1
|
Emery MA, Beavers KM, Van Buren EW, Batiste R, Dimos B, Pellegrino MW, Mydlarz LD. Trade-off between photosymbiosis and innate immunity influences cnidarian's response to pathogenic bacteria. Proc Biol Sci 2024; 291:20240428. [PMID: 39353557 PMCID: PMC11444771 DOI: 10.1098/rspb.2024.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Mutualistic relationships with photosynthetic organisms are common in cnidarians, which form an intracellular symbiosis with dinoflagellates in the family Symbiodiniaceae. The establishment and maintenance of these symbionts are associated with the suppression of key host immune factors. Because of this, there are potential trade-offs between the nutrition that cnidarian hosts gain from their symbionts and their ability to successfully defend themselves from pathogens. To investigate these potential trade-offs, we utilized the facultatively symbiotic polyps of the upside-down jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower probability of survival following S. marcescens exposure. Gene expression analyses 24 hours following pathogen exposure indicate that symbiotic animals mounted a more damaging immune response, with higher levels of inflammation and oxidative stress likely resulting in more severe disruptions to cellular homeostasis. Underlying this more damaging immune response may be differences in constitutive and pathogen-induced expression of immune transcription factors between aposymbiotic and symbiotic polyps rather than broadscale immune suppression during symbiosis. Our findings indicate that in facultatively symbiotic polyps, hosting symbionts limits C. xamachana's ability to survive pathogen exposure, indicating a trade-off between symbiosis and immunity that has potential implications for coral disease research.
Collapse
Affiliation(s)
- Madison A. Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824, USA
| | - Kelsey M. Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX78758, USA
| | - Emily W. Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Renee Batiste
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Bradford Dimos
- Department of Animal Sciences, Washington State University, Pullman, WA99163, USA
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Laura D. Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| |
Collapse
|
2
|
Higgs EF, Gajewski TF. Synergistic innate immune activation and anti-tumor immunity through combined STING and TLR4 stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588610. [PMID: 38644995 PMCID: PMC11030386 DOI: 10.1101/2024.04.08.588610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Previous work has shown that innate immune sensing of tumors involves the host STING pathway, which leads to IFN-β production, dendritic cell (DC) activation, and T cell priming against tumor antigens. This observation has led to the development of STING agonists as a potential cancer therapeutic. However, despite promising results in mouse studies using transplantable tumor models, clinical testing of STING agonists has shown activity in only a minority of patients. Thus, further study of innate immune pathways in anti-tumor immunity is paramount. Innate immune activation in response to a pathogen rarely occurs through stimulation of only one signaling pathway, and activating multiple innate immune pathways similar to a natural infection is one possible strategy to improve the efficacy of STING agonists. To test this, we performed experiments with the STING agonist DMXAA alone or in combination with several TLR agonists. We found that LPS + DMXAA induced significantly greater IFN-β transcription than the sum of either agonist alone. To explain this synergy, we assayed each step of STING pathway signaling. LPS did not increase STING protein aggregation, IRF3 phosphorylation, or IRF3 nuclear translocation beyond what occurred with DMXAA alone. However, since the IFN-β promoter also includes NF-κB binding sites, we additionally examined the NF-κB pathway. In fact, LPS increased the phosphorylation and nuclear translocation of the NF-κB subunit p65, and NF-κB signaling was required for the observed synergy. Intratumoral injection of suboptimal doses of LPS + DMXAA resulted in significantly improved tumor control of B16 melanoma in vivo compared to either agonist alone. Our results suggest that combinatorial signaling through TLR4 and STING results in optimal innate signaling via co-involvement of NF-κB and IRF3, and that combined engagement of these two pathways has therapeutic potential.
Collapse
|
3
|
Arts JJG, Mahlandt EK, Grönloh MLB, Schimmel L, Noordstra I, Gordon E, van Steen ACI, Tol S, Walzog B, van Rijssel J, Nolte MA, Postma M, Khuon S, Heddleston JM, Wait E, Chew TL, Winter M, Montanez E, Goedhart J, van Buul JD. Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration. eLife 2021; 10:66074. [PMID: 34431475 PMCID: PMC8437435 DOI: 10.7554/elife.66074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.
Collapse
Affiliation(s)
- Janine JG Arts
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Eike K Mahlandt
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Max LB Grönloh
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Lilian Schimmel
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Abraham CI van Steen
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Simon Tol
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Jos van Rijssel
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Marten Postma
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Satya Khuon
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John M Heddleston
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Microscopy Facility at the Cleveland Clinic Florida Research and Innovation CenterPort St. LucieUnited States
| | - Eric Wait
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Teng Leong Chew
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mark Winter
- Zuckerman Postdoctoral Fellow, Department of Marine Sciences, University of HaifaHaifaIsrael
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of BarcelonaBarcelonaSpain
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
4
|
Li L, Lenahan C, Liao Z, Ke J, Li X, Xue F, Zhang JH. Novel Technologies in Studying Brain Immune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694566. [PMID: 33791073 PMCID: PMC7997736 DOI: 10.1155/2021/6694566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the immune system, including both the adaptive and innate immune systems, proved to be essential and critical to brain damage and recovery in the pathogenesis of several diseases, opening a new avenue for developing new immunomodulatory therapies and novel treatments for many neurological diseases. However, due to the specificity and structural complexity of the central nervous system (CNS), and the limit of the related technologies, the biology of the immune response in the brain is still poorly understood. Here, we discuss the application of novel technologies in studying the brain immune response, including single-cell RNA analysis, cytometry by time-of-flight, and whole-genome transcriptomic and proteomic analysis. We believe that advancements in technology related to immune research will provide an optimistic future for brain repair.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| | - Zhihui Liao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jingdong Ke
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Xiuliang Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| |
Collapse
|
5
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Fullstone G, Guttà C, Beyer A, Rehm M. The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling. NPJ Syst Biol Appl 2020; 6:10. [PMID: 32313030 PMCID: PMC7170865 DOI: 10.1038/s41540-020-0128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Agent-based modelling is particularly adept at modelling complex features of cell signalling pathways, where heterogeneity, stochastic and spatial effects are important, thus increasing our understanding of decision processes in biology in such scenarios. However, agent-based modelling often is computationally prohibitive to implement. Parallel computing, either on central processing units (CPUs) or graphical processing units (GPUs), can provide a means to improve computational feasibility of agent-based applications but generally requires specialist coding knowledge and extensive optimisation. In this paper, we address these challenges through the development and implementation of the FLAME-accelerated signalling tool (FaST), a software that permits easy creation and parallelisation of agent-based models of cell signalling, on CPUs or GPUs. FaST incorporates validated new agent-based methods, for accurate modelling of reaction kinetics and, as proof of concept, successfully converted an ordinary differential equation (ODE) model of apoptosis execution into an agent-based model. We finally parallelised this model through FaST on CPUs and GPUs resulting in an increase in performance of 5.8× (16 CPUs) and 53.9×, respectively. The FaST takes advantage of the communicating X-machine approach used by FLAME and FLAME GPU to allow easy alteration or addition of functionality to parallel applications, but still includes inherent parallelisation optimisation. The FaST, therefore, represents a new and innovative tool to easily create and parallelise bespoke, robust, agent-based models of cell signalling.
