1
|
Weidner S, Tomalka A, Rode C, Siebert T. Impact of lengthening velocity on the generation of eccentric force by slow-twitch muscle fibers in long stretches. Pflugers Arch 2024; 476:1517-1527. [PMID: 39043889 PMCID: PMC11381483 DOI: 10.1007/s00424-024-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
After an initial increase, isovelocity elongation of a muscle fiber can lead to diminishing (referred to as Give in the literature) and subsequently increasing force. How the stretch velocity affects this behavior in slow-twitch fibers remains largely unexplored. Here, we stretched fully activated individual rat soleus muscle fibers from 0.85 to 1.3 optimal fiber length at stretch velocities of 0.01, 0.1, and 1 maximum shortening velocity, vmax, and compared the results with those of rat EDL fast-twitch fibers obtained in similar experimental conditions. In soleus muscle fibers, Give was 7%, 18%, and 44% of maximum isometric force for 0.01, 0.1, and 1 vmax, respectively. As in EDL fibers, the force increased nearly linearly in the second half of the stretch, although the number of crossbridges decreased, and its slope increased with stretch velocity. Our findings are consistent with the concept of a forceful detachment and subsequent crossbridge reattachment in the stretch's first phase and a strong viscoelastic titin contribution to fiber force in the second phase of the stretch. Interestingly, we found interaction effects of stretch velocity and fiber type on force parameters in both stretch phases, hinting at fiber type-specific differences in crossbridge and titin contributions to eccentric force. Whether fiber type-specific combined XB and non-XB models can explain these effects or if they hint at some not fully understood properties of muscle contraction remains to be shown. These results may stimulate new optimization perspectives in sports training and provide a better understanding of structure-function relations of muscle proteins.
Collapse
Affiliation(s)
- Sven Weidner
- Department of Motion and Exercise Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany.
| | - André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany
| | - Christian Rode
- Institute of Sport Science, Department of Biomechanics, University of Rostock, Rostock, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany
- Stuttgart Center of Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Millard M, Franklin DW, Herzog W. A three filament mechanistic model of musculotendon force and impedance. eLife 2024; 12:RP88344. [PMID: 39254193 PMCID: PMC11386956 DOI: 10.7554/elife.88344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.
Collapse
Affiliation(s)
- Matthew Millard
- Institute for Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich School of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Tomalka A, Weidner S, Hahn D, Seiberl W, Siebert T. Force re-development after shortening reveals a role for titin in stretch-shortening performance enhancement in skinned muscle fibres. J Exp Biol 2024; 227:jeb247377. [PMID: 39119673 DOI: 10.1242/jeb.247377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Stretch-shortening cycles (SSCs) involve muscle lengthening (eccentric contractions) instantly followed by shortening (concentric contractions). This combination enhances force, work and power output compared with pure shortening contractions, which is known as the SSC effect. Recent evidence indicates both cross-bridge (XB)-based and non-XB-based (e.g. titin) structures contribute to this effect. This study analysed force re-development following SSCs and pure shortening contractions to gain further insight into the roles of XB and non-XB structures regarding the SSC effect. Experiments were conducted on rat soleus muscle fibres (n=16) with different SSC velocities (30%, 60% and 85% of maximum shortening velocity) and constant stretch-shortening magnitudes (18% of optimum length). The XB inhibitor blebbistatin was used to distinguish between XB and non-XB contributions to force generation. The results showed SSCs led to significantly greater [mean±s.d. 1.02±0.15 versus 0.68±0.09 (ΔF/Δt); t62=8.61, P<0.001, d=2.79) and faster (75 ms versus 205 ms; t62=-6.37, P<0.001, d=-1.48) force re-development compared with pure shortening contractions in the control treatment. In the blebbistatin treatment, SSCs still resulted in greater [0.11±0.03 versus 0.06±0.01 (ΔF/Δt); t62=8.00, P<0.001, d=2.24) and faster (3010±1631 versus 7916±3230 ms; t62=-8.00, P<0.001, d=-1.92) force re-development compared with pure shortening contractions. These findings deepen our understanding of the SSC effect, underscoring the involvement of non-XB structures such as titin in modulating force production. This modulation is likely to involve complex mechanosensory coupling from stretch to signal transmission during muscle contraction.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sven Weidner
- Motion and Exercise Science, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, 44801 Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Wolfgang Seiberl
- Human Movement Science, University of the Bundeswehr Munich, 85579 Neubiberg, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Herzog W, Schappacher-Tilp G. Molecular mechanisms of muscle contraction: A historical perspective. J Biomech 2023; 155:111659. [PMID: 37290181 DOI: 10.1016/j.jbiomech.2023.111659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Studies of muscle structure and function can be traced to at least 2,000 years ago. However, the modern era of muscle contraction mechanisms started in the 1950s with the classic works by AF Huxley and HE Huxley, both born in the United Kingdom, but not related and working independently. HE Huxley was the first to suggest that muscle contraction occurred through the sliding of two sets of filamentous structures (actin or thin filaments and myosin or thick filaments). AF Huxley then developed a biologically inspired mathematical model suggesting a possible molecular mechanism of how this sliding of actin and myosin might take place. This model then evolved from a two-state to a multi-state model of myosin-actin interactions, and from one that suggested a linear motor causing the sliding to a rotating motor. This model, the cross-bridge model of muscle contraction, is still widely used in biomechanics, and even the more sophisticated cross-bridge models of today still contain many of the features originally proposed by AF Huxley. In 2002, we discovered a hitherto unknown property of muscle contraction that suggested the involvement of passive structures in active force production, the so-called passive force enhancement. It was quickly revealed that this passive force enhancement was caused by the filamentous protein titin, and the three-filament (actin, myosin, and titin) sarcomere model of muscle contraction evolved. There are many suggestions of how these three proteins interact to cause contraction and produce active force, and one such suggestion is described here, but the molecular details of this proposed mechanism still need careful evaluation.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | | |
