1
|
Han J, Meade J, Devine D, Sadeghpour A, Rappolt M, Goycoolea FM. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024; 10:e34554. [PMID: 39149035 PMCID: PMC11325287 DOI: 10.1016/j.heliyon.2024.e34554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).
Collapse
Affiliation(s)
- Jinyang Han
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Josephine Meade
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Deirdre Devine
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
- Department of Cell Biology and Histology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
2
|
Ahmed M, Islam MZ, Billah MM, Yamazaki M. Effect of Phosphatidylethanolamine on Pore Formation Induced by the Antimicrobial Peptide PGLa. J Phys Chem B 2024; 128:2684-2696. [PMID: 38450565 DOI: 10.1021/acs.jpcb.3c08098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Most antimicrobial peptides (AMPs) induce pore formation and a burst of lipid bilayers and plasma membranes. This causes severe leakage of the internal contents and cell death. The AMP PGLa forms nanopores in giant unilamellar vesicles (GUVs) comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG). We here elucidated the effect of the line tension of a prepore rim on PGLa-induced nanopore formation by investigating the interaction of PGLa with single GUVs comprising dioleoylphosphatidylethanolamine (DOPE)/DOPG (6:4) in buffer using the single GUV method. We found that PGLa forms nanopores in the GUV membrane, which evolved into a local burst and burst of GUVs. The rate of pore formation in DOPE/DOPG-GUVs was smaller than that in DOPC/DOPG-GUVs. PGLa is located only in the outer leaflet of a GUV bilayer just before a fluorescent probe AF647 leakage from the inside, indicating that this asymmetric distribution induces nanopore formation. PGLa-induced local burst and burst of GUVs were observed at 10 ms-time resolution. After nanopore formation started, dense particles and small vesicles appeared in the GUVs, followed by a decrease in the GUV diameter. The GUV was finally converted into smaller GUV or lipid membrane aggregates. We discuss the mechanisms of PGLa-induced nanopore formation and its direct evolution to a GUV burst.
Collapse
Affiliation(s)
- Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Zahidul Islam
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Masum Billah
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
3
|
Bowers SR, Lockhart C, Klimov DK. Binding and dimerization of PGLa peptides in anionic lipid bilayer studied by replica exchange molecular dynamics. Sci Rep 2024; 14:4972. [PMID: 38424117 PMCID: PMC10904749 DOI: 10.1038/s41598-024-55270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The 21-residue PGLa peptide is well known for antimicrobial activity attributed to its ability to compromize bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied PGLa binding to a model anionic DMPC/DMPG bilayer at the high peptide:lipid ratio that promotes PGLa dimerization (a two peptides per leaflet system). As a reference we used our previous simulations at the low peptide:lipid ratio (a one peptide per leaflet system). We found that the increase in the peptide:lipid ratio suppresses PGLa helical propensity, tilts the bound peptide toward the bilayer hydrophobic core, and forces it deeper into the bilayer. Surprisingly, at the high peptide:lipid ratio PGLa binding induces weaker bilayer thinning, but deeper water permeation. We explain these effects by the cross-correlations between lipid shells surrounding PGLa that leads to a much diminished efflux of DMPC lipids from the peptide proximity at the high peptide:lipid ratio. Consistent with the experimental data the propensity for PGLa dimerization was found to be weak resulting in coexistence of monomers and dimers with distinctive properties. PGLa dimers assemble via apolar criss-cross interface and become partially expelled from the bilayer residing at the bilayer-water boundary. We rationalize their properties by the dimer tendency to preserve favorable electrostatic interactions between lysine and phosphate lipid groups as well as to avoid electrostatic repulsion between lysines in the low dielectric environment of the bilayer core. PGLa homedimer interface is predicted to be distinct from that involved in PGLa-magainin heterodimers.
Collapse
Affiliation(s)
- Steven R Bowers
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
4
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
5
|
Strandberg E, Wadhwani P, Bürck J, Anders P, Mink C, van den Berg J, Ciriello RAM, Melo MN, Castanho MARB, Bardají E, Ulmschneider JP, Ulrich AS. Temperature-Dependent Re-alignment of the Short Multifunctional Peptide BP100 in Membranes Revealed by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Chembiochem 2023; 24:e202200602. [PMID: 36454659 DOI: 10.1002/cbic.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/02/2022]
Abstract
BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Patrick Anders
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Mink
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Present address: Syngenta Crop Protection AG, 4333, Münchwilen, Switzerland
| | - Jonas van den Berg
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Raffaele A M Ciriello
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Manuel N Melo
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.,Present address: ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Eduard Bardají
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics (Basel) 2022; 11:1451. [PMID: 36290108 PMCID: PMC9598685 DOI: 10.3390/antibiotics11101451] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Jianxiu Cai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Yapeng Wang
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Derek F. Wong
- NLP2CT Lab, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
7
|
Salnikov E, Bechinger B. Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184001. [PMID: 35817122 DOI: 10.1016/j.bbamem.2022.184001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural liquid crystalline membranes are made up of many different lipids carrying a mixture of saturated and unsaturated fatty acyl chains. Whereas in the past considerable attention has been paid to cholesterol content, the phospholipid head groups and the membrane surface charge the detailed fatty acyl composition was often considered less important. However, recent investigations indicate that the detailed fatty acyl chain composition has pronounced effects on the oligomerization of the transmembrane helical anchoring domains of the MHC II receptor or the membrane alignment of the cationic antimicrobial peptide PGLa. In contrast the antimicrobial peptides magainin 2 and alamethicin are less susceptible to lipid saturation. Using histidine-rich LAH4 designer peptides the high energetic contributions of lipid saturation in stabilizing transmembrane helical alignments are quantitatively evaluated. These observations can have important implications for the biological regulation of membrane proteins and should be taken into considerations during biophysical or structural experiments.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
