simony E, Golomb D, Ahissar E. Collagenous skeleton of the rat mystacial pad. Anat Rec (Hoboken) 2011; 294:764-73. [PMID: 21416631 DOI: 10.1002/ar.21371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/26/2011] [Indexed: 11/12/2022]
Abstract
Anatomical and functional integrity of the rat mystacial pad (MP) is dependent on the intrinsic organization of its extracellular matrix. By using collagen autofluorescence, in the rat MP, we revealed a collagenous skeleton that interconnects whisker follicles, corium, and deep collagen layers. We suggest that this skeleton supports MP tissues, mediates force transmission from muscles to whiskers, facilitates whisker retraction after protraction, and limits MP extensibility.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel. sebastian.haidarliu@ weizmann.ac.il
| | | | | | | |
Collapse
|
35
|
Wang C, Qiao L, He F, Cheng Y, Xu Z. Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source. J Microsc 2011; 243:179-83. [PMID: 21388374 DOI: 10.1111/j.1365-2818.2011.03492.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We experimentally demonstrate, for the first time to the best of our knowledge, two-photon fluorescence imaging with a femtosecond optical parametric amplifier. In particular, we systematically compare the imaging depths of two-photon fluorescence microscopes based on three different excitation sources, including a femtosecond oscillator, a femtosecond regenerative amplifier and the optical parametric amplifier. The results show that the optical parametric amplifier can greatly extend the penetration depth by approximately 227% as compared with that obtained with the femtosecond oscillator due to effective suppression of scattering at longer wavelength and enhanced excitation efficiency enabled by higher pulse energy.
Collapse
Affiliation(s)
- C Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, P.O. Box 800-211, Shanghai 201800, China
| | | | | | | | | |
Collapse
|
36
|
Sumalekshmy S, Fahrni CJ. Metal Ion-Responsive Fluorescent Probes for Two-Photon Excitation Microscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2011; 23:483-500. [PMID: 28503029 PMCID: PMC5427716 DOI: 10.1021/cm1021905] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal ion-responsive fluorescent probes are powerful tools for visualizing labile metal ion pools in live cells. To take full advantage of the benefits offered by two-photon excitation microscopy, including increased depth penetration, reduced phototoxicity, and intrinsic 3D capabilities, the photophysical properties of the probes must be optimized for nonlinear excitation. This review summarizes the challenges associated with the design of two-photon excitable fluorescent probes and labels and offers an overview on recent efforts in developing selective and sensitive reagents for the detection of metal ions in biological systems.
Collapse
|
37
|
Amornphimoltham P, Masedunskas A, Weigert R. Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv Drug Deliv Rev 2011; 63:119-28. [PMID: 20933026 DOI: 10.1016/j.addr.2010.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 12/23/2022]
Abstract
The technical developments in the field of non-linear microscopy have made intravital microscopy one of the most successful techniques for studying physiological and pathological processes in live animals. Intravital microscopy has been utilized to address many biological questions in basic research and is now a fundamental tool for preclinical studies, with an enormous potential for clinical applications. The ability to dynamically image cellular and subcellular structures combined with the possibility to perform longitudinal studies have empowered investigators to use this discipline to study the mechanisms of action of therapeutic agents and assess the efficacy on their targets in vivo. The goal of this review is to provide a general overview of the recent advances in intravital microscopy and to discuss some of its applications in preclinical studies.
Collapse
|
38
|
Miller MJ, McDole JR, Newberry RD. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci 2010; 1207 Suppl 1:E21-8. [PMID: 20961303 DOI: 10.1111/j.1749-6632.2010.05708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The intestinal lymphatic system comprises two noncommunicating lymphatic networks: one containing the lacteals draining the villi and the connecting submucosal lymphatic network and one containing the lymphatics that drain the intestine muscular layer. These systems deliver lymph into a common network of collecting lymphatics originating near the mesenteric border. The intestinal lymphatic system serves vital functions in the regulation of tissue fluid homeostasis, immune surveillance, and the transport of nutrients; conversely, this system is affected by, and directly contributes to, disease processes within the intestine. Recent discoveries of specific lymphatic markers, factors promoting lymphangiogenesis, and factors selectively affecting the development of intestinal lymphatics, hold promise for unlocking the role of lymphatics in the pathogenesis of diseases affecting the intestine and for intestinal lymphatic selective therapies. Vital to progress in understanding how the intestinal lymphatic system functions is the integration of recent advances identifying molecular pathways for lymphatic growth and remodeling with advanced imaging modalities to observe lymphatic function and dysfunction in vivo.
Collapse
Affiliation(s)
- Mark J Miller
- Department of Pathology and Immunology, St. Louis, Missouri, USA
| | | | | |
Collapse
|
39
|
Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 2010; 4:241-63. [PMID: 20406068 DOI: 10.2217/bmm.10.1] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.