Collapse
|
5
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
6
|
Tomalka A. Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. Pflugers Arch 2023; 475:421-435. [PMID: 36790515 PMCID: PMC10011336 DOI: 10.1007/s00424-023-02794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
7
|
Tomalka A, Heim M, Klotz A, Rode C, Siebert T. Ultrastructural and kinetic evidence support that thick filaments slide through the Z-disc. J R Soc Interface 2022; 19:20220642. [PMID: 36475390 PMCID: PMC9727675 DOI: 10.1098/rsif.2022.0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
How myofilaments operate at short mammalian skeletal muscle lengths is unknown. A common assumption is that thick (myosin-containing) filaments get compressed at the Z-disc. We provide ultrastructural evidence of sarcomeres contracting down to 0.44 µm-approximately a quarter of thick filament resting length-in long-lasting contractions while apparently keeping a regular, parallel thick filament arrangement. Sarcomeres produced force at such extremely short lengths. Furthermore, sarcomeres adopted a bimodal length distribution with both modes below lengths where sarcomeres are expected to generate force in classic force-length measurements. Mammalian fibres did not restore resting length but remained short after deactivation, as previously reported for amphibian fibres, and showed increased forces during passive re-elongation. These findings are incompatible with viscoelastic thick filament compression but agree with predictions of a model incorporating thick filament sliding through the Z-disc. This more coherent picture of mechanical mammalian skeletal fibre functioning opens new perspectives on muscle physiology.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Maximilian Heim
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Annika Klotz
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Institute of Sport Science, Department of Biomechanics, University of Rostock, Rostock, Germany
| | - Tobias Siebert
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
8
|
Yang Y, Fu Z, Zhu W, Hu H, Wang J. Application of optical tweezers in cardiovascular research: More than just a measuring tool. Front Bioeng Biotechnol 2022; 10:947918. [PMID: 36147537 PMCID: PMC9486066 DOI: 10.3389/fbioe.2022.947918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in the field of optical tweezer technology have shown intriguing potential for applications in cardiovascular medicine, bringing this laboratory nanomechanical instrument into the spotlight of translational medicine. This article summarizes cardiovascular system findings generated using optical tweezers, including not only rigorous nanomechanical measurements but also multifunctional manipulation of biologically active molecules such as myosin and actin, of cells such as red blood cells and cardiomyocytes, of subcellular organelles, and of microvessels in vivo. The implications of these findings in the diagnosis and treatment of diseases, as well as potential perspectives that could also benefit from this tool, are also discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhenhai Fu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Huizhu Hu
- Quantum Sensing Center, Zhejiang Lab, Hangzhou, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Zhu, ; Huizhu Hu, ; Jian’an Wang,
| |
Collapse
|
9
|
Weidner S, Tomalka A, Rode C, Siebert T. How velocity impacts eccentric force generation of fully activated skinned skeletal muscle fibers in long stretches. J Appl Physiol (1985) 2022; 133:223-233. [PMID: 35652830 DOI: 10.1152/japplphysiol.00735.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric muscle contractions are fundamental to everyday life. They occur markedly in jumping, running, and accidents. Following an initial force rise, stretching of a fully activated muscle can result in a phase of decreasing force ('Give') followed by force redevelopment. However, how the stretch velocity affects 'Give' and force redevelopment remains largely unknown. We investigated the force produced by fully activated single skinned fibers of rat extensor digitorum longus muscles during long stretches. Fibers were pulled from length .85 to 1.3 optimal fiber length at a rate of 1, 10 and 100% of the estimated maximum shortening velocity. 'Give' was absent in slow stretches. Medium and fast stretches yielded a clear 'Give'. After the initial force peak, forces decreased by 11.2% and 27.8% relative to the initial peak force before rising again. During the last half of the stretch (from 1.07 to 1.3 optimal fiber length, which is within the range of the expected descending limb of the force-length relationship), the linear force slope tripled from slow to medium stretch and increased further by 60% from medium to fast stretch. These results are compatible with forcible cross-bridge detachment and re-development of a cross-bridge distribution, and a viscoelastic titin contribution to fiber force. Accounting for these results can improve muscle models and predictions of multi-body simulations.
Collapse
Affiliation(s)
- Sven Weidner
- nstitute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - André Tomalka
- nstitute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- nstitute of Sport Science, Department of Biomechanics, University of Rostock, Rostock, Germany
| | - Tobias Siebert
- nstitute of Sport and Movement Science, Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center of Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Adewale AO, Ahn YH. Titin N2A Domain and Its Interactions at the Sarcomere. Int J Mol Sci 2021; 22:ijms22147563. [PMID: 34299183 PMCID: PMC8305307 DOI: 10.3390/ijms22147563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosensing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity.
