1
|
Nikolić I, Đoković J, Mehn D, Guerrini G, Savić S, Jordan O, Borchard G. When conventional approach in toxicity assays falls short for nanomedicines: a case study with nanoemulsions. Drug Deliv Transl Res 2025:10.1007/s13346-024-01776-7. [PMID: 39779651 DOI: 10.1007/s13346-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining). Special focus was placed on estimating appropriate incubation times for relevant results in biological investigations. All formulations had an average diameter of around 100 nm. Conclusions regarding in vitro safety were assay-dependent: LDH and PI-based assays showed good correlation, while the WST-1 assay indicated that the non-PEGylated formulation altered mitochondrial activity more significantly compared to the PEGylated ones. The study underlined that the selection of appropriate cytotoxicity assays should be based on the possible mechanism of cellular perturbation. Alternatively, different aspects of cellular toxicity should be tested. Additionally, there is a need for well-designed controls to overcome nanoparticle scattering effects and avoid potentially false high toxicity results, which was demonstrated. Combining orthogonal, well-designed physicochemical and biological assays in a standardized manner as an initial step in the reliable preclinical characterization of nanomedicines is suggested. This represents a key aspect of new methodologies in nanomedicine characterization.
Collapse
Affiliation(s)
- Ines Nikolić
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Jelena Đoković
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Snežana Savić
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Olivier Jordan
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Aschenbrenner I, Böckler M, Franke F, Liebl K, Catici DAM, Brandl M, Behnke J, Feige MJ. Development of an enabling platform biotechnology for the production of proteins. Biol Chem 2024; 405:471-483. [PMID: 38916991 DOI: 10.1515/hsz-2023-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 06/27/2024]
Abstract
Protein-based drugs are a mainstay of modern medicine. In contrast to antibodies, most of these need highly individualized production processes which often limits their development. Here, we develop an immunoglobulin domain tag (i-Tag), which can be fused to any protein of interest. This tag is made of a linear arrangement of antibody light chain constant domains. It enhances expression as well as secretion of the fusion partner and allows for simple purification of several structurally and functionally distinct fusion proteins. Furthermore, it improves the biophysical characteristics of most fusion proteins tested, is inert, and does not compromise the fusion partners' functionality. Taken together, the i-Tag should facilitate the development of biopharmaceuticals and diagnostic proteins otherwise lacking a common structural element.
Collapse
Affiliation(s)
- Isabel Aschenbrenner
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Maximilian Böckler
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Fabian Franke
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Korbinian Liebl
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Dragana A M Catici
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Matthias Brandl
- TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), 9184 Technical University of Munich , D-85748 Garching, Germany
| | - Julia Behnke
- TUM School of Medicine, Department of Surgery, Klinikum Rechts der Isar München, 9184 Technical University of Munich , D-81675 Munich, Germany
| | - Matthias J Feige
- TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), 9184 Technical University of Munich , D-85748 Garching, Germany
| |
Collapse
|
3
|
Melikishvili M, Fried MG, Fondufe-Mittendorf YN. Cooperative nucleic acid binding by Poly ADP-ribose polymerase 1. Sci Rep 2024; 14:7530. [PMID: 38553566 PMCID: PMC10980755 DOI: 10.1038/s41598-024-58076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Michael G Fried
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | | |
Collapse
|
4
|
Aschenbrenner I, Siebenmorgen T, Lopez A, Parr M, Ruckgaber P, Kerle A, Rührnößl F, Catici D, Haslbeck M, Frishman D, Sattler M, Zacharias M, Feige MJ. Assembly-dependent Structure Formation Shapes Human Interleukin-23 versus Interleukin-12 Secretion. J Mol Biol 2023; 435:168300. [PMID: 37805067 DOI: 10.1016/j.jmb.2023.168300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:βheterodimer. For human αsubunits it has been shown that they depend on theirβsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same βsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsβsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its βsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.
Collapse
Affiliation(s)
- Isabel Aschenbrenner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Till Siebenmorgen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Abraham Lopez
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Marina Parr
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Philipp Ruckgaber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Anna Kerle
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Florian Rührnößl
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dragana Catici
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Martin Haslbeck
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dmitrij Frishman
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Matthias J Feige
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
5
|
Hildenbrand K, Bohnacker S, Menon PR, Kerle A, Prodjinotho UF, Hartung F, Strasser PC, Catici DA, Rührnößl F, Haslbeck M, Schumann K, Müller SI, da Costa CP, Esser-von Bieren J, Feige MJ. Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions. SCIENCE ADVANCES 2023; 9:eadg6874. [PMID: 37878703 PMCID: PMC10599630 DOI: 10.1126/sciadv.adg6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a β subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Priyanka Rajeev Menon
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich F. Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Patrick C. Strasser
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dragana A. M. Catici
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Schumann
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Stephanie I. Müller
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection and Research (DZIF), partner site Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
- Department of Immunobiology, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
Brautigam CA. SViMULATE: a computer program facilitating interactive, multi-mode simulation of analytical ultracentrifugation data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:293-302. [PMID: 36890221 DOI: 10.1007/s00249-023-01637-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 03/10/2023]
Abstract
The ability to simulate sedimentation velocity (SV) analytical ultracentrifugation (AUC) experiments has proved to be a valuable tool for research planning, hypothesis testing, and pedagogy. Several options for SV data simulation exist, but they often lack interactivity and require up-front calculations on the part of the user. This work introduces SViMULATE, a program designed to make AUC experimental simulation quick, straightforward, and interactive. SViMULATE takes user-provided parameters and outputs simulated AUC data in a format suitable for subsequent analyses, if desired. The user is not burdened by the necessity to calculate hydrodynamic parameters for simulated macromolecules, as the program can compute these properties on the fly. It also frees the user of decisions regarding simulation stop time. SViMULATE features a graphical view of the species that are under simulation, and there is no limit on their number. Additionally, the program emulates data from different experimental modalities and data-acquisition systems, including the realistic simulation of noise for the absorbance optical system. The executable is available for immediate download.