8
|
Membranolytic Mechanism of Amphiphilic Antimicrobial β-Stranded [KL]n Peptides. Biomedicines 2022; 10:biomedicines10092071. [PMID: 36140173 PMCID: PMC9495826 DOI: 10.3390/biomedicines10092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Amphipathic peptides can act as antibiotics due to membrane permeabilization. KL peptides with the repetitive sequence [Lys-Leu]n-NH2 form amphipathic β-strands in the presence of lipid bilayers. As they are known to kill bacteria in a peculiar length-dependent manner, we suggest here several different functional models, all of which seem plausible, including a carpet mechanism, a β-barrel pore, a toroidal wormhole, and a β-helix. To resolve their genuine mechanism, the activity of KL peptides with lengths from 6–26 amino acids (plus some inverted LK analogues) was systematically tested against bacteria and erythrocytes. Vesicle leakage assays served to correlate bilayer thickness and peptide length and to examine the role of membrane curvature and putative pore diameter. KL peptides with 10–12 amino acids showed the best therapeutic potential, i.e., high antimicrobial activity and low hemolytic side effects. Mechanistically, this particular window of an optimum β-strand length around 4 nm (11 amino acids × 3.7 Å) would match the typical thickness of a lipid bilayer, implying the formation of a transmembrane pore. Solid-state 15N- and 19F-NMR structure analysis, however, showed that the KL backbone lies flat on the membrane surface under all conditions. We can thus refute any of the pore models and conclude that the KL peptides rather disrupt membranes by a carpet mechanism. The intriguing length-dependent optimum in activity can be fully explained by two counteracting effects, i.e., membrane binding versus amyloid formation. Very short KL peptides are inactive, because they are unable to bind to the lipid bilayer as flexible β-strands, whereas very long peptides are inactive due to vigorous pre-aggregation into β-sheets in solution.
Collapse
|
9
|
Remington JM, Ferrell JB, Schneebeli ST, Li J. Concerted Rolling and Penetration of Peptides during Membrane Binding. J Chem Theory Comput 2022; 18:3921-3929. [PMID: 35507824 DOI: 10.1021/acs.jctc.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide binding to membranes is common and fundamental in biochemistry and biophysics and critical for applications ranging from drug delivery to the treatment of bacterial infections. However, it is largely unclear, from a theoretical point of view, what peptides of different sequences and structures share in the membrane-binding and insertion process. In this work, we analyze three prototypical membrane-binding peptides (α-helical magainin, PGLa, and β-hairpin tachyplesin) during membrane binding, using molecular details provided by Markov state modeling and microsecond-long molecular dynamics simulations. By leveraging both geometric and data-driven collective variables that capture the essential physics of the amphiphilic and cationic peptide-membrane interactions, we reveal how the slowest kinetic process of membrane binding is the dynamic rolling of the peptide from an attached to a fully bound state. These results not only add fundamental knowledge of the theory of how peptides bind to biological membranes but also open new avenues to study general peptides in more complex environments for further applications.
Collapse
Affiliation(s)
- Jacob M Remington
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathon B Ferrell
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Severin T Schneebeli
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
10
|
Probing and Manipulating the Lateral Pressure Profile in Lipid Bilayers Using Membrane-Active Peptides-A Solid-State 19F NMR Study. Int J Mol Sci 2022; 23:ijms23094544. [PMID: 35562938 PMCID: PMC9101910 DOI: 10.3390/ijms23094544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The lateral pressure profile constitutes an important physical property of lipid bilayers, influencing the binding, insertion, and function of membrane-active peptides, such as antimicrobial peptides. In this study, we demonstrate that the lateral pressure profile can be manipulated using the peptides residing in different regions of the bilayer. A 19F-labeled analogue of the amphiphilic peptide PGLa was used to probe the lateral pressure at different depths in the membrane. To evaluate the lateral pressure profile, we measured the orientation of this helical peptide with respect to the membrane using solid-state 19F-NMR, which is indicative of its degree of insertion into the bilayer. Using this experimental approach, we observed that the depth of insertion of the probe peptide changed in the presence of additional peptides and, furthermore, correlated with their location in the membrane. In this way, we obtained a tool to manipulate, as well as to probe, the lateral pressure profile in membranes.
Collapse
|
11
|
Salnikov E, Aisenbrey C, Bechinger B. Lipid saturation and head group composition have a pronounced influence on the membrane insertion equilibrium of amphipathic helical polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183844. [PMID: 34954200 DOI: 10.1016/j.bbamem.2021.183844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
The histidine-rich peptides of the LAH4 family were designed using cationic antimicrobial peptides such as magainin and PGLa as templates. The LAH4 amphipathic helical sequences exhibit a multitude of interesting biological properties such as antimicrobial activity, cell penetration of a large variety of cargo and lentiviral transduction enhancement. The parent peptide associates with lipid bilayers where it changes from an orientation along the membrane interface into a transmembrane configuration in a pH-dependent manner. Here we show that LAH4 adopts a transmembrane configuration in fully saturated DMPC membranes already at pH 3.5, i.e. much below the pKa of the histidines whereas the transition pH in POPC correlates closely with histidine neutralization. In contrast in POPG membranes the in-planar configuration is stabilized by about one pH unit. The differences in pH can be converted into energetic contributions for the in-plane to transmembrane transition equilibrium, where the shift in the transition pH due to lipid saturation corresponds to energies which are otherwise obtained by the exchange of several cationic with hydrophobic residues. A similar dependence on lipid saturation has also been observed when the PGLa and magainin antimicrobial peptides interact within lipid bilayers suggesting that the quantitative evaluation presented in this paper also applies to other membrane polypeptides.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
12
|
Wadhwani P, Sekaran S, Strandberg E, Bürck J, Chugh A, Ulrich AS. Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom. Int J Mol Sci 2021; 22:ijms221810156. [PMID: 34576320 PMCID: PMC8470881 DOI: 10.3390/ijms221810156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Saiguru Sekaran
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India; (S.S.); (A.C.)