Collapse
Affiliation(s)
- Ahmed A Heikal
- Department of Chemistry & Biochemistry and Department of Pharmacy Practice & Pharmaceutical Sciences, The University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812-2496, USA.
| |
Collapse
|
40
|
Eagle KA, Ginsburg GS, Musunuru K, Aird WC, Balaban RS, Bennett SK, Blumenthal RS, Coughlin SR, Davidson KW, Frohlich ED, Greenland P, Jarvik GP, Libby P, Pepine CJ, Ruskin JN, Stillman AE, Van Eyk JE, Tolunay HE, McDonald CL, Smith SC. Identifying patients at high risk of a cardiovascular event in the near future: current status and future directions: report of a national heart, lung, and blood institute working group. Circulation 2010; 121:1447-54. [PMID: 20351302 DOI: 10.1161/circulationaha.109.904029] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kim A Eagle
- University of Michigan Cardiovascular Center, Ann Arbor, MI 48109-5852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A. Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 2010; 133:481-91. [PMID: 20372919 DOI: 10.1007/s00418-010-0692-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.
Collapse
Affiliation(s)
- Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive Room 303A, Bethesda, MD 20892-4340, USA.
| | | | | | | | | |
Collapse
|
42
|
Schroeder JL, Luger-Hamer M, Pursley R, Pohida T, Chefd'hotel C, Kellman P, Balaban RS. Short communication: Subcellular motion compensation for minimally invasive microscopy, in vivo: evidence for oxygen gradients in resting muscle. Circ Res 2010; 106:1129-33. [PMID: 20167928 DOI: 10.1161/circresaha.109.211946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE In vivo microscopy seeks to observe dynamic subcellular processes in a physiologically relevant context. A primary limitation of optical microscopy in vivo is tissue motion, which prevents physiological time course observations or image averaging. OBJECTIVE To develop and demonstrate motion compensation methods that can automatically track image planes within biological tissues, including the tissue displacements associated with large changes in blood flow, and to evaluate the effect of global hypoxia on the regional kinetics and steady state levels of mitochondrial NAD(P)H. METHODS AND RESULTS A dynamic optical microscope, with real-time prospective tracking and retrospective image processing, was used collect high-resolution images through cellular responses to various perturbations. The subcellular metabolic response to hypoxia was examined in vivo. Mitochondria closest to the capillaries were significantly more oxidized at rest (67+/-3%) than the intrafibrillar mitochondria (83+/-3%; P<0.0001) in the same cell. CONCLUSIONS These data are consistent with the hypothesis that a significant oxygen gradient from capillary to muscle core exists at rest, thereby reducing the oxidative load on the muscle cell.
Collapse
Affiliation(s)
- James L Schroeder
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute,/NIH,10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Loew S, Hinderliter A, May S. Stability of protein-decorated mixed lipid membranes: The interplay of lipid-lipid, lipid-protein, and protein-protein interactions. J Chem Phys 2009; 130:045102. [PMID: 19191415 DOI: 10.1063/1.3063117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Membrane-associated proteins are likely to contribute to the regulation of the phase behavior of mixed lipid membranes. To gain insight into the underlying mechanism, we study a thermodynamic model for the stability of a protein-decorated binary lipid layer. Here, proteins interact preferentially with one lipid species and thus locally sequester that species. We aim to specify conditions that lead to an additional macroscopic phase separation of the protein-decorated lipid membrane. Our model is based on a standard mean-field lattice-gas description for both the lipid mixture and the adsorbed protein layer. Besides accounting for the lipid-protein binding strength, we also include attractive lipid-lipid and protein-protein interactions. Our analysis characterizes the decrease in the membrane's critical interaction parameter as a function of the lipid-protein binding strength. For small and large binding strengths we provide analytical expressions; numerical results cover the intermediate range. Our results reiterate the crucial importance of the line tension associated with protein-induced compositional gradients and the presence of attractive lipid-lipid interactions within the membrane. Direct protein-protein attraction effectively increases the line tension and thus tends to further destabilize the membrane.