Collapse
Affiliation(s)
- Chad A Brautigam
- Departments of Biophysics and Microbiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Sun G, Liao J, Kurze E, Hoffmann TD, Steinchen W, McGraphery K, Habegger R, Marek L, Catici DAM, Ludwig C, Jing T, Hoffmann T, Song C, Schwab W. Apocarotenoids are allosteric effectors of a dimeric plant glycosyltransferase involved in defense and lignin formation. THE NEW PHYTOLOGIST 2023; 238:2080-2098. [PMID: 36908092 DOI: 10.1111/nph.18875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.
Collapse
Affiliation(s)
- Guangxin Sun
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ruth Habegger
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ludwig Marek
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Dragana A M Catici
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technische Universität München, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| |
Collapse
|
8
|
Ma X, Bakhtina M, Shulgina I, Cantara WA, Kuzmishin Nagy A, Goto Y, Suga H, Foster MP, Musier-Forsyth K. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res 2023; 51:3988-3999. [PMID: 36951109 PMCID: PMC10164551 DOI: 10.1093/nar/gkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Namitz KEW, Tan S, Cosgrove MS. Hierarchical assembly of the MLL1 core complex regulates H3K4 methylation and is dependent on temperature and component concentration. J Biol Chem 2023; 299:102874. [PMID: 36623730 PMCID: PMC9939731 DOI: 10.1016/j.jbc.2023.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Enzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature. Surprisingly, we found that the disassembled state is favored at physiological temperature, where the enzyme rapidly becomes irreversibly inactivated, likely because of complex components becoming trapped in nonproductive conformations. Increased protein concentration partially overcomes this thermodynamic barrier for complex assembly, suggesting a potential regulatory mechanism for spatiotemporal control of H3K4 methylation. Together, these results are consistent with the hypothesis that regulated assembly of the MLL1 core complex underlies an important mechanism for establishing different H3K4 methylation states in mammalian genomes.
Collapse
Affiliation(s)
- Kevin E W Namitz
- State University of New York (SUNY) Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, NY, USA
| | - Song Tan
- Penn State University, Department of Biochemistry and Molecular Biology, University Park, PA, USA
| | - Michael S Cosgrove
- State University of New York (SUNY) Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, NY, USA.
| |
Collapse
|
10
|
Pauly T, Zhang T, Sternke-Hoffmann R, Nagel-Steger L, Willbold D. Differentiation of subnucleus-sized oligomers and nucleation-competent assemblies of the Aβ peptide. Biophys J 2023; 122:269-278. [PMID: 36529991 PMCID: PMC9892607 DOI: 10.1016/j.bpj.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
A significant feature of Alzheimer's disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-β (Aβ) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aβ peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20-160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased β-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aβ40 and Aβ42 M35ox take much longer to form nuclei and enter the growth phase than Aβ42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.
Collapse
Affiliation(s)
- Thomas Pauly
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany
| | | | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany.
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, Jülich, Germany
| |
Collapse
|
11
|
Jose D, Michael MM, Bentsen C, Rosenblum B, Zelaya A. A Spectroscopic Approach to Unravel the Local Conformations of a G-Quadruplex Using CD-Active Fluorescent Base Analogues. Biochemistry 2022; 61:2720-2732. [DOI: 10.1021/acs.biochem.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Davis Jose
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Miya Mary Michael
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Christopher Bentsen
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Brandon Rosenblum
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Adriana Zelaya
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| |
Collapse
|
12
|
Miller PG, Sathappa M, Moroco JA, Jiang W, Qian Y, Iqbal S, Guo Q, Giacomelli AO, Shaw S, Vernier C, Bajrami B, Yang X, Raffier C, Sperling AS, Gibson CJ, Kahn J, Jin C, Ranaghan M, Caliman A, Brousseau M, Fischer ES, Lintner R, Piccioni F, Campbell AJ, Root DE, Garvie CW, Ebert BL. Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun 2022; 13:3778. [PMID: 35773251 PMCID: PMC9246869 DOI: 10.1038/s41467-022-30463-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/02/2022] [Indexed: 02/02/2023] Open
Abstract
PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.
Collapse
Affiliation(s)
- Peter G Miller
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Wei Jiang
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Yue Qian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Qi Guo
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Andrew O Giacomelli
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Subrata Shaw
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Camille Vernier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Besnik Bajrami
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam S Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Gibson
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Josephine Kahn
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthew Ranaghan
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alisha Caliman
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Merissa Brousseau
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert Lintner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | | | - David E Root
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
13
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Mandal R, Kohoutova K, Petrvalska O, Horvath M, Srb P, Veverka V, Obsilova V, Obsil T. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Protein Sci 2022; 31:e4287. [PMID: 35481640 PMCID: PMC8994487 DOI: 10.1002/pro.4287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023]
Abstract
Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.
Collapse
Affiliation(s)
- Raju Mandal
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Klara Kohoutova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Division BIOCEV, Department of Structural Biology of Signaling ProteinsInstitute of Physiology of the Czech Academy of SciencesVestecCzech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Division BIOCEV, Department of Structural Biology of Signaling ProteinsInstitute of Physiology of the Czech Academy of SciencesVestecCzech Republic
| | - Matej Horvath
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Veronika Obsilova
- Division BIOCEV, Department of Structural Biology of Signaling ProteinsInstitute of Physiology of the Czech Academy of SciencesVestecCzech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Division BIOCEV, Department of Structural Biology of Signaling ProteinsInstitute of Physiology of the Czech Academy of SciencesVestecCzech Republic
| |
Collapse
|
15
|
Mulvaney KM, Blomquist C, Acharya N, Li R, Ranaghan MJ, O'Keefe M, Rodriguez DJ, Young MJ, Kesar D, Pal D, Stokes M, Nelson AJ, Jain SS, Yang A, Mullin-Bernstein Z, Columbus J, Bozal FK, Skepner A, Raymond D, LaRussa S, McKinney DC, Freyzon Y, Baidi Y, Porter D, Aguirre AJ, Ianari A, McMillan B, Sellers WR. Molecular basis for substrate recruitment to the PRMT5 methylosome. Mol Cell 2021; 81:3481-3495.e7. [PMID: 34358446 DOI: 10.1016/j.molcel.2021.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.