Collapse
Affiliation(s)
- Gavin Fullstone
- Institute for Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstrasse 15, 70569, Stuttgart, Germany.
| | - Cristiano Guttà
- Institute for Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Amatus Beyer
- Institute for Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Markus Rehm
- Institute for Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstrasse 15, 70569, Stuttgart, Germany.
| |
Collapse
|
7
|
Muldoon JJ, Chuang Y, Bagheri N, Leonard JN. Macrophages employ quorum licensing to regulate collective activation. Nat Commun 2020; 11:878. [PMID: 32054845 PMCID: PMC7018708 DOI: 10.1038/s41467-020-14547-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while suppressing harmful immune activation. However, individual cells’ signaling responses to pro-inflammatory cues are heterogeneous, with subpopulations emerging with high or low activation states. Here, we use single-cell tracking and dynamical modeling to develop and validate a revised model for lipopolysaccharide (LPS)-induced macrophage activation that invokes a mechanism we term quorum licensing. The results show that bimodal phenotypic partitioning of macrophages is primed during the resting state, dependent on cumulative history of cell density, predicted by extrinsic noise in transcription factor expression, and independent of canonical LPS-induced intercellular feedback in the tumor necrosis factor (TNF) response. Our analysis shows how this density-dependent coupling produces a nonlinear effect on collective TNF production. We speculate that by linking macrophage density to activation, this mechanism could amplify local responses to threats and prevent false alarms. Macrophage activation is tightly regulated to maintain immune homeostasis, yet activation is also heterogeneous. Here, the authors show that macrophages coordinate activation by partitioning into two phenotypes that can nonlinearly amplify collective inflammatory cytokine production as a function of cell density.
Collapse
Affiliation(s)
- Joseph J Muldoon
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neda Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA. .,Biology and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Joshua N Leonard
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Sensitivity analysis methods in the biomedical sciences. Math Biosci 2020; 323:108306. [PMID: 31953192 DOI: 10.1016/j.mbs.2020.108306] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Sensitivity analysis is an important part of a mathematical modeller's toolbox for model analysis. In this review paper, we describe the most frequently used sensitivity techniques, discussing their advantages and limitations, before applying each method to a simple model. Also included is a summary of current software packages, as well as a modeller's guide for carrying out sensitivity analyses. Finally, we apply the popular Morris and Sobol methods to two models with biomedical applications, with the intention of providing a deeper understanding behind both the principles of these methods and the presentation of their results.
Collapse
|
9
|
Hochberg ME. An ecosystem framework for understanding and treating disease. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:270-286. [PMID: 30487969 PMCID: PMC6252061 DOI: 10.1093/emph/eoy032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Pathogens and cancers are pervasive health risks in the human population. I argue that if we are to better understand disease and its treatment, then we need to take an ecological perspective of disease itself. I generalize and extend an emerging framework that views disease as an ecosystem and many of its components as interacting in a community. I develop the framework for biological etiological agents (BEAs) that multiply within humans—focusing on bacterial pathogens and cancers—but the framework could be extended to include other host and parasite species. I begin by describing why we need an ecosystem framework to understand disease, and the main components and interactions in bacterial and cancer disease ecosystems. Focus is then given to the BEA and how it may proceed through characteristic states, including emergence, growth, spread and regression. The framework is then applied to therapeutic interventions. Central to success is preventing BEA evasion, the best known being antibiotic resistance and chemotherapeutic resistance in cancers. With risks of evasion in mind, I propose six measures that either introduce new components into the disease ecosystem or manipulate existing ones. An ecosystem framework promises to enhance our understanding of disease, BEA and host (co)evolution, and how we can improve therapeutic outcomes.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France.,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| |
Collapse
|
10
|
Kardyńska M, Paszek A, Śmieja J, Spiller D, Widłak W, White MRH, Paszek P, Kimmel M. Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-κB signaling at the single cell level. PLoS Comput Biol 2018; 14:e1006130. [PMID: 29708974 PMCID: PMC5945226 DOI: 10.1371/journal.pcbi.1006130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKβ subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.
Collapse
Affiliation(s)
| | - Anna Paszek
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Maria Skłodowska-Curie Institute–Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
| | - David Spiller
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute–Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Michael R. H. White
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- System Microscopy Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marek Kimmel
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, United States of America
| |
Collapse
|
11
|
Mathematical Modeling and Parameter Estimation of Intracellular Signaling Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages. Processes (Basel) 2018. [DOI: 10.3390/pr6030021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2017; 18:35-45. [DOI: 10.1038/nri.2017.76] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Parker RS, Hogg JS, Roy A, Kellum JA, Rimmelé T, Daun-Gruhn S, Fedorchak MV, Valenti IE, Federspiel WJ, Rubin J, Vodovotz Y, Lagoa C, Clermont G. Modeling and Hemofiltration Treatment of Acute Inflammation. Processes (Basel) 2016; 4:38. [PMID: 33134139 DOI: 10.3390/pr4040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The body responds to endotoxins by triggering the acute inflammatory response system to eliminate the threat posed by gram-negative bacteria (endotoxin) and restore health. However, an uncontrolled inflammatory response can lead to tissue damage, organ failure, and ultimately death; this is clinically known as sepsis. Mathematical models of acute inflammatory disease have the potential to guide treatment decisions in critically ill patients. In this work, an 8-state (8-D) differential equation model of the acute inflammatory response system to endotoxin challenge was developed. Endotoxin challenges at 3 and 12 mg/kg were administered to rats, and dynamic cytokine data for interleukin (IL)-6, tumor necrosis factor (TNF), and IL-10 were obtained and used to calibrate the model. Evaluation of competing model structures was performed by analyzing model predictions at 3, 6, and 12 mg/kg endotoxin challenges with respect to experimental data from rats. Subsequently, a model predictive control (MPC) algorithm was synthesized to control a hemoadsorption (HA) device, a blood purification treatment for acute inflammation. A particle filter (PF) algorithm was implemented to estimate the full state vector of the endotoxemic rat based on time series cytokine measurements. Treatment simulations show that: (i) the apparent primary mechanism of HA efficacy is white blood cell (WBC) capture, with cytokine capture a secondary benefit; and (ii) differential filtering of cytokines and WBC does not provide substantial improvement in treatment outcomes vs. existing HA devices.
