1
|
Lin WC, Macić A, Becker J, Nam JH. Asymmetric vibrations in the organ of Corti by outer hair cells measured from excised gerbil cochlea. Commun Biol 2024; 7:600. [PMID: 38762693 PMCID: PMC11102476 DOI: 10.1038/s42003-024-06293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.
Collapse
Affiliation(s)
- Wei-Ching Lin
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Anes Macić
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Jonathan Becker
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
2
|
Huang TW, Iyer AA, Manalo JM, Woo J, Bosquez Huerta NA, McGovern MM, Schrewe H, Pereira FA, Groves AK, Ohlemiller KK, Deneen B. Glial-Specific Deletion of Med12 Results in Rapid Hearing Loss via Degradation of the Stria Vascularis. J Neurosci 2021; 41:7171-7181. [PMID: 34253626 PMCID: PMC8387121 DOI: 10.1523/jneurosci.0070-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.
Collapse
Affiliation(s)
- Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Amrita A Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
| | - Navish A Bosquez Huerta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fredrick A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030
- Department of Otolaryngology, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas 77030
| | - Kevin K Ohlemiller
- Department of Otolaryngolgy, Central Institute for the Deaf, Fay and Carl Simons Center for Biology of Hearing and Deafness, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
3
|
Wang Y, Steele CR, Puria S, Ricci AJ. In situ motions of individual inner-hair-cell stereocilia from stapes stimulation in adult mice. Commun Biol 2021; 4:958. [PMID: 34381157 PMCID: PMC8357788 DOI: 10.1038/s42003-021-02459-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
In vertebrate hearing organs, mechanical vibrations are converted to ionic currents through mechanoelectrical-transduction (MET) channels. Concerted stereocilia motion produces an ensemble MET current driving the hair-cell receptor potential. Mammalian cochleae are unique in that the tuning of sensory cells is determined by their mechanical environment and the mode of hair-bundle stimulation that their environment creates. However, little is known about the in situ intra-hair-bundle motions of stereocilia relative to one another, or to their environment. In this study, high-speed imaging allowed the stereocilium and cell-body motions of inner hair cells to be monitored in an ex vivo organ of Corti (OoC) mouse preparation. We have found that the OoC rotates about the base of the inner pillar cell, the hair bundle rotates about its base and lags behind the motion of the apical surface of the cell, and the individual stereocilia move semi-independently within a given hair bundle.
Collapse
Affiliation(s)
- Yanli Wang
- Otolaryngology-HNS, Stanford University, Stanford, CA, USA
- Mechanical Engineering, Stanford University, Stanford, CA, USA
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Sunil Puria
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
4
|
Abeytunge S, Gianoli F, Hudspeth AJ, Kozlov AS. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure. eLife 2021; 10:e65930. [PMID: 34227465 PMCID: PMC8363269 DOI: 10.7554/elife.65930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Hair cells, the receptors of the inner ear, detect sounds by transducing mechanical vibrations into electrical signals. From the top surface of each hair cell protrudes a mechanical antenna, the hair bundle, which the cell uses to detect and amplify auditory stimuli, thus sharpening frequency selectivity and providing a broad dynamic range. Current methods for mechanically stimulating hair bundles are too slow to encompass the frequency range of mammalian hearing and are plagued by inconsistencies. To overcome these challenges, we have developed a method to move individual hair bundles with photonic force. This technique uses an optical fiber whose tip is tapered to a diameter of a few micrometers and endowed with a ball lens to minimize divergence of the light beam. Here we describe the fabrication, characterization, and application of this optical system and demonstrate the rapid application of photonic force to vestibular and cochlear hair cells.
Collapse
Affiliation(s)
- Sanjeewa Abeytunge
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Francesco Gianoli
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - AJ Hudspeth
- Howard Hughes Medical Institute andLaboratory of Sensory Neuroscience, The Rockefeller UniversityNew YorkUnited States
| | - Andrei S Kozlov
- Laboratoryof Auditory Neuroscience and Biophysics, Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Chen T, Rohacek AM, Caporizzo M, Nankali A, Smits JJ, Oostrik J, Lanting CP, Kücük E, Gilissen C, van de Kamp JM, Pennings RJE, Rakowiecki SM, Kaestner KH, Ohlemiller KK, Oghalai JS, Kremer H, Prosser BL, Epstein DJ. Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Dev Cell 2021; 56:1526-1540.e7. [PMID: 33964205 PMCID: PMC8137675 DOI: 10.1016/j.devcel.2021.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.
Collapse
Affiliation(s)
- Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amir Nankali
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Jeroen J Smits
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erdi Kücük
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin K Ohlemiller
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Manley GA. Travelling waves and tonotopicity in the inner ear: a historical and comparative perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:773-781. [PMID: 30116889 DOI: 10.1007/s00359-018-1279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
In the 1940s, Georg von Békésy discovered that in the inner ear of cadavers of various vertebrates, structures responded to sound with a displacement wave that travels in a basal-to-apical direction. This historical review examines this concept and sketches its rôle and significance in the development of the research field of cochlear mechanics. It also illustrates that this concept and that of tonotopicity necessarily correlate, in that travelling waves are consequences of the existence of an ordered, longitudinal array of receptor cells tuned to systematically changing frequencies along the auditory organ.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
7
|
Dewey JB, Xia A, Müller U, Belyantseva IA, Applegate BE, Oghalai JS. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea. Cell Rep 2018; 23:2915-2927. [PMID: 29874579 PMCID: PMC6309882 DOI: 10.1016/j.celrep.2018.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023] Open
Abstract
The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo.