Collapse
|
12
|
Hessel AL, Monroy JA, Nishikawa KC. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Front Physiol 2021; 12:648019. [PMID: 33854441 PMCID: PMC8039322 DOI: 10.3389/fphys.2021.648019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jenna A Monroy
- W.M. Keck Science Department, Claremont Colleges, Claremont, CA, United States
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
13
|
Tomalka A, Weidner S, Hahn D, Seiberl W, Siebert T. Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers. Front Physiol 2021; 12:644981. [PMID: 33868012 PMCID: PMC8044407 DOI: 10.3389/fphys.2021.644981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 01/25/2023] Open
Abstract
Muscle force, work, and power output during concentric contractions (active muscle shortening) are increased immediately following an eccentric contraction (active muscle lengthening). This increase in performance is known as the stretch-shortening cycle (SSC)-effect. Recent findings demonstrate that the SSC-effect is present in the sarcomere itself. More recently, it has been suggested that cross-bridge (XB) kinetics and non-cross-bridge (non-XB) structures (e.g., titin and nebulin) contribute to the SSC-effect. As XBs and non-XB structures are characterized by a velocity dependence, we investigated the impact of stretch-shortening velocity on the SSC-effect. Accordingly, we performed in vitro isovelocity ramp experiments with varying ramp velocities (30, 60, and 85% of maximum contraction velocity for both stretch and shortening) and constant stretch-shortening magnitudes (17% of the optimum sarcomere length) using single skinned fibers of rat soleus muscles. The different contributions of XB and non-XB structures to force production were identified using the XB-inhibitor Blebbistatin. We show that (i) the SSC-effect is velocity-dependent-since the power output increases with increasing SSC-velocity. (ii) The energy recovery (ratio of elastic energy storage and release in the SSC) is higher in the Blebbistatin condition compared with the control condition. The stored and released energy in the Blebbistatin condition can be explained by the viscoelastic properties of the non-XB structure titin. Consequently, our experimental findings suggest that the energy stored in titin during the eccentric phase contributes to the SSC-effect in a velocity-dependent manner.
Collapse
Affiliation(s)
- André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Sven Weidner
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Seiberl
- Human Movement Science, Bundeswehr University Munich, Neubiberg, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Fukutani A, Isaka T, Herzog W. Evidence for Muscle Cell-Based Mechanisms of Enhanced Performance in Stretch-Shortening Cycle in Skeletal Muscle. Front Physiol 2021; 11:609553. [PMID: 33488399 PMCID: PMC7820781 DOI: 10.3389/fphys.2020.609553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Force attained during concentric contraction (active shortening) is transiently enhanced following eccentric contraction (active stretch) in skeletal muscle. This phenomenon is called stretch-shortening cycle (SSC) effect. Since many human movements contain combinations of eccentric and concentric contractions, a better understanding of the mechanisms underlying the SSC effect would be useful for improving physical performance, optimizing human movement efficiency, and providing an understanding of fundamental mechanism of muscle force control. Currently, the most common mechanisms proposed for the SSC effect are (i) stretch-reflex activation and (ii) storage of energy in tendons. However, abundant SSC effects have been observed in single fiber preparations where stretch-reflex activation is eliminated and storage of energy in tendons is minimal at best. Therefore, it seems prudent to hypothesize that factor(s) other than stretch-reflex activation and energy storage in tendons contribute to the SSC effect. In this brief review, we focus on possible candidate mechanisms for the SSC effect, that is, pre-activation, cross-bridge kinetics, and residual force enhancement (RFE) obtained in experimental preparations that exclude/control the influence of stretch-reflex activation and energy storage in tendons. Recent evidence supports the contribution of these factors to the mechanism of SSCs, and suggests that the extent of their contribution varies depending on the contractile conditions. Evidence for and against alternative mechanisms are introduced and discussed, and unresolved problems are mentioned for inspiring future studies in this field of research.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Sudarshi Premawardhana DM, Zhang F, Xu J, Gage MJ. The Poly-E motif in Titin's PEVK region undergoes pH dependent conformational changes. Biochem Biophys Rep 2020; 24:100859. [PMID: 33294637 PMCID: PMC7691732 DOI: 10.1016/j.bbrep.2020.100859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/03/2022] Open
Abstract
The muscle protein titin plays a crucial role in passive elasticity and the disordered PEVK region within titin is central to that function. The PEVK region is so named due to its high proline, glutamate, valine and lysine content and the high charge density in this region results in a lack of organized structure within this domain. The PEVK region is highly extensible but the molecular interactions that contribute to the elastic nature of the PEVK still remain poorly described. The PEVK region is formed by two unique sequence motifs. The PPAK motif is a 26 to 28 amino acid sequence that contains a mixture of charged and hydrophobic residues and is the primary building block for the PEVK region. Poly-E sequence motifs vary in length and contain clusters of 3–4 glutamic acids distributed throughout the motif. In this study, we derived two 28-residue peptides from the human titin protein sequence and measured their structural characteristics over a range of pHs. Our results demonstrate that the poly-E peptide undergoes a shift from a more rigid and elongated state to a more collapsed state as pH decreases with the midpoint of this transition being at pH ~5.5. Interestingly, a similar conformational shift is not observed in the PPAK peptide. These results suggest that the poly-E motif might provide a nucleating site for the PEVK when the muscle is not in an extended state. Poly-E peptides have a more extended conformation at pH 7.0 than PPAK peptides. Poly-E peptides assume a more relaxed conformation below pH 6. PPAK peptides do not show any conformational sensitivity to changes in pH.