Collapse
Affiliation(s)
- Robert S Parker
- Department of Chemical and Petroleum Engineering; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, 450 Technology Dr, Suite 300, Pittsburgh, PA 15219, USA
| | - Justin S Hogg
- Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, 3501 Fifth Ave, 3064 BST3, Pittsburgh, PA 15260, USA
| | - Anirban Roy
- Department of Chemical and Petroleum Engineering; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Thomas Rimmelé
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Silvia Daun-Gruhn
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh Medical Center, W944 Biomedical Sciences Tower, Pittsburgh, PA 15213, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, 450 Technology Dr, Suite 300, Pittsburgh, PA 15219, USA
| | - Isabella E Valenti
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William J Federspiel
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, 450 Technology Dr, Suite 300, Pittsburgh, PA 15219, USA
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15261, USA
| | - Yoram Vodovotz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, 450 Technology Dr, Suite 300, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh Medical Center, W944 Biomedical Sciences Tower, Pittsburgh, PA 15213, USA
| | - Claudio Lagoa
- Department of Surgery, University of Pittsburgh Medical Center, W944 Biomedical Sciences Tower, Pittsburgh, PA 15213, USA
| | - Gilles Clermont
- Department of Chemical and Petroleum Engineering; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, 450 Technology Dr, Suite 300, Pittsburgh, PA 15219, USA
| |
Collapse
|
14
|
Adamson A, Boddington C, Downton P, Rowe W, Bagnall J, Lam C, Maya-Mendoza A, Schmidt L, Harper CV, Spiller DG, Rand DA, Jackson DA, White MRH, Paszek P. Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states. Nat Commun 2016; 7:12057. [PMID: 27381163 PMCID: PMC4935804 DOI: 10.1038/ncomms12057] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/25/2016] [Indexed: 02/03/2023] Open
Abstract
Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation.
Collapse
Affiliation(s)
- Antony Adamson
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Christopher Boddington
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Polly Downton
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - William Rowe
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - James Bagnall
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Connie Lam
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Apolinar Maya-Mendoza
- The Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Lorraine Schmidt
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Claire V. Harper
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David G. Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David A. Rand
- Warwick Systems Biology and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Dean A. Jackson
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael R. H. White
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Pawel Paszek
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol 2016; 9:41-51. [PMID: 26672147 DOI: 10.1049/iet-syb.2013.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.
Collapse
|
16
|
Zambrano S, De Toma I, Piffer A, Bianchi ME, Agresti A. NF-κB oscillations translate into functionally related patterns of gene expression. eLife 2016; 5:e09100. [PMID: 26765569 PMCID: PMC4798970 DOI: 10.7554/elife.09100] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained, that is, reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow three distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision.
Collapse
Affiliation(s)
- Samuel Zambrano
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- San Raffaele University, Milan, Italy
| | | | | | - Marco E Bianchi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- San Raffaele University, Milan, Italy
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Malkin AD, Sheehan RP, Mathew S, Federspiel WJ, Redl H, Clermont G. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis. PLoS Comput Biol 2015; 11:e1004314. [PMID: 26468651 PMCID: PMC4607502 DOI: 10.1371/journal.pcbi.1004314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3–6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40–80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5–24 hours, which may reduce survival to 13%. In severe sepsis, an extracorporeal treatment which modulates CXCR-1/2 levels has therapeutic potential, but also potential for harm. Further development of the computational model will help guide optimal device development and determine which patient populations should be targeted by treatment. Sepsis occurs when a patient develops a whole body immune response due to infection. In this condition, white blood cells called neutrophils circulate in an active state, seeking and eliminating invading bacteria. However, when neutrophils are activated, healthy tissue is inadvertently targeted, leading to organ damage and potentially death. Even though sepsis kills millions worldwide, there are still no specific treatments approved in the United States. This may be due to the complexity and diversity of the body’s immune response, which can be managed well using computational modeling. We have developed a computational model to predict how different levels of neutrophil activation impact survival in an overactive inflammatory conditions. The model was utilized to assess the effectiveness of a simulated experimental sepsis treatment which modulates neutrophil populations and activity. This evaluation determined that treatment timing plays a critical role in therapeutic effectiveness. When utilized properly the treatment drastically improves survival, but there is also risk of causing patient harm when introduced at the wrong time. We intend for this computational model to support and guide further development of sepsis treatments and help translate these preliminary results from bench to bedside.
Collapse
Affiliation(s)
- Alexander D. Malkin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Robert P. Sheehan
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shibin Mathew
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William J. Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA center, Vienna, Austria
| | - Gilles Clermont
- CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Liu P, Yuan Z, Huang L, Zhou T. Roles of factorial noise in inducing bimodal gene expression. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062706. [PMID: 26172735 DOI: 10.1103/physreve.91.062706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.
Collapse
Affiliation(s)
- Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Lifang Huang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
19
|
Webb JT, Behar M. Topology, dynamics, and heterogeneity in immune signaling. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:285-300. [DOI: 10.1002/wsbm.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
Affiliation(s)
- J. Taylor Webb
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| | - Marcelo Behar
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
20
|
Bertaux F, Stoma S, Drasdo D, Batt G. Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput Biol 2014; 10:e1003893. [PMID: 25340343 PMCID: PMC4207462 DOI: 10.1371/journal.pcbi.1003893] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022] Open
Abstract
Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins deserve particular attention.