Collapse
Affiliation(s)
- James B Dewey
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Anping Xia
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Nankali A, Grosh K. Simulating the Chan-Hudspeth experiment on an active excised cochlear segment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:215. [PMID: 28764454 PMCID: PMC5513745 DOI: 10.1121/1.4990522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Hearing relies on a series of coupled electrical, acoustical, and mechanical interactions inside the cochlea that enable sound processing. The local structural and electrical properties of the organ of Corti (OoC) and basilar membrane give rise to the global, coupled behavior of the cochlea. However, it is difficult to determine the root causes of important behavior, such as the mediator of active processes, in the fully coupled in vivo setting. An alternative experimental approach is to use an excised segment of the cochlea under controlled electrical and mechanical conditions. Using the excised cochlear segment experiment conducted by Chan and Hudspeth [Nat. Neurosci. 8, 149-155 (2005); Biophys. J. 89, 4382-4395 (2005)] as the model problem, a quasilinear computational model for studying the active in vitro response of the OoC to acoustical stimulation was developed. The model of the electrical, mechanical, and acoustical conditions of the experimental configuration is able to replicate some of the experiment results, such as the shape of the frequency response of the sensory epithelium and the variation of the resonance frequency with the added fluid mass. As in the experiment, the model predicts a phase accumulation along the segment. However, it was found that the contribution of this phase accumulation to the dynamics is insignificant. Taking advantage of the relative simplicity of the fluid loading, the three-dimensional fluid dynamics was reduced into an added mass loading on the OoC thereby reducing the overall complexity of the model.
Collapse
Affiliation(s)
- Amir Nankali
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Karl Grosh
- Department of Mechanical Engineering and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Chan DK, Rouse SL. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea. PLoS One 2016; 11:e0167850. [PMID: 27959894 PMCID: PMC5154517 DOI: 10.1371/journal.pone.0167850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss.
Collapse
Affiliation(s)
- Dylan K. Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
- * E-mail:
| | - Stephanie L. Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
| |
Collapse
|
10
|
Ni G, Elliott SJ, Baumgart J. Finite-element model of the active organ of Corti. J R Soc Interface 2016; 13:20150913. [PMID: 26888950 DOI: 10.1098/rsif.2015.0913] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback.
Collapse
Affiliation(s)
- Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Stephen J Elliott
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Johannes Baumgart
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
11
|
Pollock LM, Gupta N, Chen X, Luna EJ, McDermott BM. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS One 2016; 11:e0158349. [PMID: 27415442 PMCID: PMC4944918 DOI: 10.1371/journal.pone.0158349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/14/2016] [Indexed: 11/23/2022] Open
Abstract
The organ of Corti has evolved a panoply of cells with extraordinary morphological specializations to harness, direct, and transduce mechanical energy into electrical signals. Among the cells with prominent apical specializations are hair cells and nearby supporting cells. At the apical surface of each hair cell is a mechanosensitive hair bundle of filamentous actin (F-actin)-based stereocilia, which insert rootlets into the F-actin meshwork of the underlying cuticular plate, a rigid organelle considered to hold the stereocilia in place. Little is known about the protein composition and development of the cuticular plate or the apicolateral specializations of organ of Corti supporting cells. We show that supervillin, an F-actin cross-linking protein, localizes to cuticular plates in hair cells of the mouse cochlea and vestibule and zebrafish sensory epithelia. Moreover, supervillin localizes near the apicolateral margins within the head plates of Deiters’ cells and outer pillar cells, and proximal to the apicolateral margins of inner phalangeal cells, adjacent to the junctions with neighboring hair cells. Overall, supervillin localization suggests this protein may shape the surface structure of the organ of Corti.
Collapse
Affiliation(s)
- Lana M Pollock
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Nilay Gupta
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Xi Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, 44016, United States of America
| |
Collapse
|
12
|
Abstract
The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories.
Collapse
|
13
|
Abstract
Uniquely among human senses, hearing is not simply a passive response to stimulation. Our auditory system is instead enhanced by an active process in cochlear hair cells that amplifies acoustic signals several hundred-fold, sharpens frequency selectivity and broadens the ear's dynamic range. Active motility of the mechanoreceptive hair bundles underlies the active process in amphibians and some reptiles; in mammals, this mechanism operates in conjunction with prestin-based somatic motility. Both individual hair bundles and the cochlea as a whole operate near a dynamical instability, the Hopf bifurcation, which accounts for the cardinal features of the active process.
Collapse
|
14
|
Reichenbach T, Hudspeth AJ. The physics of hearing: fluid mechanics and the active process of the inner ear. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076601. [PMID: 25006839 DOI: 10.1088/0034-4885/77/7/076601] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the active process operates near a Hopf bifurcation, the generic properties of which explain several key features of hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.
Collapse
|
15
|
Abstract
To enhance weak sounds while compressing the dynamic intensity range, auditory sensory cells amplify sound-induced vibrations in a nonlinear, intensity-dependent manner. In the course of this process, instantaneous waveform distortion is produced, with two conspicuous kinds of interwoven consequences, the introduction of new sound frequencies absent from the original stimuli, which are audible and detectable in the ear canal as otoacoustic emissions, and the possibility for an interfering sound to suppress the response to a probe tone, thereby enhancing contrast among frequency components. We review how the diverse manifestations of auditory nonlinearity originate in the gating principle of their mechanoelectrical transduction channels; how they depend on the coordinated opening of these ion channels ensured by connecting elements; and their links to the dynamic behavior of auditory sensory cells. This paper also reviews how the complex properties of waves traveling through the cochlea shape the manifestations of auditory nonlinearity. Examination methods based on the detection of distortions open noninvasive windows on the modes of activity of mechanosensitive structures in auditory sensory cells and on the distribution of sites of nonlinearity along the cochlear tonotopic axis, helpful for deciphering cochlear molecular physiology in hearing-impaired animal models. Otoacoustic emissions enable fast tests of peripheral sound processing in patients. The study of auditory distortions also contributes to the understanding of the perception of complex sounds.