Collapse
Affiliation(s)
| | | | | | | | - Matthew J Ranaghan
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Meghan O'Keefe
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Adam Skepner
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Donald Raymond
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - Salvatore LaRussa
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | - David C McKinney
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA
| | | | | | - Dale Porter
- Broad Institute, Cambridge, MA, USA; Cedilla Therapeutics, Cambridge, MA, USA
| | - Andrew J Aguirre
- Broad Institute, Cambridge, MA, USA; Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Brian McMillan
- Center for the Development of Therapeutics, Broad Institute, Cambridge, MA, USA; Tango Therapeutics, Cambridge, MA, USA
| | - William R Sellers
- Broad Institute, Cambridge, MA, USA; Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol 2021; 4:899. [PMID: 34294877 PMCID: PMC8298602 DOI: 10.1038/s42003-021-02419-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer. Pohl et al. investigated the structural basis of Nedd4-2 regulation by 14-3-3 and found that phosphorylated Ser342 and Ser448 are the main residues that facilitate 14-3-3 binding to Nedd4-2. The authors propose that the Nedd4-2:14-3-3 complex then stimulates a structural rearrangement of Nedd4-2 through inhibiting interaction of its structured domains.
Collapse
|
17
|
Bawankar M, Thakur AK. Mechanism of human γD-crystallin protein aggregation in UV-C light. Mol Vis 2021; 27:415-428. [PMID: 34267497 PMCID: PMC8254662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose To characterize intermediate aggregate species on the aggregation pathway of γD-crystallin protein in ultraviolet (UV)-C light. Methods The kinetics of γD-crystallin protein aggregation was studied with reversed-phase high-performance liquid chromatography (RP-HPLC) sedimentation assay, ThT binding assay, and light scattering. We used analytical ultracentrifugation to recognize intermediate aggregate species and characterized them with Fourier transform infrared spectroscopy (FTIR). Quantification of free sulfhydryl groups in an ongoing aggregation reaction was achieved by using Ellman's assay. Results Negligible lag phase was found in the aggregation kinetic experiments of the γD-crystallin protein. Dimer, tetramer, octamer, and higher oligomer intermediates were formed on the aggregation pathway. The protein changes its conformation to form intermediate aggregate species. FTIR and trypsin digestion indicated structural differences between the protein monomer, intermediate aggregate species, and fibrils. Ellman's assay revealed that disulfide bonds were formed in the protein monomers and aggregates during the aggregation process. Conclusions This study showed that various intermediate and structurally different aggregate species are formed on the aggregation pathway of γD-crystallin protein in UV-C light.
Collapse
Affiliation(s)
- Mangesh Bawankar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| |
Collapse
|
18
|
Bogutzki A, Curth U. Analytical Ultracentrifugation for Analysis of Protein-Nucleic Acid Interactions. Methods Mol Biol 2021; 2263:397-421. [PMID: 33877610 DOI: 10.1007/978-1-0716-1197-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analytical ultracentrifugation is a powerful tool to characterize interactions of macromolecules in solution. In sedimentation velocity experiments, the sedimentation of interaction partners and complexes can be monitored directly and can be used to characterize interactions quantitatively. As an example, we show how the interaction of the clamp loader subcomplex of DNA polymerase III from E. coli and a template/primer DNA saturated with single-stranded DNA-binding protein can be analyzed by analytical ultracentrifugation with fluorescence detection.
Collapse
Affiliation(s)
- Andrea Bogutzki
- Hannover Medical School, Institute for Biophysical Chemistry, Hannover, Germany
| | - Ute Curth
- Hannover Medical School, Institute for Biophysical Chemistry, Hannover, Germany.
| |
Collapse
|
19
|
Tsatsanis A, McCorkindale AN, Wong BX, Patrick E, Ryan TM, Evans RW, Bush AI, Sutherland GT, Sivaprasadarao A, Guennewig B, Duce JA. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatry 2021; 26:5516-5531. [PMID: 34400772 PMCID: PMC8758478 DOI: 10.1038/s41380-021-01248-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-β peptide (Aβ) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aβ production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aβ production, neuroinflammation and iron dysregulation.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Andrew N. McCorkindale
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Bruce X. Wong
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Ellis Patrick
- grid.1013.30000 0004 1936 834XFaculty of Science, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW Australia
| | - Tim M. Ryan
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Robert W. Evans
- grid.7728.a0000 0001 0724 6933School of Engineering and Design, Brunel University, London, UK
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Greg T. Sutherland
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Asipu Sivaprasadarao
- grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, NSW Australia
| | - James A. Duce
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
20
|
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol 2020; 15:3060-3071. [PMID: 33146997 DOI: 10.1021/acschembio.0c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.
Collapse
Affiliation(s)
- Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|
21
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
22
|
Chaires JB, Gray RD, Dean WL, Monsen R, DeLeeuw LW, Stribinskis V, Trent JO. Human POT1 unfolds G-quadruplexes by conformational selection. Nucleic Acids Res 2020; 48:4976-4991. [PMID: 32232414 PMCID: PMC7229828 DOI: 10.1093/nar/gkaa202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
The reaction mechanism by which the shelterin protein POT1 (Protection of Telomeres 1) unfolds human telomeric G-quadruplex structures is not fully understood. We report here kinetic, thermodynamic, hydrodynamic and computational studies that show that a conformational selection mechanism, in which POT1 binding is coupled to an obligatory unfolding reaction, is the most plausible mechanism. Stopped-flow kinetic and spectroscopic titration studies, along with isothermal calorimetry, were used to show that binding of the single-strand oligonucleotide d[TTAGGGTTAG] to POT1 is both fast (80 ms) and strong (-10.1 ± 0.3 kcal mol-1). In sharp contrast, kinetic studies showed the binding of POT1 to an initially folded 24 nt G-quadruplex structure is four orders of magnitude slower. Fluorescence, circular dichroism and analytical ultracentrifugation studies showed that POT1 binding is coupled to quadruplex unfolding, with a final complex with a stoichiometry of 2 POT1 per 24 nt DNA. The binding isotherm for the POT1-quadruplex interaction was sigmoidal, indicative of a complex reaction. A conformational selection model that includes equilibrium constants for both G-quadruplex unfolding and POT1 binding to the resultant single-strand provided an excellent quantitative fit to the experimental binding data. POT1 unfolded and bound to any conformational form of human telomeric G-quadruplex (antiparallel, hybrid, parallel monomers or a 48 nt sequence with two contiguous quadruplexes), but did not avidly interact with duplex DNA or with other G-quadruplex structures. Finally, molecular dynamics simulations provided a detailed structural model of a 2:1 POT1:DNA complex that is fully consistent with experimental biophysical results.