Collapse
Affiliation(s)
| | | | - Dirk Drasdo
- INRIA Paris-Rocquencourt, Le Chesnay, France
- Laboratoire Jacques-Louis Lions (LJLL), University of Paris 6 (UPMC) - CNRS (UMR7598), Paris, France
| | - Gregory Batt
- INRIA Paris-Rocquencourt, Le Chesnay, France
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Peer X, An G. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection. J Pharmacokinet Pharmacodyn 2014; 41:493-507. [PMID: 25168489 DOI: 10.1007/s10928-014-9381-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine.
Collapse
Affiliation(s)
- Xavier Peer
- Department of Surgery, University of Chicago, 5841 South Maryland Ave, MC 5094 S-032, Chicago, IL, 60637, USA
| | | |
Collapse
|
23
|
Pękalski J, Zuk PJ, Kochańczyk M, Junkin M, Kellogg R, Tay S, Lipniacki T. Spontaneous NF-κB activation by autocrine TNFα signaling: a computational analysis. PLoS One 2013; 8:e78887. [PMID: 24324544 PMCID: PMC3855823 DOI: 10.1371/journal.pone.0078887] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
NF-κB is a key transcription factor that regulates innate immune response. Its activity is tightly controlled by numerous feedback loops, including two negative loops mediated by NF-κB inducible inhibitors, IκBα and A20, which assure oscillatory responses, and by positive feedback loops arising due to the paracrine and autocrine regulation via TNFα, IL-1 and other cytokines. We study the NF-κB system of interlinked negative and positive feedback loops, combining bifurcation analysis of the deterministic approximation with stochastic numerical modeling. Positive feedback assures the existence of limit cycle oscillations in unstimulated wild-type cells and introduces bistability in A20-deficient cells. We demonstrated that cells of significant autocrine potential, i.e., cells characterized by high secretion of TNFα and its receptor TNFR1, may exhibit sustained cytoplasmic-nuclear NF-κB oscillations which start spontaneously due to stochastic fluctuations. In A20-deficient cells even a small TNFα expression rate qualitatively influences system kinetics, leading to long-lasting NF-κB activation in response to a short-pulsed TNFα stimulation. As a consequence, cells with impaired A20 expression or increased TNFα secretion rate are expected to have elevated NF-κB activity even in the absence of stimulation. This may lead to chronic inflammation and promote cancer due to the persistent activation of antiapoptotic genes induced by NF-κB. There is growing evidence that A20 mutations correlate with several types of lymphomas and elevated TNFα secretion is characteristic of many cancers. Interestingly, A20 loss or dysfunction also leaves the organism vulnerable to septic shock and massive apoptosis triggered by the uncontrolled TNFα secretion, which at high levels overcomes the antiapoptotic action of NF-κB. It is thus tempting to speculate that some cancers of deregulated NF-κB signaling may be prone to the pathogen-induced apoptosis.
Collapse
Affiliation(s)
- Jakub Pękalski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel J. Zuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Junkin
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ryan Kellogg
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
A mechanistic pharmacodynamic model of IRAK-4 drug inhibition in the Toll-like receptor pathway. J Pharmacokinet Pharmacodyn 2013; 40:609-22. [DOI: 10.1007/s10928-013-9334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022]
|
25
|
YANG PANPAN, ZHOU TIANSHOU. RECEPTOR-DEPENDENT SENSITIVITY OF NF-κB TO LOW PHYSIOLOGICAL LEVEL. J BIOL SYST 2013. [DOI: 10.1142/s0218339013500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the NFκB signaling pathway, cells respond to different concentrations of the TNFα signal by means of NFκB transcription factors. Previous studies showed that most cells are activated under high-dose stimulations and NFκB activation results in oscillations in nuclear NFκB abundance. Here, by analyzing sensitivity gain for the response of the nuclear NFκB to the number of cell-surface receptors under low-dose stimulations, we show that changes in the receptor number can give rise to significant changes in the nonsaturation part of the dose–response curve, where the receptor activation rates are very sensitive to stimulations. In addition, the number of the activated receptors tends to increase in a large range of stimulation dose and can significantly influence the expression of the downstream genes. These results imply that the number of cell-surface receptors plays a role of information encoding like frequency or amplitude encoding described in previous studies.
Collapse
Affiliation(s)
- PANPAN YANG
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - TIANSHOU ZHOU
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
26
|
Joo J, Plimpton SJ, Faulon JL. Statistical ensemble analysis for simulating extrinsic noise-driven response in NF-κB signaling networks. BMC SYSTEMS BIOLOGY 2013; 7:45. [PMID: 23742268 PMCID: PMC3695840 DOI: 10.1186/1752-0509-7-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
Background Gene expression profiles and protein dynamics in single cells have a large cell-to-cell variability due to intracellular noise. Intracellular fluctuations originate from two sources: intrinsic noise due to the probabilistic nature of biochemical reactions and extrinsic noise due to randomized interactions of the cell with other cellular systems or its environment. Presently, there is no systematic parameterization and modeling scheme to simulate cellular response at the single cell level in the presence of extrinsic noise. Results In this paper, we propose a novel statistical ensemble method to simulate the distribution of heterogeneous cellular responses in single cells. We capture the effects of extrinsic noise by randomizing values of the model parameters. In this context, a statistical ensemble is a large number of system replicates, each with randomly sampled model parameters from biologically feasible intervals. We apply this statistical ensemble approach to the well-studied NF-κB signaling system. We predict several characteristic dynamic features of NF-κB response distributions; one of them is the dosage-dependent distribution of the first translocation time of NF-κB. Conclusion The distributions of heterogeneous cellular responses that our statistical ensemble formulation generates reveal the effect of different cellular conditions, e.g., effects due to wild type versus mutant cells or between different dosages of external stimulants. Distributions generated in the presence of extrinsic noise yield valuable insight into underlying regulatory mechanisms, which are sometimes otherwise hidden.
Collapse
Affiliation(s)
- Jaewook Joo
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
27
|
An agent-based model of cellular dynamics and circadian variability in human endotoxemia. PLoS One 2013; 8:e55550. [PMID: 23383223 PMCID: PMC3559552 DOI: 10.1371/journal.pone.0055550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/30/2012] [Indexed: 01/01/2023] Open
Abstract
As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.