Collapse
Affiliation(s)
- Paul Avan
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Béla Büki
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| | - Christine Petit
- Laboratory of Neurosensory Biophysics, University of Auvergne, School of Medicine, Clermont-Ferrand, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1107, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France; Department of Otolaryngology, County Hospital, Krems an der Donau, Austria; Laboratory of Genetics and Physiology of Hearing, Department of Neuroscience, Institut Pasteur, Paris, France; Collège de France, Genetics and Cell Physiology, Paris, France
| |
Collapse
|
16
|
Abstract
The tectorial membrane (TM) clearly plays a mechanical role in stimulating cochlear sensory receptors, but the presence of fixed charge in TM constituents suggests that electromechanical properties also may be important. Here, we measure the fixed charge density of the TM and show that this density of fixed charge is sufficient to affect mechanical properties and to generate electrokinetic motions. In particular, alternating currents applied to the middle and marginal zones of isolated TM segments evoke motions at audio frequencies (1-1,000 Hz). Electrically evoked motions are nanometer scaled (∼5-900 nm), decrease with increasing stimulus frequency, and scale linearly over a broad range of electric field amplitudes (0.05-20 kV/m). These findings show that the mammalian TM is highly charged and suggest the importance of a unique TM electrokinetic mechanism.
Collapse
|
17
|
Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea. Proc Natl Acad Sci U S A 2012; 109:21076-80. [PMID: 23213236 DOI: 10.1073/pnas.1219379110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cochlea's high sensitivity stems from the active process of outer hair cells, which possess two force-generating mechanisms: active hair-bundle motility elicited by Ca(2+) influx and somatic motility mediated by the voltage-sensitive protein prestin. Although interference with prestin has demonstrated a role for somatic motility in the active process, it remains unclear whether hair-bundle motility contributes in vivo. We selectively perturbed the two mechanisms by infusing substances into the endolymph or perilymph of the chinchilla's cochlea and then used scanning laser interferometry to measure vibrations of the basilar membrane. Blocking somatic motility, damaging the tip links of hair bundles, or depolarizing hair cells eliminated amplification. While reducing amplification to a lesser degree, pharmacological perturbation of active hair-bundle motility diminished or eliminated the nonlinear compression underlying the broad dynamic range associated with normal hearing. The results suggest that active hair-bundle motility plays a significant role in the amplification and compressive nonlinearity of the cochlea.
Collapse
|
18
|
Nam JH, Fettiplace R. Optimal electrical properties of outer hair cells ensure cochlear amplification. PLoS One 2012; 7:e50572. [PMID: 23209783 PMCID: PMC3507780 DOI: 10.1371/journal.pone.0050572] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, New York, United States of America.
| | | |
Collapse
|
19
|
Guinan JJ. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 2012; 292:35-50. [PMID: 22959529 DOI: 10.1016/j.heares.2012.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/24/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
Recent studies indicate that the gap over outer hair cells (OHCs) between the reticular lamina (RL) and the tectorial membrane (TM) varies cyclically during low-frequency sounds. Variation in the RL-TM gap produces radial fluid flow in the gap that can drive inner hair cell (IHC) stereocilia. Analysis of RL-TM gap changes reveals three IHC drives in addition to classic SHEAR. For upward basilar-membrane (BM) motion, IHC stereocilia are deflected in the excitatory direction by SHEAR and OHC-MOTILITY, but in the inhibitory direction by TM-PUSH and CILIA-SLANT. Upward BM motion causes OHC somatic contraction which tilts the RL, compresses the RL-TM gap over IHCs and expands the RL-TM gap over OHCs, thereby producing an outward (away from the IHCs) radial fluid flow which is the OHC-MOTILITY drive. For upward BM motion, the force that moves the TM upward also compresses the RL-TM gap over OHCs causing inward radial flow past IHCs which is the TM-PUSH drive. Motions that produce large tilting of OHC stereocilia squeeze the supra-OHC RL-TM gap and caused inward radial flow past IHCs which is the CILIA-SLANT drive. Combinations of these drives explain: (1) the reversal at high sound levels of auditory nerve (AN) initial peak (ANIP) responses to clicks, and medial olivocochlear (MOC) inhibition of ANIP responses below, but not above, the ANIP reversal, (2) dips and phase reversals in AN responses to tones in cats and chinchillas, (3) hypersensitivity and phase reversals in tuning-curve tails after OHC ablation, and (4) MOC inhibition of tail-frequency AN responses. The OHC-MOTILITY drive provides another mechanism, in addition to BM motion amplification, that uses active processes to enhance the output of the cochlea. The ability of these IHC drives to explain previously anomalous data provides strong, although indirect, evidence that these drives are significant and presents a new view of how the cochlea works at frequencies below 3 kHz.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Zagadou BF, Mountain DC. Analysis of the cochlear amplifier fluid pump hypothesis. J Assoc Res Otolaryngol 2012; 13:185-97. [PMID: 22302113 DOI: 10.1007/s10162-011-0308-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/08/2011] [Indexed: 10/14/2022] Open
Abstract
We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.
Collapse
|
21
|
Nowotny M, Gummer AW. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3852-3872. [PMID: 22225042 DOI: 10.1121/1.3651822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Coupling of somatic electromechanical force from the outer hair cells (OHCs) into the organ of Corti is investigated by measuring transverse vibration patterns of the organ of Cori and tectorial membrane (TM) in response to intracochlear electrical stimulation. Measurement places at the organ of Corti extend from the inner sulcus cells to Hensen's cells and at the lower (and upper) surface of the TM from the inner sulcus to the OHC region. These locations are in the neighborhood of where electromechanical force is coupled into (1) the mechanoelectrical transducers of the stereocilia and (2) fluids of the organ of Corti. Experiments are conducted in the first, second, and third cochlear turns of an in vitro preparation of the adult guinea pig cochlea. Vibration measurements are made at functionally relevant stimulus frequencies (0.48-68 kHz) and response amplitudes (<15 nm). The experiments provide phase relations between the different structures, which, dependent on frequency range and longitudinal cochlear position, include in-phase transverse motions of the TM, counterphasic transverse motions between the inner hair cell and OHCs, as well as traveling-wave motion of Hensen's cells in the radial direction. Mechanics of sound processing in the cochlea are discussed based on these phase relationships.