Collapse
Affiliation(s)
- Dassanayake Mudiyanselage Sudarshi Premawardhana
- Chemistry Department, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Fang Zhang
- Chemistry Department, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jin Xu
- Chemistry Department, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Matthew J. Gage
- Chemistry Department, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- Corresponding author. Department of Chemistry University of Massachusetts Lowell Lowell, Chemistry Department, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
16
|
Tomalka A, Weidner S, Hahn D, Seiberl W, Siebert T. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Front Physiol 2020; 11:921. [PMID: 32848862 PMCID: PMC7399218 DOI: 10.3389/fphys.2020.00921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Stretch-shortening cycles (SSCs) refer to the muscle action when an active muscle stretch is immediately followed by active muscle shortening. This combination of eccentric and concentric contractions is the most important type of daily muscle action and plays a significant role in natural locomotion such as walking, running or jumping. SSCs are used in human and animal movements especially when a high movement speed or economy is required. A key feature of SSCs is the increase in muscular force and work during the concentric phase of a SSC by more than 50% compared with concentric muscle actions without prior stretch (SSC-effect). This improved muscle capability is related to various mechanisms, including pre-activation, stretch-reflex responses and elastic recoil from serial elastic tissues. Moreover, it is assumed that a significant contribution to enhanced muscle capability lies in the sarcomeres itself. Thus, we investigated the force output and work produced by single skinned fibers of rat soleus muscles during and after ramp contractions at a constant velocity. Shortening, lengthening, and SSCs were performed under physiological boundary conditions with 85% of the maximum shortening velocity and stretch-shortening magnitudes of 18% of the optimum muscle length. The different contributions of cross-bridge (XB) and non-cross-bridge (non-XB) structures to the total muscle force were identified by using Blebbistatin. The experiments revealed three main results: (i) partial detachment of XBs during the eccentric phase of a SSC, (ii) significantly enhanced forces and mechanical work during the concentric phase of SSCs compared with shortening contractions with and without XB-inhibition, and (iii) no residual force depression after SSCs. The results obtained by administering Blebbistatin propose a titin-actin interaction that depends on XB-binding or active XB-based force production. The findings of this study further suggest that enhanced forces generated during the active lengthening phase of SSCs persist during the subsequent shortening phase, thereby contributing to enhanced work. Accordingly, our data support the hypothesis that sarcomeric mechanisms related to residual force enhancement also contribute to the SSC-effect. The preload of the titin molecule, acting as molecular spring, might be part of that mechanism by increasing the mechanical efficiency of work during physiological SSCs.
Collapse
Affiliation(s)
- André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Sven Weidner
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, Bochum, Germany.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Seiberl
- Human Movement Science, Bundeswehr University Munich, Munich, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
N2A Titin: Signaling Hub and Mechanical Switch in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21113974. [PMID: 32492876 PMCID: PMC7312179 DOI: 10.3390/ijms21113974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Since its belated discovery, our understanding of the giant protein titin has grown exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin’s functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into the function of this specific region and the consequences of its dysfunction. The impact of this mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics, developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence that points to the N2A region of titin as a dynamic “switch” that is critical for both mechanical and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving titin’s PEVK region as well as the N2A signalosome.
Collapse
|
18
|
Abstract
Muscle has conventionally been viewed as a motor that converts chemical to kinetic energy in series with a passive spring, but new insights emerge when muscle is viewed as a composite material whose elastic elements are tuned by activation. New evidence demonstrates that calcium-dependent binding of N2A titin to actin increases titin stiffness in active skeletal muscles, which explains many long-standing enigmas of muscle physiology.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
19
|
Powers JD, Bianco P, Pertici I, Reconditi M, Lombardi V, Piazzesi G. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness. J Physiol 2020; 598:331-345. [PMID: 31786814 DOI: 10.1113/jp278713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Fast sarcomere-level mechanics in contracting intact fibres from frog skeletal muscle reveal an I-band spring with an undamped stiffness 100 times larger than the known static stiffness. This undamped stiffness remains constant in the range of sarcomere length 2.7-3.1 µm, showing the ability of the I-band spring to adapt its length to the width of the I-band. The stiffness and tunability of the I-band spring implicate titin as a force contributor that, during contraction, allows weaker half-sarcomeres to equilibrate with in-series stronger half-sarcomeres, preventing the development of sarcomere length inhomogeneity. This work opens new possibilities for the detailed in situ description of the structural-functional basis of muscle dysfunctions related to mutations or site-directed mutagenesis in titin that alter the I-band stiffness. ABSTRACT Force and shortening in the muscle sarcomere are due to myosin motors from thick filaments pulling nearby actin filaments toward the sarcomere centre. Thousands of serially linked sarcomeres in muscle make the shortening (and the shortening speed) macroscopic, while the intrinsic instability of in-series force generators is likely prevented by the cytoskeletal protein titin that connects the thick filament with the sarcomere end, working as an I-band spring that accounts for the rise of passive force with sarcomere length (SL). However, current estimates of titin stiffness, deduced from the passive force-SL relation and single molecule mechanics, are much smaller than what is required to avoid the development of large inhomogeneities among sarcomeres. In this work, using 4 kHz stiffness measurements on a population of sarcomeres selected along an intact fibre isolated from frog skeletal muscle contracting at different SLs (temperature 4°C), we measure the undamped stiffness of an I-band spring that at SL > 2.7 µm attains a maximum constant value of ∼6 pN nm-1 per half-thick filament, two orders of magnitude larger than expected from titin-related passive force. We conclude that a titin-like dynamic spring in the I-band, made by an undamped elastic element in-series with damped elastic elements, adapts its length to the SL with kinetics that provide force balancing among serially linked sarcomeres during contraction. In this way, the I-band spring plays a fundamental role in preventing the development of SL inhomogeneity.