Collapse
|
28
|
Meyer R, D'Alessandro LA, Kar S, Kramer B, She B, Kaschek D, Hahn B, Wrangborg D, Karlsson J, Kvarnström M, Jirstrand M, Lehmann WD, Timmer J, Höfer T, Klingmüller U. Heterogeneous kinetics of AKT signaling in individual cells are accounted for by variable protein concentration. Front Physiol 2012; 3:451. [PMID: 23226133 PMCID: PMC3508424 DOI: 10.3389/fphys.2012.00451] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/11/2012] [Indexed: 01/28/2023] Open
Abstract
In most solid cancers, cells harboring oncogenic mutations represent only a sub-fraction of the entire population. Within this sub-fraction the expression level of mutated proteins can vary significantly due to cellular variability limiting the efficiency of targeted therapy. To address the causes of the heterogeneity, we performed a systematic analysis of one of the most frequently mutated pathways in cancer cells, the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Among others PI3K signaling is activated by the hepatocyte growth factor (HGF) that regulates proliferation of hepatocytes during liver regeneration but also fosters tumor cell proliferation. HGF-mediated responses of PI3K signaling were monitored both at the single cell and cell population level in primary mouse hepatocytes and in the hepatoma cell line Hepa1_6. Interestingly, we observed that the HGF-mediated AKT responses at the level of individual cells is rather heterogeneous. However, the overall average behavior of the single cells strongly resembled the dynamics of AKT activation determined at the cell population level. To gain insights into the molecular cause for the observed heterogeneous behavior of individual cells, we employed dynamic mathematical modeling in a stochastic framework. Our analysis demonstrated that intrinsic noise was not sufficient to explain the observed kinetic behavior, but rather the importance of extrinsic noise has to be considered. Thus, distinct from gene expression in the examined signaling pathway fluctuations of the reaction rates has only a minor impact whereas variability in the concentration of the various signaling components even in a clonal cell population is a key determinant for the kinetic behavior.
Collapse
Affiliation(s)
- René Meyer
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohshima D, Inoue JI, Ichikawa K. Roles of spatial parameters on the oscillation of nuclear NF-κB: computer simulations of a 3D spherical cell. PLoS One 2012; 7:e46911. [PMID: 23056526 PMCID: PMC3463570 DOI: 10.1371/journal.pone.0046911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 01/04/2023] Open
Abstract
Transcription factor NF-κB resides in the cytoplasm and translocates to the nucleus by application of extracellular stimuli. It is known that the nuclear NF-κB oscillates and different oscillation patterns lead to different gene expression. Nearly forty reports on modeling and simulation of nuclear NF-κB have been published to date. The computational models reported so far are temporal or two-dimensional, and the discussions on spatial parameters have not been involved or limited. Since spatial parameters in cancer cells such as nuclear to cytoplasmic volume (N/C) ratio are different from normal cells, it is important to understand the relationship between oscillation patterns and spatial parameters. Here we report simulations of a 3D computational model for the oscillation of nuclear NF-κB using A-Cell software. First, we found that the default biochemical kinetic constants used in the temporal model cannot replicate the experimentally observed oscillation in the 3D model. Thus, the default parameters should be changed in the 3D model. Second, spatial parameters such as N/C ratio, nuclear transport, diffusion coefficients, and the location of IκB synthesis were found to alter the oscillation pattern. Third, among them, larger N/C ratios resulted in persistent oscillation of nuclear NF-κB, and larger nuclear transport resulted in faster oscillation frequency. Our simulation results suggest that the changes in spatial parameters seen in cancer cells is one possible mechanism for alteration in the oscillation pattern of nuclear NF-κB and lead to the altered gene expression in these cells.
Collapse
Affiliation(s)
- Daisuke Ohshima
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuhisa Ichikawa
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Abstract
Mathematical modeling has proved to be a critically important approach in the study of many complex networks and dynamic systems in physics, engineering, chemistry, and biology. The nuclear factor κB (NF-κB) system consists of more than 50 proteins and protein complexes and is both a highly networked and dynamic system. To date, mathematical modeling has only addressed a small fraction of the molecular species and their regulation, but when employed in conjunction with experimental analysis has already led to important insights. Here, we provide a personal account of studying how the NF-κB signaling system functions using mathematical descriptions of the molecular mechanisms. We focus on the insights gained about some of the key regulatory components: the control of the steady state, the signaling dynamics, and signaling crosstalk. We also discuss the biological relevance of these regulatory systems properties.
Collapse
Affiliation(s)
- Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
31
|
Seal JB, Alverdy JC, Zaborina O, An G. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis. Theor Biol Med Model 2011; 8:33. [PMID: 21929759 PMCID: PMC3184268 DOI: 10.1186/1742-4682-8-33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/19/2011] [Indexed: 01/07/2023] Open
Abstract
Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.
Collapse
Affiliation(s)
- John B Seal
- Department of Surgery, University of Chicago, 5841 South Maryland Ave, MC 5031, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
32
|
Kalita MK, Sargsyan K, Tian B, Paulucci-Holthauzen A, Najm HN, Debusschere BJ, Brasier AR. Sources of cell-to-cell variability in canonical nuclear factor-κB (NF-κB) signaling pathway inferred from single cell dynamic images. J Biol Chem 2011; 286:37741-57. [PMID: 21868381 DOI: 10.1074/jbc.m111.280925] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical nuclear factor-κB (NF-κB) signaling pathway controls a gene network important in the cellular inflammatory response. Upon activation, NF-κB/RelA is released from cytoplasmic inhibitors, from where it translocates into the nucleus, subsequently activating negative feedback loops producing either monophasic or damped oscillatory nucleo-cytoplasmic dynamics. Although the population behavior of the NF-κB pathway has been extensively modeled, the sources of cell-to-cell variability are not well understood. We describe an integrated experimental-computational analysis of NF-κB/RelA translocation in a validated cell model exhibiting monophasic dynamics. Quantitative measures of cellular geometry and total cytoplasmic concentration and translocated RelA amounts were used as priors in Bayesian inference to estimate biophysically realistic parameter values based on dynamic live cell imaging studies of enhanced GFP-tagged RelA in stable transfectants. Bayesian inference was performed on multiple cells simultaneously, assuming identical reaction rate parameters, whereas cellular geometry and initial and total NF-κB concentration-related parameters were cell-specific. A subpopulation of cells exhibiting distinct kinetic profiles was identified that corresponded to differences in the IκBα translation rate. We conclude that cellular geometry, initial and total NF-κB concentration, IκBα translation, and IκBα degradation rates account for distinct cell-to-cell differences in canonical NF-κB translocation dynamics.