Collapse
Affiliation(s)
- Manuela Nowotny
- Faculty of Medicine, Section of Physiological Acoustics and Communication, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | | |
Collapse
|
22
|
The physical basis of active mechanosensitivity by the hair-cell bundle. Curr Opin Otolaryngol Head Neck Surg 2011; 19:369-75. [DOI: 10.1097/moo.0b013e32834a8c33] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Liu CC, Gao SS, Yuan T, Steele C, Puria S, Oghalai JS. Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane. J Assoc Res Otolaryngol 2011; 12:577-94. [PMID: 21567249 PMCID: PMC3173552 DOI: 10.1007/s10162-011-0269-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 04/17/2011] [Indexed: 01/09/2023] Open
Abstract
The tectorial membrane (TM) connects to the stereociliary bundles of outer hair cells (OHCs). Humans with an autosomal dominant C1509G mutation in alpha-tectorin, a protein constituent of the TM, are born with a partial hearing loss that worsens over time. The Tecta(C1509/+) transgenic mouse with the same point mutation has partial hearing loss secondary to a shortened TM that only contacts the first row of OHCs. As well, Tecta(C1509G/+) mice have increased expression of the OHC electromotility protein, prestin. We sought to determine whether these changes impact OHC survival. Distortion product otoacoustic emission thresholds in a quiet environment did not change to 6 months of age. However, noise exposure produced acute threshold shifts that fully recovered in Tecta (+/+) mice but only partially recovered in Tecta(C1509G/+) mice. While Tecta(+/+) mice lost OHCs primarily at the base and within all three rows, Tecta(C1509G/+) mice lost most of their OHCs in a more apical region of the cochlea and nearly completely within the first row. In order to estimate the impact of a shorter TM on the forces faced by the stereocilia within the first OHC row, both the wild type and the heterozygous conditions were simulated in a computational model. These analyses predicted that the shear force on the stereocilia is ~50% higher in the heterozygous condition. We then measured electrically induced movements of the reticular lamina in situ and found that while they decreased to the noise floor in prestin null mice, they were increased by 4.58 dB in Tecta(C1509G/+) mice compared to Tecta(+/+) mice. The increased movements were associated with a fourfold increase in OHC death as measured by vital dye staining. Together, these findings indicate that uncoupling the TM from some OHCs leads to partial hearing loss and places the remaining coupled OHCs at higher risk. Both the mechanics of the malformed TM and the increased prestin-related movements of the organ of Corti contribute to this higher risk profile.
Collapse
Affiliation(s)
- Christopher C. Liu
- The Bobby R. Alford Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 USA
| | - Simon S. Gao
- Department of Bioengineering, Rice University, Houston, TX 77005 USA
| | - Tao Yuan
- The Bobby R. Alford Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 USA
| | - Charles Steele
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94304-5739 USA
| | - Sunil Puria
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94304-5739 USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739 USA
| | - John S. Oghalai
- Department of Bioengineering, Rice University, Houston, TX 77005 USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739 USA
| |
Collapse
|
24
|
Jacob S, Pienkowski M, Fridberger A. The endocochlear potential alters cochlear micromechanics. Biophys J 2011; 100:2586-94. [PMID: 21641303 DOI: 10.1016/j.bpj.2011.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022] Open
Abstract
Acoustic stimulation gates mechanically sensitive ion channels in cochlear sensory hair cells. Even in the absence of sound, a fraction of these channels remains open, forming a conductance between hair cells and the adjacent fluid space, scala media. Restoring the lost endogenous polarization of scala media in an in vitro preparation of the whole cochlea depolarizes the hair cell soma. Using both digital laser interferometry and time-resolved confocal imaging, we show that this causes a structural refinement within the organ of Corti that is dependent on the somatic electromotility of the outer hair cells (OHCs). Specifically, the inner part of the reticular lamina up to the second row of OHCs is pulled toward the basilar membrane, whereas the outer part (third row of OHCs and the Hensen's cells) unexpectedly moves in the opposite direction. A similar differentiated response pattern is observed for sound-evoked vibrations: restoration of the endogenous polarization decreases vibrations of the inner part of the reticular lamina and results in up to a 10-fold increase of vibrations of the outer part. We conclude that the endogenous polarization of scala media affects the function of the hearing organ by altering its geometry, mechanical and electrical properties.
Collapse
Affiliation(s)
- Stefan Jacob
- Center for Hearing and Communication Research, Karolinska Institutet, Department of Clinical Neuroscience, M1 Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Stasiunas A, Verikas A, Bacauskiene M, Miliauskas R. An adaptive panoramic filter bank as a qualitative model of the filtering system of the cochlea: the peculiarities in linear and nonlinear mode. Med Eng Phys 2011; 34:187-94. [PMID: 21803637 DOI: 10.1016/j.medengphy.2011.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/02/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
Abstract
Outer hair cells in the cochlea of the ear, together with the local structures of the basilar membrane, reticular lamina and tectorial membrane constitute the adaptive primary filters (PF) of the second order. We used them for designing a serial-parallel signal filtering system. We determined a rational number of the PF included in Gaussian channels of the system, summation weights of the output signals, and distribution of the PF along the basilar membrane. A Gaussian panoramic filter bank each channel of which consists of five PF is presented as an example. The properties of the PF, the channel and the filter bank operating in the linear and nonlinear modes are determined during adaptation and under efferent control. The results suggest that application of biological filtering principles can be useful for designing cochlear implants with new speech encoding strategies.