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India; (S.S.); (A.C.)
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Correspondence:
| |
Collapse
|
13
|
Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183680. [PMID: 34153295 DOI: 10.1016/j.bbamem.2021.183680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023]
Abstract
Fluorescent-probe-labeled peptides are used to study the interactions of peptides with cells and lipid vesicles but labeling peptides with fluorescent probes can significantly change these interactions. We recently developed a new method to detect the entry of nonlabeled peptides into the lumen of single giant unilamellar vesicles (GUVs). Here we applied this method to examine the interaction of the antimicrobial peptide PGLa with single GUVs to elucidate whether PGLa can enter the GUV lumen without pore formation. First, we examined the interaction of nonlabeled PGLa with single GUVs comprising dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) (4/6) whose lumens contain the fluorescent probe AF647 and DOPG/DOPC (8/2)-large unilamellar vesicles encapsulating a high concentration of calcein. After a large lag period from starting the interaction with PGLa, the fluorescence intensity of the GUV lumen due to calcein (Icalcein) increased gradually without leakage of AF647, indicating that PGLa enters the GUV lumen without pore formation in the GUV membrane. The fraction of entry of PGLa increased with increasing PGLa concentration. Simultaneous measurement of the fractional area change of the GUV membrane (δ) and PGLa-induced increase in Icalcein showed that the entry of PGLa occurs only during the second increase in δ, indicating that PGLa enters the lumen during its translocation from the outer leaflet to the inner leaflet. The fraction of entry of PGLa without pore formation increased with increasing membrane tension. Based on these results, we discuss the elementary processes and the mechanism of the entry of PGLa into the GUV lumen.
Collapse
|
14
|
Mink C, Strandberg E, Wadhwani P, Melo MN, Reichert J, Wacker I, Castanho MARB, Ulrich AS. Overlapping Properties of the Short Membrane-Active Peptide BP100 With (i) Polycationic TAT and (ii) α-helical Magainin Family Peptides. Front Cell Infect Microbiol 2021; 11:609542. [PMID: 33981626 PMCID: PMC8107365 DOI: 10.3389/fcimb.2021.609542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic α-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic α-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membrane-based activity as magainin-like peptides and may have a similar mechanism of action.
Collapse
Affiliation(s)
- Christian Mink
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| | - Manuel N Melo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Irene Wacker
- Cryo EM, Centre for Advanced Materials, Universität Heidelberg, Heidelberg, Germany
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anne S Ulrich
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| |
Collapse
|
15
|
Martyna A, Bahsoun B, Madsen JJ, Jackson FSJS, Badham MD, Voth GA, Rossman JS. Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane. J Phys Chem B 2020; 124:6738-6747. [PMID: 32644803 PMCID: PMC7515559 DOI: 10.1021/acs.jpcb.0c03331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
influenza virus M2 amphipathic helix (M2AH) alters membrane
curvature in a cholesterol-dependent manner, mediating viral membrane
scission during influenza virus budding. Here, we have investigated
the biophysical effects of cholesterol on the ability of an M2AH peptide
to manipulate membrane properties. We see that the ability of the
M2AH to interact with membranes and form an α-helix is independent
of membrane cholesterol concentration; however, cholesterol affects
the angle of the M2AH peptide within the membrane. This change in
membrane orientation affects the ability of the M2AH to alter lipid
order. In low-cholesterol membranes, the M2AH is inserted near the
level of the lipid head groups, increasing lipid order, which may
contribute to generation of the membrane curvature. As the cholesterol
content increases, the M2AH insertion becomes flatter and slightly
deeper in the membrane below the lipid headgroups, where the polar
face can continue to interact with the headgroups while the hydrophobic
face binds cholesterol. This changed orientation minimizes lipid packing
defects and lipid order changes, likely reducing the generation of
membrane curvature. Thus, cholesterol regulates M2 membrane scission
by precisely modulating M2AH positioning within the membrane. This
has implications for the understanding of many of amphipathic-helix-driven
cellular budding processes that occur in specific lipid environments.
Collapse
Affiliation(s)
- Agnieszka Martyna
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Basma Bahsoun
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Jesper J Madsen
- Department of Chemistry and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | | | - Matthew D Badham
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Gregory A Voth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
16
|
Strandberg E, Bentz D, Wadhwani P, Bürck J, Ulrich AS. Terminal charges modulate the pore forming activity of cationic amphipathic helices. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183243. [DOI: 10.1016/j.bbamem.2020.183243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
|
17
|
Strandberg E, Bentz D, Wadhwani P, Ulrich AS. Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso-lipids. Sci Rep 2020; 10:4710. [PMID: 32170095 PMCID: PMC7070102 DOI: 10.1038/s41598-020-61526-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The amphipathic α-helical antimicrobial peptide MSI-103 (aka KIA21) can form stable transmembrane pores when the bilayer takes on a positive spontaneous curvature, e.g. by the addition of lyso-lipids. Solid-state 31P- and 15N-NMR demonstrated an enrichment of lyso-lipids in these toroidal wormholes. Anionic lyso-lipids provided additional stabilization by electrostatic interactions with the cationic peptides. The remaining lipid matrix did not affect the nature of the pore, as peptides maintained the same orientation independent of lipid charge, and a change in membrane thickness did not considerably affect their tilt angle. Under optimized conditions (i.e. in the presence of lyso-lipids and appropriate bilayer thickness), stable and well-aligned pores could be obtained for solid-state 2H-NMR analysis. These data revealed for the first time the complete 3D alignment of this representative amphiphilic peptide in fluid membranes, which is compatible with either monomeric helices as constituents, or left-handed supercoiled dimers as building blocks from which the overall toroidal wormhole is assembled.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - David Bentz
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.