Collapse
Affiliation(s)
- Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert Monsen
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Lynn W DeLeeuw
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Vilius Stribinskis
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
23
|
Spatiotemporal regulation of PEDF signaling by type I collagen remodeling. Proc Natl Acad Sci U S A 2020; 117:11450-11458. [PMID: 32385162 DOI: 10.1073/pnas.2004034117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix affects many cellular processes, either directly or indirectly, through the regulation of soluble ligands; however, the mechanistic details of this process remain largely unknown. Here we propose that type I collagen remodeling regulates the receptor-binding activity of pigment epithelium-derived factor (PEDF), a widely expressed secreted glycoprotein that has multiple important biological functions in tissue and organ homeostasis. We determined the crystal structure of PEDF in complex with a disulfide cross-linked heterotrimeric collagen peptide, in which the α(I) chain segments-each containing the respective PEDF-binding region (residues 930 to 938)-are assembled with an α2α1α1 staggered configuration. The complex structure revealed that PEDF specifically interacts with a unique amphiphilic sequence, KGHRGFSGL, of the type I collagen α1 chain, with its proposed receptor-binding sites buried extensively. Molecular docking demonstrated that the PEDF-binding surface of type I collagen contains the cross-link-susceptible Lys930 residue of the α1 chain and provides a good foothold for stable docking with the α1(I) N-telopeptide of an adjacent triple helix in the fibril. Therefore, the binding surface is completely inaccessible if intermolecular crosslinking between two crosslink-susceptible lysyl residues, Lys9 in the N-telopeptide and Lys930, is present. These structural analyses demonstrate that PEDF molecules, once sequestered around newly synthesized pericellular collagen fibrils, are gradually liberated as collagen crosslinking increases, making them accessible for interaction with their target cell surface receptors in a spatiotemporally regulated manner.
Collapse
|
24
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020; 295:1105-1119. [PMID: 31836666 PMCID: PMC6983858 DOI: 10.1074/jbc.ra119.010934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.
Collapse
Affiliation(s)
- Mukul Sherekar
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Sae-Won Han
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322
| | - Hugh O'Neill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | | | | | | | - Sriram Subramaniam
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Department of Biochemistry, Life Sciences Center, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
25
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49919-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
26
|
Travis SM, Kokona B, Fairman R, Hughson FM. Roles of singleton tryptophan motifs in COPI coat stability and vesicle tethering. Proc Natl Acad Sci U S A 2019; 116:24031-24040. [PMID: 31712447 PMCID: PMC6883825 DOI: 10.1073/pnas.1909697116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coat protein I (COPI)-coated vesicles mediate retrograde transport from the Golgi to the endoplasmic reticulum (ER), as well as transport within the Golgi. Major progress has been made in defining the structure of COPI coats, in vitro and in vivo, at resolutions as high as 9 Å. Nevertheless, important questions remain unanswered, including what specific interactions stabilize COPI coats, how COPI vesicles recognize their target membranes, and how coat disassembly is coordinated with vesicle fusion and cargo delivery. Here, we use X-ray crystallography to identify a conserved site on the COPI subunit α-COP that binds to flexible, acidic sequences containing a single tryptophan residue. One such sequence, found within α-COP itself, mediates α-COP homo-oligomerization. Another such sequence is contained within the lasso of the ER-resident Dsl1 complex, where it helps mediate the tethering of Golgi-derived COPI vesicles at the ER membrane. Together, our findings suggest that α-COP homo-oligomerization plays a key role in COPI coat stability, with potential implications for the coordination of vesicle tethering, uncoating, and fusion.
Collapse
Affiliation(s)
- Sophie M Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA 19041
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA 19041
| | | |
Collapse
|
27
|
The molecular basis of chaperone-mediated interleukin 23 assembly control. Nat Commun 2019; 10:4121. [PMID: 31511508 PMCID: PMC6739322 DOI: 10.1038/s41467-019-12006-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
The functionality of most secreted proteins depends on their assembly into a defined quaternary structure. Despite this, it remains unclear how cells discriminate unassembled proteins en route to the native state from misfolded ones that need to be degraded. Here we show how chaperones can regulate and control assembly of heterodimeric proteins, using interleukin 23 (IL-23) as a model. We find that the IL-23 α-subunit remains partially unstructured until assembly with its β-subunit occurs and identify a major site of incomplete folding. Incomplete folding is recognized by different chaperones along the secretory pathway, realizing reliable assembly control by sequential checkpoints. Structural optimization of the chaperone recognition site allows it to bypass quality control checkpoints and provides a secretion-competent IL-23α subunit, which can still form functional heterodimeric IL-23. Thus, locally-restricted incomplete folding within single-domain proteins can be used to regulate and control their assembly. It is unclear how unassembled secretory pathway proteins are discriminated from misfolded ones. Here the authors combine biophysical and cellular experiments to study the folding of heterodimeric interleukin 23 and describe how ER chaperones recognize unassembled proteins and aid their assembly into protein complexes while preventing the premature degradation of unassembled units.