Collapse
Affiliation(s)
- Antanas Stasiunas
- Department of Electrical & Control Equipment, Kaunas University of Technology, LT-51368, Kaunas, Lithuania
| | | | | | | |
Collapse
|
26
|
Nam JH, Fettiplace R. Force transmission in the organ of Corti micromachine. Biophys J 2010; 98:2813-21. [PMID: 20550893 DOI: 10.1016/j.bpj.2010.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/15/2022] Open
Abstract
Auditory discrimination is limited by the performance of the cochlea whose acute sensitivity and frequency tuning are underpinned by electromechanical feedback from the outer hair cells. Two processes may underlie this feedback: voltage-driven contractility of the outer hair cell body and active motion of the hair bundle. Either process must exert its mechanical effect via deformation of the organ of Corti, a complex assembly of sensory and supporting cells riding on the basilar membrane. Using finite element analysis, we present a three-dimensional model to illustrate deformation of the organ of Corti by the two active processes. The model used available measurements of the properties of structural components in low-frequency and high-frequency regions of the rodent cochlea. The simulations agreed well with measurements of the cochlear partition stiffness, the longitudinal space constant for point deflection, and the deformation of the organ of Corti for current injection, as well as displaying a 20-fold increase in passive resonant frequency from apex to base. The radial stiffness of the tectorial membrane attachment was found to be a crucial element in the mechanical feedback. Despite a substantial difference in the maximum force generated by hair bundle and somatic motility, the two mechanisms induced comparable amplitudes of motion of the basilar membrane but differed in the polarity of their feedback on hair bundle position. Compared to the hair bundle motor, the somatic motor was more effective in deforming the organ of Corti than in displacing the basilar membrane.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | | |
Collapse
|
27
|
O Maoiléidigh D, Jülicher F. The interplay between active hair bundle motility and electromotility in the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1175-1190. [PMID: 20815454 DOI: 10.1121/1.3463804] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The cochlear amplifier is a nonlinear active process providing the mammalian ear with its extraordinary sensitivity, large dynamic range and sharp frequency tuning. While there is much evidence that amplification results from active force generation by mechanosensory hair cells, there is debate about the cellular processes behind nonlinear amplification. Outer hair cell electromotility has been suggested to underlie the cochlear amplifier. However, it has been shown in frog and turtle that spontaneous movements of hair bundles endow them with a nonlinear response with increased sensitivity that could be the basis of amplification. The present work shows that the properties of the cochlear amplifier could be understood as resulting from the combination of both hair bundle motility and electromotility in an integrated system that couples these processes through the geometric arrangement of hair cells embedded in the cochlear partition. In this scenario, the cochlear partition can become a dynamic oscillator which in the vicinity of a Hopf bifurcation exhibits all the key properties of the cochlear amplifier. The oscillatory behavior and the nonlinearity are provided by active hair bundles. Electromotility is largely linear but produces an additional feedback that allows hair bundle movements to couple to basilar membrane vibrations.
Collapse
Affiliation(s)
- Dáibhid O Maoiléidigh
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | |
Collapse
|
28
|
Gelfand M, Piro O, Magnasco MO, Hudspeth AJ. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea. PLoS One 2010; 5:e11116. [PMID: 20559557 PMCID: PMC2886102 DOI: 10.1371/journal.pone.0011116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. METHODOLOGY AND PRINCIPAL FINDINGS We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. CONCLUSIONS AND SIGNIFICANCE A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.
Collapse
Affiliation(s)
- Michael Gelfand
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Oreste Piro
- Departament de Física and Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), Spanish National Research Council (CSIC) - University of the Balearic Islands (UIB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Marcelo O. Magnasco
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
| | - A. J. Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hudspeth AJ, Jülicher F, Martin P. A critique of the critical cochlea: Hopf--a bifurcation--is better than none. J Neurophysiol 2010; 104:1219-29. [PMID: 20538769 DOI: 10.1152/jn.00437.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sense of hearing achieves its striking sensitivity, frequency selectivity, and dynamic range through an active process mediated by the inner ear's mechanoreceptive hair cells. Although the active process renders hearing highly nonlinear and produces a wealth of complex behaviors, these various characteristics may be understood as consequences of a simple phenomenon: the Hopf bifurcation. Any critical oscillator operating near this dynamic instability manifests the properties demonstrated for hearing: amplification with a specific form of compressive nonlinearity and frequency tuning whose sharpness depends on the degree of amplification. Critical oscillation also explains spontaneous otoacoustic emissions as well as the spectrum and level dependence of the ear's distortion products. Although this has not been realized, several valuable theories of cochlear function have achieved their success by incorporating critical oscillators.
Collapse
Affiliation(s)
- A J Hudspeth
- The Rockefeller University, HHMI and Laboratory of Sensory Neuroscience, Campus Box 314, 1230 York Avenue, New York, NY 10065-6399, USA.
| | | | | |
Collapse
|
30
|
Bahloul A, Simmler MC, Michel V, Leibovici M, Perfettini I, Roux I, Weil D, Nouaille S, Zuo J, Zadro C, Licastro D, Gasparini P, Avan P, Hardelin JP, Petit C. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 2010; 1:125-38. [PMID: 20049712 PMCID: PMC3378116 DOI: 10.1002/emmm.200900015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Loud sound exposure is a significant cause of hearing loss worldwide. We asked whether a lack of vezatin, an ubiquitous adherens junction protein, could result in noise-induced hearing loss. Conditional mutant mice bearing non-functional vezatin alleles only in the sensory cells of the inner ear (hair cells) indeed exhibited irreversible hearing loss after only one minute exposure to a 105 dB broadband sound. In addition, mutant mice spontaneously underwent late onset progressive hearing loss and vestibular dysfunction related to substantial hair cell death. We establish that vezatin is an integral membrane protein with two adjacent transmembrane domains, and cytoplasmic N- and C-terminal regions. Late recruitment of vezatin at junctions between MDCKII cells indicates that the protein does not play a role in the formation of junctions, but rather participates in their stability. Moreover, we show that vezatin directly interacts with radixin in its actin-binding conformation. Accordingly, we provide evidence that vezatin associates with actin filaments at cell–cell junctions. Our results emphasize the overlooked role of the junctions between hair cells and their supporting cells in the auditory epithelium resilience to sound trauma.