| |
Collapse
|
18
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
19
|
Drouin M, Wadhwani P, Grage SL, Bürck J, Reichert J, Tremblay S, Mayer MS, Diel C, Staub A, Paquin JF, Ulrich AS. Monofluoroalkene-Isostere as a 19 F NMR Label for the Peptide Backbone: Synthesis and Evaluation in Membrane-Bound PGLa and (KIGAKI) 3. Chemistry 2020; 26:1511-1517. [PMID: 31867761 DOI: 10.1002/chem.201905054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Solid-state 19 F NMR is a powerful method to study the interactions of biologically active peptides with membranes. So far, in labelled peptides, the 19 F-reporter group has always been installed on the side chain of an amino acid. Given the fact that monofluoroalkenes are non-hydrolyzable peptide bond mimics, we have synthesized a monofluoroalkene-based dipeptide isostere, Val-Ψ[(Z)-CF=CH]-Gly, and inserted it in the sequence of two well-studied antimicrobial peptides: PGLa and (KIGAKI)3 are representatives of an α-helix and a β-sheet. The conformations and biological activities of these labeled peptides were studied to assess the suitability of monofluoroalkenes for 19 F NMR structure analysis.
Collapse
Affiliation(s)
- Myriam Drouin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Sébastien Tremblay
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Marie Sabine Mayer
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Christian Diel
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Alexander Staub
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
20
|
Binding and Flip as Initial Steps for BP-100 Antimicrobial Actions. Sci Rep 2019; 9:8622. [PMID: 31197199 PMCID: PMC6565725 DOI: 10.1038/s41598-019-45075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
BP100 is a short antimicrobial peptide and can also act as a molecule-carrier into cells. Like with other antimicrobial peptides, the precise mechanism of membrane disruption is not fully understood. Here we use computer simulations to understand, at a molecular level, the initial interaction between BP100 and zwitterionic/negatively charged model membranes. In agreement with experimental results, our simulations showed BP100 folded into an alpha helix when in contact with negatively charged membranes. BP100 binding induced the aggregation of negatively charged lipids on mixed membranes composed of zwitterionic and anionic lipids. The peptide in alpha-helix conformation initially interacts with the membrane via electrostatic interactions between the negatively charged lipids and the positively charged residues of the peptide. At that point the peptide flips, burying the hydrophobic residues into the bilayer highlighting the importance of the hydrophobic effect contribution to the initial interaction of cationic antimicrobial peptides with membranes.
Collapse
|
21
|
Kondrashov OV, Galimzyanov TR, Jiménez-Munguía I, Batishchev OV, Akimov SA. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys Rev E 2019; 99:022401. [PMID: 30934249 DOI: 10.1103/physreve.99.022401] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 01/03/2023]
Abstract
Amphipathic alpha-helical peptides, among other peripheral components of plasma membranes, are promising antimicrobial agents. Partial incorporation of a peptide into a lipid monolayer causes elastic deformations. Deformations induced by two peptides distant from each other are independent; when peptides get closer, interference between the deformations causes effective lateral interaction. We quantified the energy of membrane deformations for arbitrary configuration of two amphipathic peptides on the membrane surface. The global minimum of the deformation energy proved to be achieved when two parallel peptides are in registry at the distance of about 6 nm between the axes of peptides. The energy calculated in the unidimensional approach provides a good approximation for the dependence of the energy of peptides being in the registered configuration upon the distance between them, valid for a broad range of peptide lengths. The effective interactional length of peptides for the unidimensional approach is close to their actual length. If two parallel peptides are shifted along their axes with respect to each other, the interaction energy is also well approximated by the unidimensional potential, within the projection of one peptide onto the other. In the case when the axes of alpha helices cross at a substantial angle, the main contribution to peptide interactions comes from their edges: the effective length of peptides for the unidimensional approach is almost equal to the characteristic length of decay of deformations. Based on the results we obtained it can be concluded that interaction of membrane inclusions is quite adequately described by the potential calculated in the unidimensional approach.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
22
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
23
|
Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2262-2271. [DOI: 10.1016/j.bbamem.2018.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022]
|
24
|
Reißer S, Strandberg E, Steinbrecher T, Elstner M, Ulrich AS. Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR. J Chem Theory Comput 2018; 14:6002-6014. [PMID: 30289704 DOI: 10.1021/acs.jctc.8b00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane alignment of helical amphiphilic peptides in oriented phospholipid bilayers can be obtained as ensemble and time averages from solid state 2H NMR by fitting the quadrupolar splittings to ideal α-helices. At the same time, molecular dynamics (MD) simulations can provide atomistic insight into peptide-membrane systems. Here, we evaluate the potential of MD simulations to complement the experimental NMR data that is available on three exemplary systems: the natural antimicrobial peptide PGLa and the two designer-made peptides MSI-103 and KIA14, whose sequences were derived from PGLa. Each peptide was simulated for 1 μs in a DMPC lipid bilayer. We calculated from the MD simulations the local angles which define the side chain geometry with respect to the peptide helix. The peptide orientation was then calculated (i) directly from the simulation, (ii) from back-calculated MD-derived NMR splittings, and (iii) from experimental 2H NMR splittings. Our findings are that (1) the membrane orientation and secondary structure of the peptides found in the NMR analysis are generally well reproduced by the simulations; (2) the geometry of the side chains with respect to the helix backbone can deviate significantly from the ideal structure depending on the specific residue, but on average all side chains have the same orientation; and (3) for all of our peptides, the azimuthal rotation angle found from the MD-derived splittings is about 15° smaller than the experimental value.