Collapse
Affiliation(s)
- Mridul K Kalita
- Department of Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Puszynski K, Bertolusso R, Lipniacki T. Crosstalk between p53 and nuclear factor-B systems: pro- and anti-apoptotic functions of NF-B. IET Syst Biol 2011; 3:356-67. [PMID: 21028926 DOI: 10.1049/iet-syb.2008.0172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factors p53 and NF-B control many physiological processes including cell cycle arrest, DNA repair, apoptosis, death, innate and adaptive immune responses, and inflammation. There are numerous pathways linking these systems and there is a bulk of evidence for cooperation as well as for antagonisms between p53 and NF-B. In this theoretical study, the authors use earlier models of p53 and NF-B systems and construct a crosstalk model of p53-NF-B network in order to explore the consequences of the two-way coupling, in which NF-B upregulates the transcription of p53, whereas in turn p53 attenuates transcription of NF-B inhibitors IB and A20. We consider a number of protocols in which cells are stimulated by tumour necrosis factor- (TNF) (that activates NF-B pathway) and/or gamma irradiation (that activates p53 pathway). The authors demonstrate that NF-B may have both anti- and pro-apoptotic roles. TNF stimulation, preceding DNA damaging irradiation, makes cells more resistant to irradiation-induced apoptosis, whereas the same TNF stimulation, when preceded by irradiation, increases the apoptotic cell fraction. The finding suggests that diverse roles of NF-B in apoptosis and cancer could be related to the dynamical context of activation of p53 and NF-B pathways. [Includes supplementary material].
Collapse
Affiliation(s)
- K Puszynski
- Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland
| | | | | |
Collapse
|
34
|
Hat B, Puszynski K, Lipniacki T. Exploring mechanisms of oscillations in p53 and nuclear factor-B systems. IET Syst Biol 2011; 3:342-55. [PMID: 21028925 DOI: 10.1049/iet-syb.2008.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A number of regulatory networks have the potential to generate sustained oscillations of irregular amplitude, but well conserved period. Single-cell experiments revealed that in p53 and nuclear factor (NF)-B systems the oscillation period is homogenous in cell populations, insensitive to the strength of the stimulation, and is not influenced by the overexpression of p53 or NF-B transcription factors. We propose a novel computational method of validation of molecular pathways models, based on the analysis of sensitivity of the oscillation period to the particular gene(s) copy number and the level of stimulation. Using this method, the authors demonstrate that existing p53 models, in which oscillations are borne at a saddle-node-on-invariant-circle or subcritical Hopf bifurcations (characteristic for systems with interlinked positive and negative feedbacks), are highly sensitive to gene copy number. Hence, these models cannot explain existing experiments. Analysing NF-B system, the authors show the importance of saturation in transcription of the NF-B inhibitor IB. Models without saturation predict that the oscillation period is a rapidly growing function of total NF-B level, which is in disagreement with experiments. The study supports the hypothesis that oscillations of robust period are based on supercritical Hopf bifurcation, characteristic for dynamical systems involving negative feedback and time delay. We hypothesise that in the p53 system, the role of positive feedback is not sustaining oscillations, but terminating them in severely damaged cells in which the apoptotic programme should be initiated.
Collapse
Affiliation(s)
- B Hat
- Institute of Fundamental Technological Research, Warsaw, Poland
| | | | | |
Collapse
|
35
|
An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in translational systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:159-171. [PMID: 20835989 DOI: 10.1002/wsbm.45] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, Northwestern University, Chicago, IL 60611.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA 15260.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Joyeeta Dutta-Moscato
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
36
|
Behar M, Hoffmann A. Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev 2010; 20:684-93. [PMID: 20956081 DOI: 10.1016/j.gde.2010.09.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 01/07/2023]
Abstract
The health of organisms and cells depends on appropriate responses to diverse internal and external cues, stimuli, or challenges, such as changes in hormone or cytokine levels, or exposure to a pathogen. Cellular responses must be tailored to the identity and intensity of the stimulus and therefore intra-cellular signals must carry information about both. However, signaling mediators often form intricate networks that react to multiple stimuli yet manage to produce stimulus-specific responses. The multi-functionality ('functional pleiotropism') of signaling nodes suggests that biological networks have evolved ways of passing physiologically relevant stimulus information through shared channels. Increasing evidence supports the notion that this is achieved in part through temporal regulation of signaling mediators' activities. The present challenge is to identify the features of temporal activity profile that represent information about a given stimulus and understand how cells read the temporal codes to control their responses.
Collapse
Affiliation(s)
- Marcelo Behar
- Signaling Systems Laboratory, BioCircuits Institute, and San Diego Center for Systems Biology of Cellular Stress Responses, University of California, San Diego, 9500 Gillman Dr, La Jolla, CA 92093, United States
| | | |
Collapse
|
37
|
Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 2010; 264:1068-76. [DOI: 10.1016/j.jtbi.2010.03.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/08/2010] [Accepted: 03/16/2010] [Indexed: 12/25/2022]
|
38
|
Nuclear translocation kinetics of NF-kappaB in macrophages challenged with pathogens in a microfluidic platform. Biomed Microdevices 2009; 11:693-700. [PMID: 19169824 DOI: 10.1007/s10544-008-9281-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have developed a microfluidic platform for real-time imaging of host-pathogen interactions and cellular signaling events. Host cells are immobilized in a controlled environment for optical interrogation of the kinetics and stochasticity of immune response to pathogenic challenges. Here, we have quantitatively measured activation of the toll-like receptor 4 (TLR4) pathway in RAW264.7 murine macrophage-like cells. This was achieved by measuring the cytoplasm-to-nucleus translocation kinetics of a green fluorescent protein fusion construct to the NF-kappaB transcription factor subunit RelA (GFP-RelA). Translocation kinetics in response to live bacteria and purified lipopolysaccharide (LPS) challenges were measured, and this work presents the first demonstration of live imaging of host cell infection on a microfluidic platform with quantitative analysis of an early (<0.5 h from infection) immune signaling event. Our data show that a 1,000x increase in the LPS dose led to a ~10x increase in a host cell activation metric we developed in order to describe NF-kappaB translocation kinetics. Using this metric, live bacteria challenges were assigned an equivalent LPS dose as a first step towards comparing NF-kappaB translocation kinetics between TLR4-only pathway signaling (activated by LPS) and multiple pathway signaling (activated by whole bacteria). The device also contains a unique architecture for capturing and fluidically isolating single host cells for the purpose of differentiating between primary and secondary immune signaling.