Collapse
Affiliation(s)
- Amel Bahloul
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stasiunas A, Verikas A, Miliauskas R, Stasiuniene N. An adaptive model simulating the somatic motility and the active hair bundle motion of the OHC. Comput Biol Med 2009; 39:800-9. [PMID: 19615677 DOI: 10.1016/j.compbiomed.2009.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The outer hair cells (OHC) of the mammalian inner ear change the sensitivity and frequency selectivity of the filtering system of the cochlea using two kinds of mechanical activity: the somatic motility and the active hair bundle motion. We designed a non-linear adaptive model of the OHC employing both mechanisms of the mechanical activity. The modeling results show that the high sensitivity and frequency selectivity of the filtering system of the cochlea depend on the somatic motility of the OHC. However, both mechanisms of mechanical activity are involved in the adaptation to sound intensity and efferent-synaptic influence. The fast (alternating) component (AC) of the mechanical-electrical transduction signal controls the motor protein prestin and fast changes in axial length of the cell. The slow (direct) component (DC) appearing at high signal intensity affects the axial stiffness, the cell length and the position of the hair bundle. The efferent influence is realized by the same mechanism.
Collapse
Affiliation(s)
- Antanas Stasiunas
- Department of Applied Electronics, Kaunas University of Technology, Kaunas, Lithuania
| | | | | | | |
Collapse
|
32
|
Collagen-based mechanical anisotropy of the tectorial membrane: implications for inter-row coupling of outer hair cell bundles. PLoS One 2009; 4:e4877. [PMID: 19293929 PMCID: PMC2654110 DOI: 10.1371/journal.pone.0004877] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/06/2009] [Indexed: 11/19/2022] Open
Abstract
Background The tectorial membrane (TM) in the mammalian cochlea displays anisotropy, where mechanical or structural properties differ along varying directions. The anisotropy arises from the presence of collagen fibrils organized in fibers of ∼1 µm diameter that run radially across the TM. Mechanical coupling between the TM and the sensory epithelia is required for normal hearing. However, the lack of a suitable technique to measure mechanical anisotropy at the microscale level has hindered understanding of the TM's precise role. Methodology/Principal Findings Here we report values of the three elastic moduli that characterize the anisotropic mechanical properties of the TM. Our novel technique combined Atomic Force Microscopy (AFM), modeling, and optical tracking of microspheres to determine the elastic moduli. We found that the TM's large mechanical anisotropy results in a marked transmission of deformations along the direction that maximizes sensory cell excitation, whereas in the perpendicular direction the transmission is greatly reduced. Conclusions/Significance Computational results, based on our values of elastic moduli, suggest that the TM facilitates the directional cooperativity of sensory cells in the cochlea, and that mechanical properties of the TM are tuned to guarantee that the magnitude of sound-induced tip-link stretching remains similar along the length of the cochlea. Furthermore, we anticipate our assay to be a starting point for other studies of biological tissues that require directional functionality.
Collapse
|
33
|
Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear. Neuron 2008; 59:530-45. [PMID: 18760690 DOI: 10.1016/j.neuron.2008.07.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/01/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
The inner ear's performance is greatly enhanced by an active process defined by four features: amplification, frequency selectivity, compressive nonlinearity, and spontaneous otoacoustic emission. These characteristics emerge naturally if the mechanoelectrical transduction process operates near a dynamical instability, the Hopf bifurcation, whose mathematical properties account for specific aspects of our hearing. The active process of nonmammalian tetrapods depends upon active hair-bundle motility, which emerges from the interaction of negative hair-bundle stiffness and myosin-based adaptation motors. Taken together, these phenomena explain the four characteristics of the ear's active process. In the high-frequency region of the mammalian cochlea, the active process is dominated instead by the phenomenon of electromotility, in which the cell bodies of outer hair cells extend and contract as the protein prestin alters its membrane surface area in response to changes in membrane potential.
Collapse
Affiliation(s)
- A J Hudspeth
- Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Abstract
The aim of this report is to show the effects of voltage changes on stereocilia stiffness in mammalian outer hair cells (OHCs). With the OHC cuticular plate anchored at a microchamber tip, step voltage commands drove an OHC inside the microchamber to move freely while stereocilia were oscillated at 510 Hz by a constant fluid-jet force. With basolateral OHC depolarized and shortened, the amplitude of stereocilia motion was increased, suggesting a decrease in stereocilia stiffness. Such a decrease in stiffness may serve as an important adjusting factor inside the cochlear amplifying loop.
Collapse
|
35
|
The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28:6342-53. [PMID: 18562604 DOI: 10.1523/jneurosci.1154-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.
Collapse
|
36
|
Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier. Nat Neurosci 2008; 11:746-8. [PMID: 18516034 DOI: 10.1038/nn.2129] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/28/2008] [Indexed: 11/08/2022]
Abstract
Sensitivity, dynamic range and frequency tuning of the cochlea are attributed to amplification involving outer hair cell stereocilia and/or somatic motility. We measured acoustically and electrically elicited basilar membrane displacements from the cochleae of wild-type and Tecta(DeltaENT/DeltaENT) mice, in which stereocilia are unable to contribute to amplification near threshold. Electrically elicited responses from Tecta(DeltaENT/DeltaENT) mice were markedly similar to acoustically and electrically elicited responses from wild-type mice. We conclude that somatic, and not stereocilia, motility is the basis of cochlear amplification.