Collapse
Affiliation(s)
- Joseph D Powers
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
- Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Pasquale Bianco
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Irene Pertici
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Vincenzo Lombardi
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Gabriella Piazzesi
- PhysioLab, University of Florence, Via G. Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
20
|
Fan Y, Hou W, Xing Y, Zhang L, Zhou C, Gui J, Xu P, Wang A, Fan X, Zeng X, Feng S, Li P. Peptidomics analysis of myometrium tissues in term labor compared with term nonlabor. J Cell Biochem 2019; 121:1890-1900. [PMID: 31709621 DOI: 10.1002/jcb.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/08/2019] [Indexed: 11/10/2022]
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality, with a poorly understood etiology. The regular contraction of the myometrium was considered as contributing to the etiology of the onset of labor, especially PTB. Thus, studying the mechanism of myometrium contraction is very important for understanding the initiation of labor and also for preventing PTB. Using liquid chromatography-mass spectrometry, we found 322 significantly differential peptides in myometrium tissues between term nonlabor and term labor groups (absolute fold change ≥ 2 and P < .05). We next analyzed length, molecular weights, isoelectric point, and cleavage site of all the different peptides. We, next, analyzed the functions of different peptides through their precursor proteins by Gene Ontology, enrichment and canonical pathway analysis. The results indicated that the extracellular matrix (ECM) played a major role in biological process, the cellular component, and molecular function categories, and revealed that ECM remodeling played a vital role in myometrial contraction. In addition, some known signaling, such as corticotropin-releasing hormone signaling and calcium signaling were proven to be involved in this process. Ingenuity Pathways Analysis upstream regulator analysis suggested that some of the known molecules, which reportedly were very important in labor onset, were included, for example, nuclear factor κB, tubulin, and phosphoinositide 3-kinase. We also identified 23 peptides derived from the precursor protein TITIN, of which 21 peptides sequences from TITIN were located in functional domains. These results suggested that peptides play an important role in labor onset and provide further insight into PTB therapy.
Collapse
Affiliation(s)
- Yuru Fan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wenwen Hou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yuan Xing
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Li Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chunxiu Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Gui
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Anming Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xuemei Fan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ping Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
21
|
Fukutani A, Herzog W. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component. Int J Mol Sci 2019; 20:ijms20215479. [PMID: 31689920 PMCID: PMC6862632 DOI: 10.3390/ijms20215479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle contraction is initiated by the interaction between actin and myosin filaments. The sliding of actin filaments relative to myosin filaments is produced by cross-bridge cycling, which is governed by the theoretical framework of the cross-bridge theory. The cross-bridge theory explains well a number of mechanical responses, such as isometric and concentric contractions. However, some experimental observations cannot be explained with the cross-bridge theory; for example, the increased isometric force after eccentric contractions. The steady-state, isometric force after an eccentric contraction is greater than that attained in a purely isometric contraction at the same muscle length and same activation level. This well-acknowledged and universally observed property is referred to as residual force enhancement (rFE). Since rFE cannot be explained by the cross-bridge theory, alternative mechanisms for explaining this force response have been proposed. In this review, we introduce the basic concepts of sarcomere length non-uniformity and titin elasticity, which are the primary candidates that have been used for explaining rFE, and discuss unresolved problems regarding these mechanisms, and how to proceed with future experiments in this exciting area of research.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
22
|
Nishikawa K, Dutta S, DuVall M, Nelson B, Gage MJ, Monroy JA. Calcium-dependent titin-thin filament interactions in muscle: observations and theory. J Muscle Res Cell Motil 2019; 41:125-139. [PMID: 31289970 DOI: 10.1007/s10974-019-09540-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Gaps in our understanding of muscle mechanics demonstrate that the current model is incomplete. Increasingly, it appears that a role for titin in active muscle contraction might help to fill these gaps. While such a role for titin is increasingly accepted, the underlying molecular mechanisms remain unclear. The goals of this paper are to review recent studies demonstrating Ca2+-dependent interactions between N2A titin and actin in vitro, to explore theoretical predictions of muscle behavior based on this interaction, and to review experimental data related to the predictions. In a recent study, we demonstrated that Ca2+ increases the association constant between N2A titin and F-actin; that Ca2+ increases rupture forces between N2A titin and F-actin; and that Ca2+ and N2A titin reduce sliding velocity of F-actin and reconstituted thin filaments in motility assays. Preliminary data support a role for Ig83, but other Ig domains in the N2A region may also be involved. Two mechanical consequences are inescapable if N2A titin binds to thin filaments in active muscle sarcomeres: (1) the length of titin's freely extensible I-band should decrease upon muscle activation; and (2) binding between N2A titin and thin filaments should increase titin stiffness in active muscle. Experimental observations demonstrate that these properties characterize wild type muscles, but not muscles from mdm mice with a small deletion in N2A titin, including part of Ig83. Given the new in vitro evidence for Ca2+-dependent binding between N2A titin and actin, it is time for skepticism to give way to further investigation.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-4185, USA.