Collapse
Affiliation(s)
- Sabine Reißer
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| | - Thomas Steinbrecher
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany.,Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| |
Collapse
|
25
|
Reißer S, Prock S, Heinzmann H, Ulrich AS. Protein ORIGAMI: A program for the creation of 3D paper models of folded peptides. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:403-409. [PMID: 29984554 DOI: 10.1002/bmb.21132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Protein ORIGAMI (http://ibg.kit.edu/protein_origami) is a browser-based web application that allows the user to create straightforward 3D paper models of folded peptides for research, teaching and presentations. An amino acid sequence can be turned into α-helices, β-strands and random coils that can be printed out and folded into properly scaled models, with a color code denoting the biophysical characteristics of each amino acid residue (hydrophobicity, charge, etc.). These models provide an intuitive visual and tactile understanding of peptide interactions with other partners, such as helix-helix assembly, oligomerization, membrane binding, or pore formation. Helices can also be displayed as a helical wheel or helical mesh in 2D graphics, to be used in publications or presentations. The highly versatile programme Protein ORIGAMI is also suited to create less conventional helices with arbitrary pitch (e.g., 310 -helix, π-helix, or left-handed helices). Noncanonical amino acids, labels and different terminal modifications can be defined and displayed at will, and different protonation states can be shown. In addition to the web application, the program source code can be downloaded and installed locally on a PC. The printed paper models can be readily used for daily research and discussions, just as for educational purposes and teaching. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:403-409, 2018.
Collapse
Affiliation(s)
- Sabine Reißer
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76133, Germany
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, 34136, Italy
| | - Sebastian Prock
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76133, Germany
| | - Hartmut Heinzmann
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, 76012, Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76133, Germany
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, 76012, Germany
| |
Collapse
|
26
|
Strandberg E, Grau-Campistany A, Wadhwani P, Bürck J, Rabanal F, Ulrich AS. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR. J Phys Chem B 2018; 122:6236-6250. [DOI: 10.1021/acs.jpcb.8b02661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Ariadna Grau-Campistany
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
27
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
28
|
Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2308-2318. [DOI: 10.1016/j.bbamem.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
|
29
|
Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci Rep 2017; 7:13153. [PMID: 29030606 PMCID: PMC5640672 DOI: 10.1038/s41598-017-12599-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical membranolytic peptides from frog skin with known synergistic antimicrobial activity. By systematically mutating residues in the two peptides it was possible to identify the ones crucial for the synergy, as monitored by biological assays, fluorescence vesicle leakage, and solid-state 15N-NMR. Electrostatic interactions between anionic groups in MAG2 and cationic residues in PGLa enhance synergy but are not necessary for the synergistic effect. Instead, two Gly residues (7 and 11) in a so-called GxxxG motif in PGLa are necessary for synergy. Replacing either of them with Ala or another hydrophobic residue completely abolishes synergy according to all three methods used. The designer-made peptide MSI-103, which has a similar sequence as PGLa, shows no synergy with MAG2, but by introducing two Gly mutations it was possible to make it synergistic. A molecular model is proposed for the functionally active PGLa-MAG2 complex, consisting of a membrane-spanning antiparallel PGLa dimer that is stabilized by intimate Gly-Gly contacts, and where each PGLa monomer is in contact with one MAG2 molecule at its C-terminus.
Collapse
|
30
|
Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores. Biophys J 2017; 113:73-81. [PMID: 28700927 DOI: 10.1016/j.bpj.2017.04.056] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
How can highly charged, cationic antimicrobial peptides (AMPs) translocate across hydrophobic lipid bilayers despite the prohibitive energetic penalty to do so? A common explanation has been the formation of peptide-lined channels. However, for most AMPs, no structures of membrane pores have been found despite clear evidence of membrane leakage and antimicrobial activity. The study here suggests an alternative and simple reason: for the AMP PGLa from Xenopus laevis (charge +5), such pores are not needed to explain both leakage and peptide translocation. Elevated-temperature multimicrosecond equilibrium simulations at all-atomistic level reveal that peptides spontaneously translocate across the membrane individually on a timescale of tens of microseconds, without forming pores. Both surface-bound peptides and lipids assist in the one-by-one translocation of the charged side chains. Single peptides can remain in a transmembrane orientation for many microseconds, snorkeling some charged residues to one interface and some to the opposite, but without inducing a water channel. Instead of stable pores, short-lived water bridges occur when two or three peptides connect at their termini, allowing both ion translocation and lipid flip-flop via a brushlike mechanism usually involving the C terminus of one peptide. The results here suggest that for some specific antimicrobial and other membrane active peptides, pore formation may not have to be invoked at all to explain peptide translocation and membrane permeabilization, which may explain why no channel structures for them have been determined experimentally.