Collapse
|
37
|
Abstract
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces depend on the presence of a motor protein in the lateral membrane of the cells. This protein, known as prestin, is a member of a transporter superfamily SLC26. The functional and structural properties of prestin are described in this review. Whether outer hair cell motility might account for sound amplification at all frequencies is also a critical question and is reviewed here.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Department of Physiology and UCL Ear Institute, University College London, London, United Kingdom.
| |
Collapse
|
38
|
Drexl M, Lagarde MMM, Zuo J, Lukashkin AN, Russell IJ. The role of prestin in the generation of electrically evoked otoacoustic emissions in mice. J Neurophysiol 2008; 99:1607-15. [PMID: 18234980 DOI: 10.1152/jn.01216.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrically evoked otoacoustic emissions are sounds emitted from the inner ear when alternating current is injected into the cochlea. Their temporal structure consists of short- and long-delay components and they have been attributed to the motile responses of the sensory-motor outer hair cells of the cochlea. The nature of these motile responses is unresolved and may depend on either somatic motility, hair bundle motility, or both. The short-delay component persists after almost complete elimination of outer hair cells. Outer hair cells are thus not the sole generators of electrically evoked otoacoustic emissions. We used prestin knockout mice, in which the motor protein prestin is absent from the lateral walls of outer hair cells, and Tecta(Delta ENT/Delta ENT) mice, in which the tectorial membrane, a structure with which the hair bundles of outer hair cells normally interact, is vestigial and completely detached from the organ of Corti. The amplitudes and delay spectra of electrically evoked otoacoustic emissions from Tecta(Delta ENT/Delta ENT) and Tecta(+/+) mice are very similar. In comparison with prestin(+/+) mice, however, the short-delay component of the emission in prestin(-/-) mice is dramatically reduced and the long-delay component is completely absent. Emissions are completely suppressed in wild-type and Tecta(Delta ENT/Delta ENT) mice at low stimulus levels, when prestin-based motility is blocked by salicylate. We conclude that near threshold, the emissions are generated by prestin-based somatic motility.
Collapse
Affiliation(s)
- Markus Drexl
- University of Sussex, School of Life Sciences, Brighton, UK
| | | | | | | | | |
Collapse
|
39
|
Abstract
Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca(2+), we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca(2+) was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca(2+) effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca(2+) on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed.
Collapse
|
40
|
The structural and functional differentiation of hair cells in a lizard's basilar papilla suggests an operational principle of amniote cochleas. J Neurosci 2007; 27:11978-85. [PMID: 17978038 PMCID: PMC2151837 DOI: 10.1523/jneurosci.3679-07.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hair cells in the mammalian cochlea are of two distinct types. Inner hair cells are responsible for transducing mechanical stimuli into electrical responses, which they forward to the brain through a copious afferent innervation. Outer hair cells, which are thought to mediate the active process that sensitizes and tunes the cochlea, possess a negligible afferent innervation. For every inner hair cell, there are approximately three outer hair cells, so only one-quarter of the hair cells directly deliver information to the CNS. Although this is a surprising feature for a sensory system, the occurrence of a similar innervation pattern in birds and crocodilians suggests that the arrangement has an adaptive value. Using a lizard with highly developed hearing, the tokay gecko, we demonstrate in the present study that the same principle operates in a third major group of terrestrial animals. We propose that the differentiation of hair cells into signaling and amplifying classes reflects incompatible strategies for the optimization of mechanoelectrical transduction and of an active process based on active hair-bundle motility.
Collapse
|
41
|
Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci U S A 2007; 104:16510-5. [PMID: 17925447 DOI: 10.1073/pnas.0703665104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.
Collapse
|
42
|
Liao Z, Feng S, Popel AS, Brownell WE, Spector AA. Outer hair cell active force generation in the cochlear environment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2215-25. [PMID: 17902857 DOI: 10.1121/1.2776154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Outer hair cells are critical to the amplification and frequency selectivity of the mammalian ear acting via a fine mechanism called the cochlear amplifier, which is especially effective in the high-frequency region of the cochlea. How this mechanism works under physiological conditions and how these cells overcome the viscous (mechanical) and electrical (membrane) filtering has yet to be fully understood. Outer hair cells are electromotile, and they are strategically located in the cochlea to generate an active force amplifying basilar membrane vibration. To investigate the mechanism of this cell's active force production under physiological conditions, a model that takes into account the mechanical, electrical, and mechanoelectrical properties of the cell wall (membrane) and cochlear environment is proposed. It is shown that, despite the mechanical and electrical filtering, the cell is capable of generating a frequency-tuned force with a maximal value of about 40 pN. It is also found that the force per unit basilar membrane displacement stays essentially the same (40 pNnm) for the entire linear range of the basilar membrane responses, including sound pressure levels close to hearing threshold. Our findings can provide a better understanding of the outer hair cell's role in the cochlear amplifier.
Collapse
Affiliation(s)
- Zhijie Liao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
43
|
Ren T, Gillespie PG. A mechanism for active hearing. Curr Opin Neurobiol 2007; 17:498-503. [PMID: 17707636 PMCID: PMC2259439 DOI: 10.1016/j.conb.2007.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
The remarkable sensitivity, frequency selectivity, and nonlinearity of the cochlea have been attributed to the putative 'cochlear amplifier', which consumes metabolic energy to amplify the cochlear mechanical response to sounds. Recent studies have demonstrated that outer hair cells actively generate force using somatic electromotility and active hair-bundle motion. However, the expected power gain of the cochlear amplifier has not been demonstrated experimentally, and the measured location of cochlear nonlinearity is inconsistent with the predicted location of the cochlear amplifier. We instead propose a 'cochlear transformer' mechanism to interpret cochlear performance.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, NRC 04, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
44
|
Li H, Lim KM. Contribution of outer hair cell bending to stereocilium deflection in the cochlea. Hear Res 2007; 232:20-8. [PMID: 17629426 DOI: 10.1016/j.heares.2007.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/18/2022]
Abstract
The outer hair cell (OHC) in the cochlea is believed to actively enhance the cochlear sensitivity and frequency selectivity. Besides the well-known axial length change of the OHC, the bending mode of the OHC may also contribute to the stereocilium deflection. To investigate the contribution of the OHC bending to the stereocilium deflection, and the active process in the cochlea, we develop a simple kinematic model of the organ of Corti, consisting of the reticular lamina, the stereocilia and tectorial membrane. The electrically evoked axial length change and bending of the OHC are simulated, and their contributions to the stereocilium deflection are obtained. At the apical turn of the cochlea, the bending mode of the OHC results in stereocilium deflection comparable to that due to the axisymmetric length change of the OHC. At the basal turn, the contribution of the bending mode to the stereocilium deflection becomes insignificant compared to that of the axisymmetric mode.