| | - Samrat Dutta
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-4185, USA
| | - Michael DuVall
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-4185, USA.,Edgewise Therapeutics Inc, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Brent Nelson
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011-15600, USA
| | - Matthew J Gage
- Chemistry Department, University of Massachusetts at Lowell, Lowell, MA, 01854, USA
| | - Jenna A Monroy
- W. M. Keck Science Center, Claremont Colleges, Claremont, CA, 91711-5916, USA
| |
Collapse
|
23
|
Herzog W. Passive force enhancement in striated muscle. J Appl Physiol (1985) 2019; 126:1782-1789. [PMID: 31070958 PMCID: PMC6620658 DOI: 10.1152/japplphysiol.00676.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Passive force enhancement is defined as the increase in passive, steady-state, isometric force of an actively stretched muscle compared with the same muscle stretched passively to that same length. Passive force enhancement is long lasting, increases with increasing muscle length and increasing stretch magnitudes, contributes to the residual force enhancement in skeletal and cardiac muscle, and is typically only observed at muscle lengths at which passive forces occur naturally. Passive force enhancement is typically equal to or smaller than the total residual force enhancement, it persists when a muscle is deactivated and reactivated, but can be abolished instantaneously when a muscle is shortened quickly from its stretched length. There is strong evidence that the passive force enhancement is caused by the filamentous sarcomeric protein titin, although the detailed molecular mechanisms underlying passive force enhancement remain unknown. Here I propose a tentative mechanism based on experimental evidence that associates passive force enhancement with the shortening of titin's free spring length in the I-band region of sarcomeres. I suggest that this shortening is accomplished by titin binding to actin and that the trigger for titin-actin interactions is associated with the formation of strongly bound cross bridges between actin and myosin that exposes actin attachment sites for titin through movement of the regulatory proteins troponin and tropomyosin.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
24
|
Tomalka A, Röhrle O, Han JC, Pham T, Taberner AJ, Siebert T. Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proc Biol Sci 2019; 286:20190719. [PMID: 31138072 DOI: 10.1098/rspb.2019.0719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Force enhancement (FE) is a phenomenon that is present in skeletal muscle. It is characterized by progressive forces upon active stretching-distinguished by a linear rise in force-and enhanced isometric force following stretching (residual FE (RFE)). In skeletal muscle, non-cross-bridge (XB) structures may account for this behaviour. So far, it is unknown whether differences between non-XB structures within the heart and skeletal muscle result in deviating contractile behaviour during and after eccentric contractions. Thus, we investigated the force response of intact cardiac trabeculae during and after isokinetic eccentric muscle contractions (10% of maximum shortening velocity) with extensive magnitudes of stretch (25% of optimum muscle length). The different contributions of XB and non-XB structures to the total muscle force were revealed by using an actomyosin inhibitor. For cardiac trabeculae, we found that the force-length dynamics during long stretch were similar to the total isometric force-length relation. This indicates that no (R)FE is present in cardiac muscle while stretching the muscle from 0.75 to 1.0 optimum muscle length. This finding is in contrast with the results obtained for skeletal muscle, in which (R)FE is present. Our data support the hypothesis that titin stiffness does not increase with activation in cardiac muscle.
Collapse
Affiliation(s)
- André Tomalka
- 1 Department of Motion and Exercise Science, University of Stuttgart , Stuttgart , Germany
| | - Oliver Röhrle
- 2 Institute of Applied Mechanics (Civil Engineering), University of Stuttgart , Stuttgart , Germany.,3 Cluster of Excellence for Simulation Technology (SimTech) , Stuttgart , Germany
| | - June-Chiew Han
- 4 Auckland Bioengineering Institute, The University of Auckland , Auckland , New Zealand
| | - Toan Pham
- 5 Department of Physiology, The University of Auckland , Auckland , New Zealand
| | - Andrew J Taberner
- 4 Auckland Bioengineering Institute, The University of Auckland , Auckland , New Zealand.,6 Department of Engineering Science, The University of Auckland , Auckland , New Zealand
| | - Tobias Siebert
- 1 Department of Motion and Exercise Science, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
25
|
Abstract
Relaxed skeletal muscle has an inbuilt resistance to movement. In particular, the resistance manifests itself as a substantial stiffness for small movements. The stiffness is impermanent, because it forms only when the muscle is stationary for some time and is reduced upon active or passive movement. Because the resistance to movement increases with time at rest and is reduced by movement, this behavior has become known as muscle thixotropy. In this short review, we describe the phenomenon of thixotropy and illustrate its significance in postural control with particular emphasis on human standing. We show how thixotropy came to be unambiguously associated with muscle mechanics and we review present knowledge of the molecular basis of thixotropic behavior. Specifically, we examine how recent knowledge about titin, and about the control of cross-bridge cycling, has impacted on the role of non-cross-bridge mechanisms and cross-bridge mechanisms in explaining thixotropy. We describe how thixotropic changes in muscle stiffness that occur during transitions from posture to movement can be tracked by analyzing physiological tremor. Finally, because skeletal muscle contains sensory receptors, and because some of these receptors are themselves thixotropic, we outline some of the consequences of muscle thixotropy for proprioception.
Collapse
Affiliation(s)
- Martin Lakie
- School of Sport, Exercise and Rehabilitation, University of Birmingham , Birmingham , United Kingdom
| | - Kenneth S Campbell
- Department of Physiology, College of Medicine, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
26
|
Abstract
The protein titin plays a key role in vertebrate muscle where it acts like a giant molecular spring. Despite its importance and conservation over vertebrate evolution, a lack of high quality annotations in non-model species makes comparative evolutionary studies of titin challenging. The PEVK region of titin—named for its high proportion of Pro-Glu-Val-Lys amino acids—is particularly difficult to annotate due to its abundance of alternatively spliced isoforms and short, highly repetitive exons. To understand PEVK evolution across mammals, we developed a bioinformatics tool, PEVK_Finder, to annotate PEVK exons from genomic sequences of titin and applied it to a diverse set of mammals. PEVK_Finder consistently outperforms standard annotation tools across a broad range of conditions and improves annotations of the PEVK region in non-model mammalian species. We find that the PEVK region can be divided into two subregions (PEVK-N, PEVK-C) with distinct patterns of evolutionary constraint and divergence. The bipartite nature of the PEVK region has implications for titin diversification. In the PEVK-N region, certain exons are conserved and may be essential, but natural selection also acts on particular codons. In the PEVK-C, exons are more homogenous and length variation of the PEVK region may provide the raw material for evolutionary adaptation in titin function. The PEVK-C region can be further divided into a highly repetitive region (PEVK-CA) and one that is more variable (PEVK-CB). Taken together, we find that the very complexity that makes titin a challenge for annotation tools may also promote evolutionary adaptation.