Collapse
|
28
|
Zhang T, Nagel‐Steger L, Willbold D. Solution-Based Determination of Dissociation Constants for the Binding of Aβ42 to Antibodies. ChemistryOpen 2019; 8:989-994. [PMID: 31367507 PMCID: PMC6643301 DOI: 10.1002/open.201900167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid β-peptides (Aβ) play a major role in the pathogenesis of Alzheimer's disease. Therefore, numerous monoclonal antibodies against Aβ have been developed for basic and clinical research. The present study applied fluorescence based analytical ultracentrifugation and microscale thermophoresis to characterize the interaction between Aβ42 monomers and three popular, commercially available antibodies, namely 6E10, 4G8 and 12F4. Both methods allowed us to analyze the interactions at low nanomolar concentrations of analytes close to their dissociation constants (K D) as required for the study of high affinity interactions. Furthermore, the low concentrations minimized the unwanted self-aggregation of Aβ. Our study demonstrates that all three antibodies bind to Aβ42 monomers with comparable affinities in the low nanomolar range. K D values for Aβ42 binding to 6E10 and 4G8 are in good agreement with formerly reported values from SPR studies, while the K D for 12F4 binding to Aβ42 monomer is reported for the first time.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Luitgard Nagel‐Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
29
|
Kochert BA, Fleischhacker AS, Wales TE, Becker DF, Engen JR, Ragsdale SW. Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions. J Biol Chem 2019; 294:8259-8272. [PMID: 30944174 DOI: 10.1074/jbc.ra119.008592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/02/2019] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) catalyzes heme degradation, a process crucial for regulating cellular levels of this vital, but cytotoxic, cofactor. Two HO isoforms, HO1 and HO2, exhibit similar catalytic mechanisms and efficiencies. They also share catalytic core structures, including the heme-binding site. Outside their catalytic cores are two regions unique to HO2: a 20-amino acid-long N-terminal extension and a C-terminal domain containing two heme regulatory motifs (HRMs) that bind heme independently of the core. Both HO isoforms contain a C-terminal hydrophobic membrane anchor; however, their sequences diverge. Here, using hydrogen-deuterium exchange MS, size-exclusion chromatography, and sedimentation velocity, we investigated how these divergent regions impact the dynamics and structure of the apo and heme-bound forms of HO1 and HO2. Our results reveal that heme binding to the catalytic cores of HO1 and HO2 causes similar dynamic and structural changes in regions (proximal, distal, and A6 helices) within and linked to the heme pocket. We observed that full-length HO2 is more dynamic than truncated forms lacking the membrane-anchoring region, despite sharing the same steady-state activity and heme-binding properties. In contrast, the membrane anchor of HO1 did not influence its dynamics. Furthermore, although residues within the HRM domain facilitated HO2 dimerization, neither the HRM region nor the N-terminal extension appeared to affect HO2 dynamics. In summary, our results highlight significant dynamic and structural differences between HO2 and HO1 and indicate that their dissimilar C-terminal regions play a major role in controlling the structural dynamics of these two proteins.
Collapse
Affiliation(s)
- Brent A Kochert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | | | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
30
|
Agamasu C, Ghirlando R, Taylor T, Messing S, Tran TH, Bindu L, Tonelli M, Nissley DV, McCormick F, Stephen AG. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophys J 2019; 116:1049-1063. [PMID: 30846362 PMCID: PMC6428923 DOI: 10.1016/j.bpj.2019.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.
Collapse
Affiliation(s)
- Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Lakshman Bindu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resource Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Frank McCormick
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland.
| |
Collapse
|
31
|
Kokona B, Cunningham NR, Quinn JM, Fairman R. Aggregation Profiling of C9orf72 Dipeptide Repeat Proteins Transgenically Expressed in Drosophila melanogaster Using an Analytical Ultracentrifuge Equipped with Fluorescence Detection. Methods Mol Biol 2019; 2039:81-90. [PMID: 31342420 DOI: 10.1007/978-1-4939-9678-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent development of a fluorescence detection system for the analytical ultracentrifuge has allowed for the characterization of protein size and aggregation in complex mixtures. Protocols are described here to analyze protein aggregation seen in various human neurodegenerative diseases as they are presented in transgenic animal model systems. Proper preparation of crude extracts in appropriate sample buffers is critical for success in analyzing protein aggregation using sedimentation velocity methods. Furthermore, recent advances in sedimentation velocity analysis have led to data collection using single multispeed experiments, which may be analyzed using a wide distribution analysis approach. In this chapter, we describe the use of these new sedimentation velocity methods for faster determination of a wider range of sizes. In Chapter 7 of this book, we describe how agarose gel electrophoresis can be used to complement the analytical ultracentrifugation work, often as a prelude to careful biophysical analysis to help screen conditions in order to improve the success of sedimentation velocity experiments.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Jeanne M Quinn
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA.
| |
Collapse
|
32
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
33
|
Huang WC, Liao JH, Hsiao TC, Wei TYW, Maestre-Reyna M, Bessho Y, Tsai MD. Binding and Enhanced Binding between Key Immunity Proteins TRAF6 and TIFA. Chembiochem 2018; 20:140-146. [PMID: 30378729 DOI: 10.1002/cbic.201800436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Human tumor necrosis factor receptor associated factor (TRAF)-interacting protein, with a forkhead-associated domain (TIFA), is a key regulator of NF-κB activation. It also plays a key role in the activation of innate immunity in response to bacterial infection, through heptose 1,7-bisphosphate (HBP); a metabolite of lipopolysaccharide (LPS). However, the mechanism of TIFA function is largely unexplored, except for the suggestion of interaction with TRAF6. Herein, we provide evidence for direct binding, albeit weak, between TIFA and the TRAF domain of TRAF6, and it is shown that the binding is enhanced for a rationally designed double mutant, TIFA S174Q/M179D. Enhanced binding was also demonstrated for endogenous full-length TRAF6. Furthermore, the structures of the TRAF domain complexes with the consensus TRAF-binding peptides from the C terminus of wild-type and S174Q/M179D mutant TIFA, showing salt-bridge formation between residues 177-181 of TIFA and the binding pocket residues of the TRAF domain, were solved. Taken together, the results provide direct evidence and a structural basis for the TIFA-TRAF6 interaction, and show how this important biological function can be modulated.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Tzu-Chun Hsiao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, National (Taiwan) University, 1, Roosevelt Road Sec. 4, Taipei, 106, Taiwan
| |
Collapse
|
34
|
Gioria S, Caputo F, Urbán P, Maguire CM, Bremer-Hoffmann S, Prina-Mello A, Calzolai L, Mehn D. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine (Lond) 2018; 13:539-554. [PMID: 29381129 DOI: 10.2217/nnm-2017-0338] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The use of nanotechnology in medical products has been demonstrated at laboratory scale, and many resulting nanomedicines are in the translational phase toward clinical applications, with global market trends indicating strong growth of the sector in the coming years. The translation of nanomedicines toward the clinic and subsequent commercialization may require the development of new or adaptation of existing standards to ensure the quality, safety and efficacy of such products. This work addresses some identified needs, and illustrates the shortcomings of currently used standardized methods when applied to medical-nanoparticles to assess particle size, drug loading, drug release and in vitro safety. Alternative physicochemical, and in vitro toxicology methods, with the potential to qualify as future standards supporting the evaluation of nanomedicine are provided.