Collapse
Affiliation(s)
- Hailong Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | | |
Collapse
|
45
|
Abstract
The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.
Collapse
Affiliation(s)
- Igor Tomo
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience, M1, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
46
|
Tomo I, Le Calvez S, Maier H, Boutet de Monvel J, Fridberger A, Ulfendahl M. Imaging the living inner ear using intravital confocal microscopy. Neuroimage 2007; 35:1393-400. [PMID: 17382563 DOI: 10.1016/j.neuroimage.2007.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 11/25/2022] Open
Abstract
Confocal laser scanning microscopy permits detailed visualization of structures deep within thick fluorescently labeled specimen. This makes it possible to investigate living cells inside intact tissue without prior chemical sample fixation and sectioning. Isolated guinea pig temporal bones have previously been used for confocal experiments in vitro, but tissue deterioration limits their use to a few hours after the death of the animal. In order to preserve the cochlea in an optimal functional and physiological condition, we have developed an in vivo model based on a confocal microscopy approach. Using a ventral surgical approach, the inner ear is exposed in deeply anaesthetized, tracheotomized, living guinea pigs. To label the inner ear structures, scala tympani is perfused via an opening in the basal turn, delivering tissue culture medium with fluorescent vital dyes (RH 795 and calcein AM). An apical opening is made in the bony shell of cochlea to enable visualization using a custom-built objective lens. Intravital confocal microscopy, with preserved blood and nerve supply, may offer an important tool for studying auditory physiology and the pathology of hearing loss. After acoustic overstimulation, shortening and swelling of the sensory hair cells were observed.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/anatomy & histology
- Ear, Inner/anatomy & histology
- Ear, Inner/physiology
- Guinea Pigs
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Auditory, Outer/ultrastructure
- Image Processing, Computer-Assisted
- Microscopy, Confocal
- Noise/adverse effects
- Scala Tympani/anatomy & histology
- Scala Tympani/physiology
Collapse
Affiliation(s)
- Igor Tomo
- Center for Hearing and Communication Research, Karolinska Institutet, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Karavitaki KD, Mountain DC. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. Biophys J 2007; 92:3294-316. [PMID: 17277194 PMCID: PMC1852364 DOI: 10.1529/biophysj.106.083634] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.
Collapse
Affiliation(s)
- K Domenica Karavitaki
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
48
|
Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 2007; 10:215-23. [PMID: 17220887 PMCID: PMC3388746 DOI: 10.1038/nn1828] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
Frequency tuning in the cochlea is determined by the passive mechanical properties of the basilar membrane and active feedback from the outer hair cells, sensory-effector cells that detect and amplify sound-induced basilar membrane motions. The sensory hair bundles of the outer hair cells are imbedded in the tectorial membrane, a sheet of extracellular matrix that overlies the cochlea's sensory epithelium. The tectorial membrane contains radially organized collagen fibrils that are imbedded in an unusual striated-sheet matrix formed by two glycoproteins, alpha-tectorin (Tecta) and beta-tectorin (Tectb). In Tectb(-/-) mice the structure of the striated-sheet matrix is disrupted. Although these mice have a low-frequency hearing loss, basilar-membrane and neural tuning are both significantly enhanced in the high-frequency regions of the cochlea, with little loss in sensitivity. These findings can be attributed to a reduction in the acting mass of the tectorial membrane and reveal a new function for this structure in controlling interactions along the cochlea.
Collapse
MESH Headings
- Animals
- Basilar Membrane/abnormalities
- Basilar Membrane/metabolism
- Basilar Membrane/ultrastructure
- Cells, Cultured
- Chimera
- Cochlea/abnormalities
- Cochlea/metabolism
- Cochlea/ultrastructure
- Collagen/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/genetics
- GPI-Linked Proteins
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Hearing/genetics
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Membrane Glycoproteins/genetics
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Pitch Perception
- Tectorial Membrane/abnormalities
- Tectorial Membrane/metabolism
- Tectorial Membrane/ultrastructure
Collapse
Affiliation(s)
- Ian J. Russell
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - P. Kevin Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | - Andrei N. Lukashkin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Richard J. Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Guy. P Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
49
|
Abstract
The frequency selectivity of mammalian hearing depends on not only the passive mechanics of the basilar membrane but also an active amplification of the mechanical stimulus by the cochlear hair cells. The common view is that amplification stems from the somatic motility of the outer hair cells (OHCs), changes in their length impelled by voltage-dependent transitions in the membrane protein prestin. Whether this voltage-controlled mechanism, whose frequency range may be limited by the membrane time constant, has the band width to cover the entire auditory range of mammals is uncertain. However, there is ample evidence for an alternative mode of force generation by hair cells of non-mammals, such as frogs and turtles, which probably lack prestin. The latter process involves active motion of the hair bundle underpinned by conformational changes in the mechanotransducer (MT) channels and activation of one or more isoforms of myosin. This review summarizes evidence for active hair bundle motion and its connection to MT channel adaptation. Key factors for the hair bundle motor to play a role in the mammalian cochlea include the size and speed of force production.
Collapse
Affiliation(s)
- Robert Fettiplace
- 185 Medical Sciences Building, 1300, University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
50
|
Abstract
Cochlear hair cells respond with phenomenal speed and sensitivity to sound vibrations that cause submicron deflections of their hair bundle. Outer hair cells are not only detectors, but also generate force to augment auditory sensitivity and frequency selectivity. Two mechanisms of force production have been proposed: contractions of the cell body or active motion of the hair bundle. Here, we describe recently identified proteins involved in the sensory and motor functions of auditory hair cells and present evidence for each force generator. Both motor mechanisms are probably needed to provide the high sensitivity and frequency discrimination of the mammalian cochlea.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Physiology, University of Wisconsin Medical School, 185 Medical Sciences Building, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|