Collapse
|
31
|
Strandberg E, Horn D, Reißer S, Zerweck J, Wadhwani P, Ulrich AS. 2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and Its Synergy with PGLa. Biophys J 2017; 111:2149-2161. [PMID: 27851939 DOI: 10.1016/j.bpj.2016.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023] Open
Abstract
Magainin 2 (MAG2) and PGLa are two α-helical antimicrobial peptides found in the skin of the African frog Xenopus laevis. They act by permeabilizing bacterial membranes and exhibit an exemplary synergism. Here, we determined the detailed molecular alignment and dynamical behavior of MAG2 in oriented lipid bilayers by using 2H-NMR on Ala-d3-labeled peptides, which yielded orientation-dependent quadrupolar splittings of the labels. The amphiphilic MAG2 helix was found to lie flat on the membrane surface in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol (DMPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), as expected, with a tilt angle close to 90°. This orientation fits well with all-atom molecular-dynamics simulations of MAG2 performed in DMPC and DMPC/DMPG. In the presence of an equimolar amount of PGLa, the NMR analysis showed that MAG2 becames tilted at an angle of 120°, and its azimuthal rotation angle also changes. Since this interaction was found to occur in a concentration range where the peptides per se do not interact with their own type, we propose that MAG2 forms a stable heterodimer with PGLa. Given that the PGLa molecules in the complex are known to be flipped into a fully upright orientation, with a helix tilt close to 180°, they must make up the actual transmembrane pore. We thus suggest that the two negative charges on the C-terminus of the obliquely tilted MAG2 peptides neutralize some of the cationic groups on the upright PGLa helices. This would stabilize the assembly of PGLa into a toroidal pore with an overall reduced charge density, which could explain the mechanism of synergy.
Collapse
Affiliation(s)
- Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Diana Horn
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sabine Reißer
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jonathan Zerweck
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
32
|
Kara S, Afonin S, Babii O, Tkachenko AN, Komarov IV, Ulrich AS. Diphytanoyl lipids as model systems for studying membrane-active peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1828-1837. [PMID: 28587828 DOI: 10.1016/j.bbamem.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment.
Collapse
Affiliation(s)
- Sezgin Kara
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anton N Tkachenko
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Igor V Komarov
- Enamine Ltd., vul. Chervonotkatska 78, 02094 Kyiv, Ukraine; Institute of High Technologies (IHT), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
33
|
Gagnon MC, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, Rabanal F, Auger M, Paquin JF, Ulrich AS. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry 2017; 56:1680-1695. [PMID: 28282123 DOI: 10.1021/acs.biochem.6b01071] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophobic mismatch is important for pore-forming amphipathic antimicrobial peptides, as demonstrated recently [Grau-Campistany, A., et al. (2015) Sci. Rep. 5, 9388]. A series of different length peptides have been generated with the heptameric repeat sequence KIAGKIA, called KIA peptides, and it was found that only those helices sufficiently long to span the hydrophobic thickness of the membrane could induce leakage in lipid vesicles; there was also a clear length dependence of the antimicrobial and hemolytic activities. For the original KIA sequences, the cationic charge increased with peptide length. The goal of this work is to examine whether the charge also has an effect on activity; hence, we constructed two further series of peptides with a sequence similar to those of the KIA peptides, but with a constant charge of +7 for all lengths from 14 to 28 amino acids. For both of these new series, a clear length dependence similar to that of KIA peptides was observed, indicating that charge has only a minor influence. Both series also showed a distinct threshold length for peptides to be active, which correlates directly with the thickness of the membrane. Among the longer peptides, the new series showed activities only slightly lower than those of the original KIA peptides of the same length that had a higher charge. Shorter peptides, in which Gly was replaced with Lys, showed activities similar to those of KIA peptides of the same length, but peptides in which Ile was replaced with Lys lost their helicity and were less active.
Collapse
Affiliation(s)
- Marie-Claude Gagnon
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6.,Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Erik Strandberg
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Ariadna Grau-Campistany
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Michèle Auger
- Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Jean-François Paquin
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany.,KIT , Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
34
|
Grage SL, Sani MA, Cheneval O, Henriques ST, Schalck C, Heinzmann R, Mylne JS, Mykhailiuk PK, Afonin S, Komarov IV, Separovic F, Craik DJ, Ulrich AS. Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR. Biophys J 2017; 112:630-642. [PMID: 28256223 PMCID: PMC5340158 DOI: 10.1016/j.bpj.2016.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 02/04/2023] Open
Abstract
Cyclotides are ultra-stable cyclic disulfide-rich peptides from plants. Their biophysical effects and medically interesting activities are related to their membrane-binding properties, with particularly high affinity for phosphatidylethanolamine lipids. In this study we were interested in understanding the molecular details of cyclotide-membrane interactions, specifically with regard to the spatial orientation of the cyclotide kalata B1 from Oldenlandia affinis when embedded in a lipid bilayer. Our experimental approach was based on the use of solid-state 19F-NMR of oriented bilayers in conjunction with the conformationally restricted amino acid L-3-(trifluoromethyl)bicyclopent-[1.1.1]-1-ylglycine as an orientation-sensitive 19F-NMR probe. Its rigid connection to the kalata B1 backbone scaffold, together with the well-defined structure of the cyclotide, allowed us to calculate the protein alignment in the membrane directly from the orientation-sensitive 19F-NMR signal. The hydrophobic and polar residues on the surface of kalata B1 form well-separated patches, endowing this cyclotide with a pronounced amphipathicity. The peptide orientation, as determined by NMR, showed that this amphipathic structure matches the polar/apolar interface of the lipid bilayer very well. A location in the amphiphilic headgroup region of the bilayer was supported by 15N-NMR of uniformly labeled protein, and confirmed using solid-state 31P- and 2H-NMR. 31P-NMR relaxation data indicated a change in lipid headgroup dynamics induced by kalata B1. Changes in the 2H-NMR order parameter profile of the acyl chains suggest membrane thinning, as typically observed for amphiphilic peptides embedded near the polar/apolar bilayer interface. Furthermore, from the 19F-NMR analysis two important charged residues, E7 and R28, were found to be positioned equatorially. The observed location thus would be favorable for the postulated binding of E7 to phosphatidylethanolamine lipid headgroups. Furthermore, it may be speculated that this pair of side chains could promote oligomerization of kalata B1 through electrostatic intermolecular contacts via their complementary charges.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Constantin Schalck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Heinzmann