Collapse
Affiliation(s)
- Sabrina Gioria
- European Commission, Joint Research Center (JRC), Directorate for Health, Consumers & Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Fanny Caputo
- Univ. Grenoble Alpes, F38000 Grenoble, France.,CEA, LETI, Minatec Campus, F-38054 Grenoble, France
| | - Patricia Urbán
- European Commission, Joint Research Center (JRC), Directorate for Health, Consumers & Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Ciarán Manus Maguire
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,AMBER Center & CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Susanne Bremer-Hoffmann
- European Commission, Joint Research Center (JRC), Directorate for Health, Consumers & Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,AMBER Center & CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luigi Calzolai
- European Commission, Joint Research Center (JRC), Directorate for Health, Consumers & Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Dora Mehn
- European Commission, Joint Research Center (JRC), Directorate for Health, Consumers & Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| |
Collapse
|
35
|
Ranaghan MJ, Durney MA, Mesleh MF, McCarren PR, Garvie CW, Daniels DS, Carey KL, Skepner AP, Levine B, Perez JR. The Autophagy-Related Beclin-1 Protein Requires the Coiled-Coil and BARA Domains To Form a Homodimer with Submicromolar Affinity. Biochemistry 2017; 56:6639-6651. [PMID: 29185708 DOI: 10.1021/acs.biochem.7b00936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Beclin-1 (BECN1) is an essential component of macroautophagy. This process is a highly conserved survival mechanism that recycles damaged cellular components or pathogens by encasing them in a bilayer vesicle that fuses with a lysosome to allow degradation of the vesicular contents. Mutations or altered expression profiles of BECN1 have been linked to various cancers and neurodegenerative diseases. Viruses, including HIV and herpes simplex virus 1 (HSV-1), are also known to specifically target BECN1 as a means of evading host defense mechanisms. Autophagy is regulated by the interaction between BECN1 and Bcl-2, a pro-survival protein in the apoptotic pathway that stabilizes the BECN1 homodimer. Disruption of the homodimer by phosphorylation or competitive binding promotes autophagy through an unknown mechanism. We report here the first recombinant synthesis (3-5 mg/L in an Escherichia coli culture) and characterization of full-length, human BECN1. Our analysis reveals that full-length BECN1 exists as a soluble homodimer (KD ∼ 0.45 μM) that interacts with Bcl-2 (KD = 4.3 ± 1.2 μM) and binds to lipid membranes. Dimerization is proposed to be mediated by a coiled-coil region of BECN1. A construct lacking the C-terminal BARA domain but including the coiled-coil region exhibits a homodimer KD 3.5-fold weaker than that of full-length BECN1, indicating that both the BARA domain and the coiled-coil region of BECN1 contribute to dimer formation. Using site-directed mutagenesis, we show that residues at the C-terminus of the coiled-coil region previously shown to interact with the BARA domain play a key role in dimerization and mutations weaken the interface by ∼5-fold.
Collapse
Affiliation(s)
- Matthew J Ranaghan
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Michael A Durney
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Patrick R McCarren
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Douglas S Daniels
- Department of Chemistry, University of Dayton , 300 College Park, Dayton, Ohio 45469, United States
| | - Kimberly L Carey
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Adam P Skepner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Jose R Perez
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard , 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
36
|
Analytical ultracentrifugation in structural biology. Biophys Rev 2017; 10:229-233. [PMID: 29188538 DOI: 10.1007/s12551-017-0340-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Researchers in the field of structural biology, especially X-ray crystallography and protein nuclear magnetic resonance, are interested in knowing as much as possible about the state of their target protein in solution. Not only is this knowledge relevant to studies of biological function, it also facilitates determination of a protein structure using homogeneous monodisperse protein samples. A researcher faced with a new protein to study will have many questions even after that protein has been purified. Analytical ultracentrifugation (AUC) can provide all of this information readily from a small sample in a non-destructive way, without the need for labeling, enabling structure determination experiments without any wasting time and material on uncharacterized samples. In this article, I use examples to illustrate how AUC can contribute to protein structural analysis. Integrating information from a variety of biophysical experimental methods, such as X-ray crystallography, small angle X-ray scattering, electrospray ionization-mass spectrometry, AUC allows a more complete understanding of the structure and function of biomacromolecules.
Collapse
|
37
|
The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Biochem J 2017; 474:3689-3704. [PMID: 28935721 DOI: 10.1042/bcj20170366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
Abstract
Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.
Collapse
|
38
|
Zhao H, Lomash S, Chittori S, Glasser C, Mayer ML, Schuck P. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. eLife 2017; 6:32056. [PMID: 29058671 PMCID: PMC5665649 DOI: 10.7554/elife.32056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/29/2022] Open
Abstract
Ion conductivity and the gating characteristics of tetrameric glutamate receptor ion channels are determined by their subunit composition. Competitive homo- and hetero-dimerization of their amino-terminal domains (ATDs) is a key step controlling assembly. Here we measured systematically the thermodynamic stabilities of homodimers and heterodimers of kainate and AMPA receptors using fluorescence-detected sedimentation velocity analytical ultracentrifugation. Measured affinities span many orders of magnitude, and complexes show large differences in kinetic stabilities. The association of kainate receptor ATD dimers is generally weaker than the association of AMPA receptor ATD dimers, but both show a general pattern of increased heterodimer stability as compared to the homodimers of their constituents, matching well physiologically observed receptor combinations. The free energy maps of AMPA and kainate receptor ATD dimers provide a framework for the interpretation of observed receptor subtype combinations and possible assembly pathways.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Molecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering Institutes of Health, National Institutes of Health, Bethesda, United States
| | - Suvendu Lomash
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Sagar Chittori
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Carla Glasser
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Dynamics of Molecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering Institutes of Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
39
|
Kalabova D, Smidova A, Petrvalska O, Alblova M, Kosek D, Man P, Obsil T, Obsilova V. Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem Biophys Res Commun 2017; 493:940-945. [PMID: 28943433 DOI: 10.1016/j.bbrc.2017.09.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
Procaspase-2 phosphorylation at several residues prevents its activation and blocks apoptosis. This process involves procaspase-2 phosphorylation at S164 and its binding to the scaffolding protein 14-3-3. However, bioinformatics analysis has suggested that a second phosphoserine-containing motif may also be required for 14-3-3 binding. In this study, we show that human procaspase-2 interaction with 14-3-3 is governed by phosphorylation at both S139 and S164. Using biochemical and biophysical approaches, we show that doubly phosphorylated procaspase-2 and 14-3-3 form an equimolar complex with a dissociation constant in the nanomolar range. Furthermore, our data indicate that other regions of procaspase-2, in addition to phosphorylation motifs, may be involved in the interaction with 14-3-3.