Collapse
|
27
|
Raiteri BJ, Hahn D. A reduction in compliance or activation level reduces residual force depression in human tibialis anterior. Acta Physiol (Oxf) 2019; 225:e13198. [PMID: 30300958 DOI: 10.1111/apha.13198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
AIM We investigated if residual force depression (rFD) is present during voluntary fixed-end contractions of human tibialis anterior (TA) and whether reducing TA's activation level after active shortening could reduce rFD. METHODS Ten participants performed fixed-end dorsiflexion contractions to a low, moderate or high level while electromyography (EMG), dorsiflexion force and TA ultrasound images were recorded. Contractions were force- or EMG-matched and after the low or high contraction level was attained, participants respectively increased or decreased their force/EMG to a moderate level. Participants also performed moderate level contractions while the TA muscle-tendon unit (MTU) was lengthened during the force/EMG rise to the reference MTU length. RESULTS Equivalent fascicle shortening over moderate and low to moderate level contractions did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.47) at the moderate level. Greater initial fascicle shortening magnitudes (1.7 mm; P ≤ 0.01) to the high contraction level did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.30) at the subsequent moderate level compared with moderate level contractions. TA MTU lengthening during the initial force/EMG rise reduced TA fascicle shortening (-2.5 mm; P ≤ 0.01), which reduced EMG (-3.9% MVC; P < 0.01) and increased dorsiflexion force (3.7% MVC; P < 0.01) at the moderate level compared with fixed-end moderate level contractions. CONCLUSION rFD is present during fixed-end dorsiflexion contractions because fascicles actively shorten as force/EMG increases and rFD can be reduced by reducing the effective MTU compliance. A reduction in muscle activation level also reduces rFD by potentially triggering residual force enhancement-related mechanisms as force drops and some fascicles actively lengthen.
Collapse
Affiliation(s)
- Brent J. Raiteri
- Human Movement Science, Faculty of Sport Science Ruhr University Bochum Bochum Germany
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science Ruhr University Bochum Bochum Germany
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane QueenslandAustralia
| |
Collapse
|
28
|
Nishikawa KC, Monroy JA, Tahir U. Muscle Function from Organisms to Molecules. Integr Comp Biol 2019; 58:194-206. [PMID: 29850810 DOI: 10.1093/icb/icy023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gaps in our understanding of muscle contraction at the molecular level limit the ability to predict in vivo muscle forces in humans and animals during natural movements. Because muscles function as motors, springs, brakes, or struts, it is not surprising that uncertainties remain as to how sarcomeres produce these different behaviors. Current theories fail to explain why a single extra stimulus, added shortly after the onset of a train of stimuli, doubles the rate of force development. When stretch and doublet stimulation are combined in a work loop, muscle force doubles and work increases by 50% per cycle, yet no theory explains why this occurs. Current theories also fail to predict persistent increases in force after stretch and decreases in force after shortening. Early studies suggested that all of the instantaneous elasticity of muscle resides in the cross-bridges. Subsequent cross-bridge models explained the increase in force during active stretch, but required ad hoc assumptions that are now thought to be unreasonable. Recent estimates suggest that cross-bridges account for only ∼12% of the energy stored by muscles during active stretch. The inability of cross-bridges to account for the increase in force that persists after active stretching led to development of the sarcomere inhomogeneity theory. Nearly all predictions of this theory fail, yet the theory persists. In stretch-shortening cycles, muscles with similar activation and contractile properties function as motors or brakes. A change in the phase of activation relative to the phase of length changes can convert a muscle from a motor into a spring or brake. Based on these considerations, it is apparent that the current paradigm of muscle mechanics is incomplete. Recent advances in our understanding of giant muscle proteins, including twitchin and titin, allow us to expand our vision beyond cross-bridges to understand how muscles contribute to the biomechanics and control of movement.
Collapse
Affiliation(s)
- Kiisa C Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| | - Jenna A Monroy
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711-5916, USA
| | - Uzma Tahir
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| |
Collapse
|
29
|
Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol (1985) 2018; 126:1474-1482. [PMID: 30521425 DOI: 10.1152/japplphysiol.00865.2018] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Titin has long been recognized as a mechanical protein in muscle cells that has a main function as a molecular spring in the contractile units, the sarcomeres. Recent work suggests that the titin spring contributes to muscle contraction in a more active manner than previously thought. In this review, we highlight this property, specifically the ability of the immunoglobulin-like (Ig) domains of titin to undergo unfolding-refolding transitions when isolated titin molecules or skeletal myofibrils are held at physiological force levels. Folding of titin Ig domains under force is a hitherto unappreciated, putative source of work production in muscle cells, which could work in synergy with the actomyosin system to maximize the energy delivered by a stretched, actively contracting muscle. This review also focuses on the mechanisms shown to modulate titin-based viscoelastic forces in skeletal muscle cells, including chaperone binding, titin oxidation, phosphorylation, Ca2+ binding, and interaction with actin filaments. Along the way, we discuss which of these modulatory mechanisms might contribute to the phenomenon of residual force enhancement relevant for eccentric muscle contractions. Finally, a brief perspective is added on the potential for the alterations in titin-based force to dynamically alter mechano-chemical signaling pathways in the muscle cell. We conclude that titin from skeletal muscle is a determinant of both passive and active tension and a bona fide mechanosensor, whose stiffness is tuned by various independent mechanisms.