Collapse
|
39
|
Kim D, Kolch W, Cho KH. Multiple roles of the NF-kappaB signaling pathway regulated by coupled negative feedback circuits. FASEB J 2009; 23:2796-802. [PMID: 19417085 DOI: 10.1096/fj.09-130369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The NF-kappaB signaling pathway can perform multiple functional roles depending on specific cellular environments and cell types. Even in the same cell clones, the pathway can show different kinetic and phenotypic properties. It is believed that the complex networks controlling the NF-kappaB signaling pathway can generate these diverse and sometimes ambiguous phenomena. We noted, however, that the dynamics of NF-kappaB signaling pathway is highly stochastic and that the NF-kappaB signaling pathway contains multiple negative feedback circuits formed by IkappaB isoform proteins, IkappaBalpha and IkappaBepsilon in particular. Considering the topological similarity, their functional roles seem to be redundant, raising the question why different types of IkappaB isoforms need to exist. From extensive stochastic simulations of the NF-kappaB signaling pathway, we found that each IkappaB isoform actually conducts a different regulatory role through its own negative feedback. Specifically, our data suggest that IkappaBalpha controls the dynamic patterns of nuclear NF-kappaB, while IkappaBepsilon induces cellular heterogeneity of the NF-kappaB activities. These results may provide an answer to the question of how a single NF-kappaB signaling pathway can perform multiple biological functions even in the same clonal populations.
Collapse
Affiliation(s)
- Dongsan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | |
Collapse
|
40
|
Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, Spiller DG, Unitt JF, Broomhead DS, Kell DB, Rand DA, Sée V, White MRH. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 2009; 324:242-6. [PMID: 19359585 PMCID: PMC2785900 DOI: 10.1126/science.1164860] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals. At all pulse intervals that were analyzed, we observed synchronous cycles of NF-kappaB nuclear translocation. Lower frequency stimulations gave repeated full-amplitude translocations, whereas higher frequency pulses gave reduced translocation, indicating a failure to reset. Deterministic and stochastic mathematical models predicted how negative feedback loops regulate both the resetting of the system and cellular heterogeneity. Altering the stimulation intervals gave different patterns of NF-kappaB-dependent gene expression, which supports the idea that oscillation frequency has a functional role.
Collapse
Affiliation(s)
- Louise Ashall
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Srivastava N, Brennan JS, Renzi RF, Wu M, Branda SS, Singh AK, Herr AE. Fully Integrated Microfluidic Platform Enabling Automated Phosphoprofiling of Macrophage Response. Anal Chem 2009; 81:3261-9. [DOI: 10.1021/ac8024224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nimisha Srivastava
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - James S. Brennan
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - Ronald F. Renzi
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - Meiye Wu
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - Steven S. Branda
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - Anup K. Singh
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| | - Amy E. Herr
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550
| |
Collapse
|
42
|
A model of TLR4 signaling and tolerance using a qualitative, particle–event-based method: Introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 2009; 217:43-52. [DOI: 10.1016/j.mbs.2008.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/02/2008] [Accepted: 10/02/2008] [Indexed: 12/12/2022]
|
43
|
Álvarez-Buylla ER, Chaos Á, Aldana M, Benítez M, Cortes-Poza Y, Espinosa-Soto C, Hartasánchez DA, Lotto RB, Malkin D, Escalera Santos GJ, Padilla-Longoria P. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 2008; 3:e3626. [PMID: 18978941 PMCID: PMC2572848 DOI: 10.1371/journal.pone.0003626] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 10/05/2008] [Indexed: 11/18/2022] Open
Abstract
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development.
Collapse
Affiliation(s)
- Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
- * E-mail: (ERA-B); (PP-L)
| | - Álvaro Chaos
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
| | - Maximino Aldana
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
| | - Yuriria Cortes-Poza
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
- Instituto de Investigación en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
| | - Carlos Espinosa-Soto
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
| | - Diego A. Hartasánchez
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - R. Beau Lotto
- lottolab, University College, London, United Kingdom
| | - David Malkin
- lottolab, University College, London, United Kingdom
| | - Gerardo J. Escalera Santos
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
| | - Pablo Padilla-Longoria
- C3, Centro de Ciencias de la Complejidad, Cd. Universitaria, UNAM, México, D. F., México
- Instituto de Investigación en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D. F., México
- * E-mail: (ERA-B); (PP-L)
| |
Collapse
|
44
|
Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 2008; 217:53-63. [PMID: 18835283 DOI: 10.1016/j.mbs.2008.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/16/2008] [Accepted: 08/21/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Intracellular signaling/synthetic pathways are being increasingly extensively characterized. However, while these pathways can be displayed in static diagrams, in reality they exist with a degree of dynamic complexity that is responsible for heterogeneous cellular behavior. Multiple parallel pathways exist and interact concurrently, limiting the ability to integrate the various identified mechanisms into a cohesive whole. Computational methods have been suggested as a means of concatenating this knowledge to aid in the understanding of overall system dynamics. Since the eventual goal of biomedical research is the identification and development of therapeutic modalities, computational representation must have sufficient detail to facilitate this 'engineering' process. Adding to the challenge, this type of representation must occur in a perpetual state of incomplete knowledge. We present a modeling approach to address this challenge that is both detailed and qualitative. This approach is termed 'dynamic knowledge representation,' and is intended to be an integrated component of the iterative cycle of scientific discovery. METHODS BioNetGen (BNG), a software platform for modeling intracellular signaling pathways, was used to model the toll-like receptor 4 (TLR-4) signal transduction cascade. The informational basis of the model was a series of reference papers on modulation of (TLR-4) signaling, and some specific primary research papers to aid in the characterization of specific mechanistic steps in the pathway. This model was detailed with respect to the components of the pathway represented, but qualitative with respect to the specific reaction coefficients utilized to execute the reactions. Responsiveness to simulated lipopolysaccharide (LPS) administration was measured by tumor necrosis factor (TNF) production. Simulation runs included evaluation of initial dose-dependent response to LPS administration at 10, 100, 1000 and 10,000, and a subsequent examination of preconditioning behavior with increasing LPS at 10, 100, 1000 and 10,000 and a secondary dose of LPS at 10,000 administered at approximately 27h of simulated time. Simulations of 'knockout' versions of the model allowed further examination of the interactions within the signaling cascade. RESULTS The model demonstrated a dose-dependent TNF response curve to increasing stimulus by LPS. Preconditioning simulations demonstrated a similar dose-dependency of preconditioning doses leading to attenuation of response to subsequent LPS challenge - a 'tolerance' dynamic. These responses match dynamics reported in the literature. Furthermore, the simulated 'knockout' results suggested the existence and need for dual negative feedback control mechanisms, represented by the zinc ring-finger protein A20 and inhibitor kappa B proteins (IkappaB), in order for both effective attenuation of the initial stimulus signal and subsequent preconditioned 'tolerant' behavior. CONCLUSIONS We present an example of detailed, qualitative dynamic knowledge representation using the TLR-4 signaling pathway, its control mechanisms and overall behavior with respect to preconditioning. The intent of this approach is to demonstrate a method of translating the extensive mechanistic knowledge being generated at the basic science level into an executable framework that can provide a means of 'conceptual model verification.' This allows for both the 'checking' of the dynamic consequences of a mechanistic hypothesis and the creation of a modular component of an overall model directed at the engineering goal of biomedical research. It is hoped that this paper will increase the use of knowledge representation and communication in this fashion, and facilitate the concatenation and integration of community-wide knowledge.