Collapse
Affiliation(s)
- Dana Kalabova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Aneta Smidova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Olivia Petrvalska
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Miroslava Alblova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Dalibor Kosek
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Petr Man
- BIOCEV-Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
40
|
Chaturvedi SK, Ma J, Zhao H, Schuck P. Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc 2017; 12:1777-1791. [PMID: 28771239 PMCID: PMC7466938 DOI: 10.1038/nprot.2017.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sedimentation velocity (SV) analytical ultracentrifugation (AUC) is a classic technique for the real-time observation of free macromolecular migration in solution driven by centrifugal force. This enables the analysis of macromolecular mass, shape, size distribution, and interactions. Although traditionally limited to determination of the sedimentation coefficient and binding affinity of proteins in the micromolar range, the implementation of modern detection and data analysis techniques has resulted in marked improvements in detection sensitivity and size resolution during the past decades. Fluorescence optical detection now permits the detection of recombinant proteins with fluorescence excitation at 488 or 561 nm at low picomolar concentrations, allowing for the study of high-affinity protein self-association and hetero-association. Compared with other popular techniques for measuring high-affinity protein-protein interactions, such as biosensing or calorimetry, the high size resolution of complexes at picomolar concentrations obtained with SV offers a distinct advantage in sensitivity and flexibility of the application. Here, we present a basic protocol for carrying out fluorescence-detected SV experiments and the determination of the size distribution and affinity of protein-antibody complexes with picomolar KD values. Using an EGFP-nanobody interaction as a model, this protocol describes sample preparation, ultracentrifugation, data acquisition, and data analysis. A variation of the protocol applying traditional absorbance or an interference optical system can be used for protein-protein interactions in the micromolar KD value range. Sedimentation experiments typically take ∼3 h of preparation and 6-12 h of run time, followed by data analysis (typically taking 1-3 h).
Collapse
Affiliation(s)
- Sumit K. Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
41
|
Kim SA, D'Acunto VF, Kokona B, Hofmann J, Cunningham NR, Bistline EM, Garcia FJ, Akhtar NM, Hoffman SH, Doshi SH, Ulrich KM, Jones NM, Bonini NM, Roberts CM, Link CD, Laue TM, Fairman R. Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in Drosophila melanogaster and Caenorhabditis elegans. Biochemistry 2017; 56:4676-4688. [PMID: 28786671 DOI: 10.1021/acs.biochem.7b00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington's disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.
Collapse
Affiliation(s)
- Surin A Kim
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Victoria F D'Acunto
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Bashkim Kokona
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Jennifer Hofmann
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nicole R Cunningham
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Emily M Bistline
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - F Jay Garcia
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nabeel M Akhtar
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Susanna H Hoffman
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Seema H Doshi
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Kathleen M Ulrich
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nicholas M Jones
- Department of Psychology, Haverford College , Haverford, Pennsylvania 19041, United States
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christine M Roberts
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Christopher D Link
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Thomas M Laue
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire , Durham, New Hampshire 03824, United States
| | - Robert Fairman
- Department of Biology, Haverford College , Haverford, Pennsylvania 19041, United States
| |
Collapse
|
42
|
Danhart EM, Bakhtina M, Cantara WA, Kuzmishin AB, Ma X, Sanford BL, Vargas-Rodriguez O, Košutić M, Goto Y, Suga H, Nakanishi K, Micura R, Foster MP, Musier-Forsyth K. Conformational and chemical selection by a trans-acting editing domain. Proc Natl Acad Sci U S A 2017; 114:E6774-E6783. [PMID: 28768811 PMCID: PMC5565427 DOI: 10.1073/pnas.1703925114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.
Collapse
Affiliation(s)
- Eric M Danhart
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - William A Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Alexandra B Kuzmishin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Xiao Ma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Brianne L Sanford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | | | - Marija Košutić
- Institute of Organic Chemistry, Leopold Franzens University, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
43
|
Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B, Willbold D, Nagel-Steger L. Aβ42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci Rep 2017; 7:2493. [PMID: 28559586 PMCID: PMC5449387 DOI: 10.1038/s41598-017-02370-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Amyloid β (Aβ) oligomers may play a decisive role in Alzheimer's disease related neurodegeneration, but their structural properties are poorly understood. In this report, sedimentation velocity centrifugation, small angle neutron scattering (SANS) and molecular modelling were used to identify the small oligomeric species formed by the 42 amino acid residue long isoform of Aβ (Aβ42) in solution, characterized by a sedimentation coefficient of 2.56 S, and a radius of gyration between 2 and 4 nm. The measured sedimentation coefficient is in close agreement with the sedimentation coefficient calculated for Aβ42 hexamers using MD simulations at µM concentration. To the best of our knowledge this is the first report detailing the Aβ42 oligomeric species by SANS measurements. Our results demonstrate that the smallest detectable species in solution are penta- to hexamers. No evidences for the presence of dimers, trimers or tetramers were found, although the existence of those Aβ42 oligomers at measurable quantities had been reported frequently.