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Joshua S Mylne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Pavel K Mykhailiuk
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Enamine Ltd., Kyiv, Ukraine
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Igor V Komarov
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
35
|
Radchenko DS, Kattge S, Kara S, Ulrich AS, Afonin S. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2019-2027. [DOI: 10.1016/j.bbamem.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/13/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
|
36
|
Grage SL, Afonin S, Kara S, Buth G, Ulrich AS. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides. Front Cell Dev Biol 2016; 4:65. [PMID: 27595096 PMCID: PMC4999517 DOI: 10.3389/fcell.2016.00065] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state (2)H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of a typical thinning response in the case of PGLa, and the increase in the repeat distance and membrane thickening observed for TisB, demonstrate that the concept of peptide-induced membrane thinning cannot be generalized. Instead, these results suggest that different factors contribute to the resulting changes in membrane thickness, such as the peptide orientation in the bilayer, and/or bilayer adaptation to hydrophobic mismatch.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute of Biological Interfaces Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology, Institute of Biological Interfaces Karlsruhe, Germany
| | - Sezgin Kara
- Karlsruhe Institute of Technology, Institute of Organic Chemistry Karlsruhe, Germany
| | - Gernot Buth
- Karlsruhe Institute of Technology, Institute for Accelerator Physics and Technology Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, Institute of Biological InterfacesKarlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Organic ChemistryKarlsruhe, Germany
| |
Collapse
|
37
|
Grau-Campistany A, Strandberg E, Wadhwani P, Rabanal F, Ulrich AS. Extending the Hydrophobic Mismatch Concept to Amphiphilic Membranolytic Peptides. J Phys Chem Lett 2016; 7:1116-1120. [PMID: 26963560 DOI: 10.1021/acs.jpclett.6b00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of nine amphiphilic, pore-forming α-helical KIA peptides (KIAGKIA repeats) with lengths between 14 and 28 residues were studied by solid-state (15)N NMR to determine their alignment in oriented lipid bilayers. In a 2:1 mixture of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) with its corresponding 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-MPC), which has a highly positive spontaneous curvature, the helix tilt angle was found to vary steadily with peptide length. The shortest peptide was aligned transmembrane and upright, while the longer ones successively became tilted away from the membrane normal. This behavior is in agreement with the hydrophobic matching concept, conceived so far only for hydrophobic helices. In 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, with a negative spontaneous curvature, all KIA peptides remained flat on the bilayer surface, while the cylindrical DMPC lipids permitted a slight tilt. Peptide insertion thus depends critically on the intrinsic lipid curvature, and helix orientation is then fine-tuned by membrane thickness. A refined toroidal pore model is proposed.
Collapse
Affiliation(s)
- Ariadna Grau-Campistany
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT) , POB 3640, 76021 Karlsruhe, Germany
- Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT) , POB 3640, 76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT) , POB 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT) , POB 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry , KIT , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
Zerweck J, Strandberg E, Bürck J, Reichert J, Wadhwani P, Kukharenko O, Ulrich AS. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:535-47. [PMID: 27052218 DOI: 10.1007/s00249-016-1120-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical frog peptides with synergistic antimicrobial activity. In vesicle leakage assays we observed the strongest synergy for equimolar mixtures of PGLa and MAG2. This result was consistent with solid-state (15)N-NMR data on the helix alignment in model membranes. The Hill coefficients determined from the vesicle leakage data showed that the heterodimeric (PGLa-MAG2) interactions were stronger than the homodimeric (PGLa-PGLa and MAG2-MAG2) interactions. This result was also reflected in the free energy of dimerization determined from oriented circular dichroism and quantitative solid-state (19)F-NMR analysis.
Collapse
Affiliation(s)
- Jonathan Zerweck
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Erik Strandberg
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Parvesh Wadhwani
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Olga Kukharenko
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany. .,KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.
| |
Collapse
|
39
|
Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1328-38. [PMID: 26975251 DOI: 10.1016/j.bbamem.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability.
Collapse
Affiliation(s)
| | - Erik Strandberg
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Philipp Mühlhäuser
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - M Ángeles Jiménez
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marta Bruix
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Anne S Ulrich
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
40
|
Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci Rep 2016; 6:20895. [PMID: 26876950 PMCID: PMC4753517 DOI: 10.1038/srep20895] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Dynamic Nuclear Polarization (DNP) has been introduced to overcome the sensitivity limitations of nuclear magnetic resonance (NMR) spectroscopy also of supported lipid bilayers. When investigated by solid-state NMR techniques the approach typically involves doping the samples with biradicals and their investigation at cryo-temperatures. Here we investigated the effects of temperature and membrane hydration on the topology of amphipathic and hydrophobic membrane polypeptides. Although the antimicrobial PGLa peptide in dimyristoyl phospholipids is particularly sensitive to topological alterations, the DNP conditions represent well its membrane alignment also found in bacterial lipids at ambient temperature. With a novel membrane-anchored biradical and purpose-built hardware a 17-fold enhancement in NMR signal intensity is obtained by DNP which is one of the best obtained for a truly static matrix-free system. Furthermore, a membrane anchor sequence encompassing 19 hydrophobic amino acid residues was investigated. Although at cryotemperatures the transmembrane domain adjusts it membrane tilt angle by about 10 degrees, the temperature dependence of two-dimensional separated field spectra show that freezing the motions can have beneficial effects for the structural analysis of this sequence.