Collapse
Affiliation(s)
- Stephan Loew
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA
| | | | | |
Collapse
|
44
|
Konjufca V, Miller MJ. Two-photon microscopy of host-pathogen interactions: acquiring a dynamic picture of infection in vivo. Cell Microbiol 2009; 11:551-9. [PMID: 19170686 DOI: 10.1111/j.1462-5822.2009.01289.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-photon (2P) microscopy has become increasingly popular among immunologists for analysing single-cell dynamics in tissues. Researchers are now taking 2P microscopy beyond the study of model antigen systems (e.g. ovalbumin immunization) and are applying the technique to examine infection in vivo. With the appropriate fluorescent probes, 2P imaging can provide high-resolution spatio-temporal information regarding cell behaviour, monitor cell functions and assess various outcomes of infection, such as host cell apoptosis or pathogen proliferation. Imaging of transgenic and knockout mice can be used to probe molecular mechanisms governing the host response to infection. From the microbe side, imaging genetically engineered mutant strains of a pathogen can test the roles of specific virulence factors in pathogenesis. Here, we discuss recent work that has applied 2P microscopy to study models of infection and highlight the tremendous potential that this approach has for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Vjollca Konjufca
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
45
|
Andresen V, Alexander S, Heupel WM, Hirschberg M, Hoffman RM, Friedl P. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr Opin Biotechnol 2009; 20:54-62. [DOI: 10.1016/j.copbio.2009.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/14/2009] [Accepted: 02/18/2009] [Indexed: 01/21/2023]
|
46
|
Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I, Miller MJ. Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol 2009; 461:349-78. [PMID: 19480927 DOI: 10.1016/s0076-6879(09)05416-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-photon (2P) microscopy is a high-resolution imaging technique that was initially applied by neurobiologists and developmental cell biologists but has subsequently been broadly adapted by immunologists. The value of 2P microscopy is that it affords an unparalleled view of single-cell spatiotemporal dynamics deep within intact tissues and organs. As the technology develops and new transgenic mice and fluorescent probes become available, 2P microscopy will serve as an increasingly valuable tool for assessing cell function and probing molecular mechanisms. Here we discuss the technical aspects related to 2P microscope design, explain in detail various tissue imaging preparations, and walk the reader through the often daunting process of analyzing multidimensional data sets and presenting the experimental results.
Collapse
Affiliation(s)
- Bernd H Zinselmeyer
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Parihar MS, Kunz EA, Brewer GJ. Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res 2008; 86:2339-52. [PMID: 18438923 DOI: 10.1002/jnr.21679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Age-related glutamate excitotoxicity depends in an unknown manner on active mitochondria, which are key determinants of the cellular redox potential. Compared with embryonic and middle-aged neurons, old-aged rat hippocampal neurons have a lower resting reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and a lower redox ratio (NAD(P)H/flavin adenine nucleotide). Glutamate treatment resulted in an initial increase in NAD(P)H concentrations in all ages, followed by a profound calcium-dependent, age-related decline in NAD(P)H concentration and redox ratio. With complex I of the electron transport chain inhibited by rotenone, treatment with glutamate or ionomycin only resulted in the increase in NAD(P)H fluorescence. High-performance liquid chromatography analysis of adenine nucleotides in brain extracts showed 50% less nicotinamide adenine dinucleotide (NADH) and almost twice as much oxidized nicotinamide adenine dinucleotide, demonstrating a more oxidized ratio in old than middle-aged brain. Resting glutathione content also declined with age and further decreased with glutamate treatment without accompanying changes in adenosine triphosphate levels. We conclude that age does not affect production of NADH by dehydrogenases but that old-aged neurons consume more NADH and glutathione, leading to a catastrophic decline in redox ratio.
Collapse
Affiliation(s)
- Mordhwaj S Parihar
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626, USA
| | | | | |
Collapse
|
49
|
Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 2008; 454:784-8. [PMID: 18600262 DOI: 10.1038/nature07104] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/19/2008] [Indexed: 11/08/2022]
Abstract
Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.
Collapse
|
50
|
Dunn KW, Sutton TA. Functional studies in living animals using multiphoton microscopy. ILAR J 2008; 49:66-77. [PMID: 18172334 DOI: 10.1093/ilar.49.1.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In vivo microscopy is a powerful method for studying fundamental issues of physiology and pathophysiology. The recent development of multiphoton fluorescence microscopy has extended the reach of in vivo microscopy, supporting high-resolution imaging deep into the tissues and organs of living animals. As compared with other in vivo imaging techniques, multiphoton microscopy is uniquely capable of providing a window into cellular and subcellular processes in the context of the intact, functioning animal. In addition, the ability to collect multiple colors of fluorescence from the same sample makes in vivo microscopy uniquely capable of characterizing up to three parameters from the same volume, supporting powerful correlative analyses. Since its invention in 1990, multiphoton microscopy has been increasingly applied to numerous areas of medical investigation, providing invaluable insights into cell physiology and pathology. However, researchers have only begun to realize the true potential of this powerful technology as it has proliferated beyond the laboratories of a relatively few pioneers. In this article we present an overview of the advantages and limitations of multiphoton microscopy as applied to in vivo imaging. We also review specific examples of the application of in vivo multiphoton microscopy to studies of physiology and pathology in a variety of organs including the brain, skin, skeletal muscle, tumors, immune cells, and visceral organs.
Collapse
Affiliation(s)
- Kenneth William Dunn
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202-5116, USA.
| | | |
Collapse
|