Collapse
Affiliation(s)
- Martin Wolff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Physikalische Biochemie, University Potsdam, 14476, Golm, Germany
| | - Bo Zhang-Haagen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Centre for Neutron Science & Institute of Complex Systems, Neutron Scattering (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christina Decker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Bogdan Barz
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Mario Schneider
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Ralf Biehl
- Jülich Centre for Neutron Science & Institute of Complex Systems, Neutron Scattering (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Centre for Neutron Science, Outstation at MLZ (JCNS-MLZ), Forschungszentrum Jülich, 85747, Garching, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Outstation at MLZ (JCNS-MLZ), Forschungszentrum Jülich, 85747, Garching, Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
44
|
Chaturvedi SK, Zhao H, Schuck P. Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield. Biophys J 2017; 112:1374-1382. [PMID: 28402880 DOI: 10.1016/j.bpj.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multicomponent discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation-properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis, we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic cotransport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement, or Förster resonance energy transfer with transport methods.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
45
|
Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes. Int J Pharm 2017; 523:320-326. [PMID: 28342788 PMCID: PMC5405781 DOI: 10.1016/j.ijpharm.2017.03.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Analytical ultracentrifugation (AUC) is a powerful tool for the study of particle size distributions and interactions with high accuracy and resolution. In this work, we show how the analysis of sedimentation velocity data from the AUC can be used to characterize nanocarrier drug delivery systems used in nanomedicine. Nanocarrier size distribution and the ratio of free versus nanoparticle-encapsulated drug in a commercially available liposomal doxorubicin formulation are determined using interference and absorbance based AUC measurements and compared with results generated with conventional techniques. Additionally, the potential of AUC in measuring particle density and the detection of nanocarrier sub-populations is discussed as well. The unique capability of AUC in providing reliable data for size and composition in a single measurement and without complex sample preparation makes this characterization technique a promising tool both in nanomedicine product development and quality control.
Collapse
|
46
|
Kylarova S, Kosek D, Petrvalska O, Psenakova K, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J 2016; 283:3821-3838. [DOI: 10.1111/febs.13893] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Salome Kylarova
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Dalibor Kosek
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Katarina Psenakova
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology; The Czech Academy of Sciences; Vestec Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Jaroslav Vecer
- Institute of Physics; Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Petr Herman
- Institute of Physics; Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Veronika Obsilova
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
47
|
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1). J Biol Chem 2016; 291:20753-65. [PMID: 27514745 DOI: 10.1074/jbc.m116.724310] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.
Collapse
Affiliation(s)
- Olivia Petrvalska
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Dalibor Kosek
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Zdenek Kukacka
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and
| | - Zdenek Tosner
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and
| | - Petr Man
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| |
Collapse
|
48
|
Rezabkova L, Kraatz SHW, Akhmanova A, Steinmetz MO, Kammerer RA. Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network. J Biol Chem 2016; 291:18496-504. [PMID: 27402853 DOI: 10.1074/jbc.m116.739771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of cilia is associated with common genetic disorders termed ciliopathies. Knowledge on the interaction networks of ciliary proteins is therefore key for understanding the processes that are underlying these severe diseases and the mechanisms of ciliogenesis in general. Cep104 has recently been identified as a key player in the regulation of cilia formation. Using a combination of sequence analysis, biophysics, and x-ray crystallography, we obtained new insights into the domain architecture and interaction network of the Cep104 protein. We solved the crystal structure of the tumor overexpressed gene (TOG) domain, identified Cep104 as a novel tubulin-binding protein, and biophysically characterized the interaction of Cep104 with CP110, Cep97, end-binding (EB) protein, and tubulin. Our results represent a solid platform for the further investigation of the microtubule-EB-Cep104-tubulin-CP110-Cep97 network of proteins. Ultimately, such studies should be of importance for understanding the process of cilia formation and the mechanisms underlying different ciliopathies.
Collapse
Affiliation(s)
- Lenka Rezabkova
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Sebastian H W Kraatz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| | - Richard A Kammerer
- From the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland and
| |
Collapse
|
49
|
Glaubman J, Hofmann J, Bonney ME, Park S, Thomas JM, Kokona B, Ramos Falcón LI, Chung YK, Fairman R, Okeke IN. Self-association motifs in the enteroaggregative Escherichia coli heat-resistant agglutinin 1. MICROBIOLOGY-SGM 2016; 162:1091-1102. [PMID: 27166217 DOI: 10.1099/mic.0.000303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heat-resistant agglutinin 1 (Hra1) is an integral outer membrane protein found in strains of Escherichia coli that are exceptional colonizers. Hra1 from enteroaggregative E. coli strain 042 is sufficient to confer adherence to human epithelial cells and to cause bacterial autoaggregation. Hra1 is closely related to the Tia invasin, which also confers adherence, but not autoaggregation. Here, we have demonstrated that Hra1 mediates autoaggregation by self-association and we hypothesize that at least some surface-exposed amino acid sequences that are present in Hra1, but absent in Tia, represent autoaggregation motifs. We inserted FLAG tags along the length of Hra1 and used immune-dot blots to verify that four in silico-predicted outer loops were indeed surface exposed. In Hra1 we swapped nine candidate motifs in three of these loops, ranging from one to ten amino acids in length, to the corresponding sequences in Tia. Three of the motifs were required for Hra1-mediated autoaggregation. The database was searched for other surface proteins containing these motifs; the GGXWRDDXK motif was also present in a surface-exposed region of Rck, a Salmonella enterica serotype Typhimurium complement resistance protein. Cloning and site-specific mutagenesis demonstrated that Rck can confer weak, GGXWRDDXK-dependent autoaggregation by self-association. Hra1 and Rck appear to form heterologous associations and GGXWRDDXK is required on both molecules for Hra1-Rck association. However, a GGYWRDDLKE peptide was not sufficient to interfere with Hra1-mediated autoaggregation. In the present study, three autoaggregation motifs in an integral outer membrane protein have been identified and it was demonstrated that at least one of them works in the context of a different cell surface.
Collapse
Affiliation(s)
| | | | - Megan E Bonney
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Sumin Park
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Yoonjie K Chung
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Iruka N Okeke
- Department of Biology, Haverford College, Haverford, PA, USA
| |
Collapse
|
50
|
Montecinos-Franjola F, Schuck P, Sackett DL. Tubulin Dimer Reversible Dissociation: AFFINITY, KINETICS, AND DEMONSTRATION OF A STABLE MONOMER. J Biol Chem 2016; 291:9281-94. [PMID: 26934918 DOI: 10.1074/jbc.m115.699728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54-123) nm Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10(-3)-10(-2) s(-1) Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide).
Collapse
Affiliation(s)
| | - Peter Schuck
- the Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NHBLI), National Institutes of Health, Bethesda, Maryland 20892
| | - Dan L Sackett
- From the Program in Physical Biology, Eunice Kennedy Shriver NICHD and
| |
Collapse
|