Collapse
|
45
|
Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G. Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 2008; 217:1-10. [PMID: 18835282 DOI: 10.1016/j.mbs.2008.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/11/2008] [Indexed: 12/15/2022]
Abstract
Inflammation is a normal, robust physiological process. It can also be viewed as a complex system that senses and attempts to resolve homeostatic perturbations initiated from within the body (for example, in autoimmune disease) or from the outside (for example, in infections). Virtually all acute and chronic diseases are either driven or modulated by inflammation. The complex interplay between beneficial and harmful arms of the inflammatory response may underlie the lack of fully effective therapies for many diseases. Mathematical modeling is emerging as a frontline tool for understanding the complexity of the inflammatory response. A series of articles in this issue highlights various modeling approaches to inflammation in the larger context of health and disease, from intracellular signaling to whole-animal physiology. Here we discuss the state of this emerging field. We note several common features of inflammation models, as well as challenges and prospects for future studies.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
46
|
Apostolou E, Thanos D. Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 2008; 134:85-96. [PMID: 18614013 DOI: 10.1016/j.cell.2008.05.052] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/18/2008] [Accepted: 05/03/2008] [Indexed: 12/20/2022]
Abstract
Transcriptional activation of the IFN-beta gene by virus infection requires the cooperative assembly of an enhanceosome. We report that the stochastic and monoallelic expression of the IFN-beta gene depends on interchromosomal associations with three identified distinct genetic loci that could mediate binding of the limiting transcription factor NF-kappaB to the IFN-beta enhancer, thus triggering enhanceosome assembly and activation of transcription from this allele. The probability of a cell to express IFN-beta is dramatically increased when the cell is transfected with any of these loci. The secreted IFN-beta protein induces high-level expression of the enhanceosome factor IRF-7, which in turn promotes enhanceosome assembly and IFN-beta transcription from the remaining alleles and in other initially nonexpressing cells. Thus, the IFN-beta enhancer functions in a nonlinear fashion by working as a signal amplifier.
Collapse
Affiliation(s)
- Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | | |
Collapse
|
47
|
Klinke DJ, Ustyugova IV, Brundage KM, Barnett JB. Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection. Biophys J 2008; 94:4249-59. [PMID: 18281385 PMCID: PMC2480691 DOI: 10.1529/biophysj.107.120451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/14/2008] [Indexed: 12/18/2022] Open
Abstract
The activation of transcription factor NF-kappaB (nuclear factor-kappaB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-kappaB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-kappaB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-kappaB activation. Both assays detected damped oscillatory behavior of NF-kappaB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-kappaB after LPS stimulation. DCPA is known to inhibit the production of two NF-kappaB-inducible cytokines, IL-6 and tumor necrosis factor alpha, by reducing but not completely abrogating NF-kappaB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-kappaB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-kappaB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
48
|
An G. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model 2008; 5:11. [PMID: 18505587 PMCID: PMC2442588 DOI: 10.1186/1742-4682-5-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 05/27/2008] [Indexed: 01/04/2023] Open
Abstract
Background One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. Results and Discussion ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems Conclusion A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
49
|
Cheong R, Hoffmann A, Levchenko A. Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 2008; 4:192. [PMID: 18463616 PMCID: PMC2424295 DOI: 10.1038/msb.2008.30] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/01/2008] [Indexed: 12/12/2022] Open
Abstract
Mammalian inflammatory signaling, for which NF-kappaB is a principal transcription factor, is an exquisite example of how cellular signaling pathways can be regulated to produce different yet specific responses to different inflammatory insults. Mathematical models, tightly linked to experiment, have been instrumental in unraveling the forms of regulation in NF-kappaB signaling and their underlying molecular mechanisms. Our initial model of the IkappaB-NF-kappaB signaling module highlighted the role of negative feedback in the control of NF-kappaB temporal dynamics and gene expression. Subsequent studies sparked by this work have helped to characterize additional feedback loops, the input-output behavior of the module, crosstalk between multiple NF-kappaB-activating pathways, and NF-kappaB oscillations. We anticipate that computational techniques will enable further progress in the NF-kappaB field, and the signal transduction field in general, and we discuss potential upcoming developments.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
50
|
Cheong R, Levchenko A. Wires in the soup: quantitative models of cell signaling. Trends Cell Biol 2008; 18:112-8. [PMID: 18291655 DOI: 10.1016/j.tcb.2008.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 02/06/2023]
Abstract
Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of challenges. The underlying signal transduction networks enabling this response can be quite complex, and so sophisticated computational modeling coupled with precise experimentation is required to unravel them. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. Quantitative models of signaling pathways (e.g. NF-kappaB) can be gradually constructed through continuous experimental validation, and important lessons can be learnt from such exercises.
Collapse
Affiliation(s)
- Raymond Cheong
- Whitaker Institute for Biomedical Engineering, Institute for Cell Engineering, Department of Biomedical Engineering, Johns Hopkins University, 208C Clark Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|