Collapse
Affiliation(s)
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l’Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Hiba Sarrouj
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Paul Tordo
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| |
Collapse
|
41
|
Pino-Angeles A, Leveritt JM, Lazaridis T. Pore Structure and Synergy in Antimicrobial Peptides of the Magainin Family. PLoS Comput Biol 2016; 12:e1004570. [PMID: 26727376 PMCID: PMC4699650 DOI: 10.1371/journal.pcbi.1004570] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Magainin 2 and PGLa are among the best-studied cationic antimicrobial peptides. They bind preferentially to negatively charged membranes and apparently cause their disruption by the formation of transmembrane pores, whose detailed structure is still unclear. Here we report the results of 5–9 μs all-atom molecular dynamics simulations starting from tetrameric transmembrane helical bundles of these two peptides, as well as their stoichiometric mixture, and the analog MG-H2 in DMPC or 3:1 DMPC/DMPG membranes. The simulations produce pore structures that appear converged, although some effect of the starting peptide arrangement (parallel vs. antiparallel) is still observed on this timescale. The peptides remain mostly helical and adopt tilted orientations. The calculated tilt angles for PGLa are in excellent agreement with recent solid state NMR experiments. The antiparallel dimer structure in the magainin 2 simulations resembles previously determined NMR and crystal structures. More transmembrane orientations and a larger and more ordered pore are seen in the 1:1 heterotetramer with an antiparallel helix arrangement. Insights into the mechanism of synergy between these two peptides are obtained via implicit solvent modeling of homo- and heterodimers and analysis of interactions in the atomistic simulations. This analysis suggests stronger pairwise interactions in the heterodimer than in the two homodimers. The emergence of antibiotic resistance has created a compelling need for new potent antibiotics. Antimicrobial peptides, naturally produced by many organisms, have long been pursued as a means to fill this gap. However, they have not yet realized their practical potential, partly due to a lack of full understanding of their mechanism of action. The formation of pores by these peptides in bacterial membranes has been demonstrated by multiple biophysical approaches, but the detailed structure of these pores is still unclear. The magainin family of antimicrobial peptides have been thoroughly studied over the last three decades. We have generated atomic-resolution models of membrane pores generated by tetrameric assemblies of different magainin peptides by means of molecular dynamics simulations on the multimicrosecond timescale. The results complement previous experimental findings and set the stage for further development of theoretical and experimental approaches that may ultimately allow the rational design of improved antibiotics.
Collapse
Affiliation(s)
- Almudena Pino-Angeles
- Department of Chemistry, The City College of New York, New York, New York, United States of America
| | - John M. Leveritt
- Department of Chemistry, The City College of New York, New York, New York, United States of America
| | - Themis Lazaridis
- Department of Chemistry, The City College of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
43
|
Kim C. Alignment change of lipid molecules in lipid bilayers by an antimicrobial peptide protegrin-1. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Strandberg E, Zerweck J, Horn D, Pritz G, Berditsch M, Bürck J, Wadhwani P, Ulrich AS. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci 2015; 21:436-45. [PMID: 25898805 DOI: 10.1002/psc.2780] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magainin 2 (MAG2) and PGLa are two related antimicrobial peptides found in the skin of the African frog Xenopus laevis with a pronounced synergistic activity, which act by permeabilizing bacterial membranes. To probe the influence of hydrophobic peptide-lipid and peptide-peptide interactions on the antimicrobial activity and on synergy, the sequence of MAG2 was modified by replacing single amino acids either with a small alanine or with the stiff and bulky hydrophobic 3-(trifluoromethyl)-L-bicyclopent-[1.1.1]-1-ylglycine side chain. The minimum inhibitory concentration of 14 MAG2 analogs was strongly influenced by these single substitutions: the antimicrobial activity was consistently improved when the hydrophobicity was increased on the hydrophobic face of the amphiphilic helix, while the activity decreased when the hydrophobicity was reduced. The synergy with PGLa, on the other hand, was rather insensitive to mutations of hydrophobic residues. It thus seems that the antimicrobial effect of MAG2 on its own depends strongly on the hydrophobicity of the peptide, while the synergy with PGLa does not depend on the overall hydrophobicity of MAG2.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 61:287-98. [PMID: 25616492 DOI: 10.1007/s10858-015-9897-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 05/22/2023]
Abstract
Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.
Collapse
Affiliation(s)
- Julia Misiewicz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Control and role of pH in peptide–lipid interactions in oriented membrane samples. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:833-41. [DOI: 10.1016/j.bbamem.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
|
47
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
48
|
Dynamic regulation of lipid-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1849-59. [PMID: 25666872 DOI: 10.1016/j.bbamem.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
49
|
3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J 2015; 106:2385-94. [PMID: 24896117 DOI: 10.1016/j.bpj.2014.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022] Open
Abstract
The interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/.
Collapse
|
50
|
Carlier L, Joanne P, Khemtémourian L, Lacombe C, Nicolas P, El Amri C, Lequin O. Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides. Biophys Chem 2015; 196:40-52. [DOI: 10.1016/j.bpc.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022]
|