Collapse
Affiliation(s)
- Johanna K Freundt
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster , Muenster , Germany
| |
Collapse
|
30
|
Calcium increases titin N2A binding to F-actin and regulated thin filaments. Sci Rep 2018; 8:14575. [PMID: 30275509 PMCID: PMC6167357 DOI: 10.1038/s41598-018-32952-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in titin are responsible for many cardiac and muscle diseases, yet the underlying mechanisms remain largely unexplained. Numerous studies have established roles for titin in muscle function, and Ca2+-dependent interactions between titin and actin have been suggested to play a role in muscle contraction. The present study used co-sedimentation assays, dynamic force spectroscopy (DFS), and in vitro motility (IVM) assays to determine whether the N2A region of titin, overlooked in previous studies, interacts with actin in the presence of Ca2+. Co-sedimentation demonstrated that N2A – F-actin binding increases with increasing protein and Ca2+ concentration, DFS demonstrated increased rupture forces and decreased koff in the presence of Ca2+, and IVM demonstrated a Ca2+-dependent reduction in motility of F-actin and reconstituted thin filaments in the presence of N2A. These results indicate that Ca2+ increases the strength and stability of N2A – actin interactions, supporting the hypothesis that titin plays a regulatory role in muscle contraction. The results further support a model in which N2A – actin binding in active muscle increases titin stiffness, and that impairment of this mechanism contributes to the phenotype in muscular dystrophy with myositis. Future studies are required to determine whether titin – actin binding occurs in skeletal muscle sarcomeres in vivo.
Collapse
|
31
|
Robertson-Anderson RM. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Lett 2018; 7:968-975. [PMID: 35650960 DOI: 10.1021/acsmacrolett.8b00498] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Collapse
Affiliation(s)
- Rae M. Robertson-Anderson
- University of San Diego, Physics and Biophysics Department, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
32
|
Herzog W. The multiple roles of titin in muscle contraction and force production. Biophys Rev 2018; 10:1187-1199. [PMID: 29353351 PMCID: PMC6082311 DOI: 10.1007/s12551-017-0395-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022] Open
Abstract
Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
33
|
Yakupova EI, Vikhlyantsev IM, Lobanov MY, Galzitskaya OV, Bobylev AG. Amyloid Properties of Titin. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523065 DOI: 10.1134/s0006297917130077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review considers data on structural and functional features of titin, on the role of this protein in determination of mechanical properties of sarcomeres, and on specific features of regulation of the stiffness and elasticity of its molecules, amyloid aggregation of this protein in vitro, and possibilities of formation of intramolecular amyloid structure in vivo. Molecular mechanisms are described of protection of titin against aggregation in muscle cells. Based on the data analysis, it is supposed that titin and the formed by it elastic filaments have features of amyloid.
Collapse
Affiliation(s)
- E I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
34
|
Heidlauf T, Klotz T, Rode C, Siebert T, Röhrle O. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Comput Biol 2017; 13:e1005773. [PMID: 28968385 PMCID: PMC5638554 DOI: 10.1371/journal.pcbi.1005773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/12/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Contractions on the descending limb of the total (active + passive) muscle force-length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere-length inhomogeneities. This is however not observed in experiments-vast half-sarcomere-length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere-length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin-titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force-length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thomas Klotz
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Christian Rode
- Institute of Motion Science, Friedrich-Schiller-University, Jena, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology (SRC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
35
|
Kumar S, Mansson A. Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnol Adv 2017; 35:867-888. [PMID: 28830772 DOI: 10.1016/j.biotechadv.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
Abstract
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
36
|
Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA. Residual Force Enhancement Following Eccentric Contractions: A New Mechanism Involving Titin. Physiology (Bethesda) 2017; 31:300-12. [PMID: 27252165 DOI: 10.1152/physiol.00049.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Eccentric muscle properties are not well characterized by the current paradigm of the molecular mechanism of contraction: the cross-bridge theory. Findings of force contributions by passive structural elements a decade ago paved the way for a new theory. Here, we present experimental evidence and theoretical support for the idea that the structural protein titin contributes to active force production, thereby explaining many of the unresolved properties of eccentric muscle contraction.
Collapse
Affiliation(s)
- W Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - G Schappacher
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - M DuVall
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - T R Leonard
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - J A Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Lindstedt S, Nishikawa K. Huxleys’ Missing Filament: Form and Function of Titin in Vertebrate Striated Muscle. Annu Rev Physiol 2017; 79:145-166. [DOI: 10.1146/annurev-physiol-022516-034152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stan Lindstedt
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011-4185
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-4185;
| |
Collapse
|
38
|
Hessel AL, Lindstedt SL, Nishikawa KC. Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Front Physiol 2017; 8:70. [PMID: 28232805 PMCID: PMC5299520 DOI: 10.3389/fphys.2017.00070] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an "elastic" filament. Jean Hanson and Hugh Huxley referred to this structure as the "S-filament," though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation.
Collapse
Affiliation(s)
| | | | - Kiisa C. Nishikawa
- Department of Biological Sciences, Center for Bioengineering Innovation, Northern Arizona UniversityFlagstaff, AZ, USA
| |
Collapse
|
39
|
Pongor CI, Bianco P, Ferenczy G, Kellermayer R, Kellermayer M. Optical Trapping Nanometry of Hypermethylated CPG-Island DNA. Biophys J 2017; 112:512-522. [PMID: 28109529 PMCID: PMC5300791 DOI: 10.1016/j.bpj.2016.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation is a key mechanism of epigenetic regulation. CpG-dense loci, called "CpG islands", play a particularly important role in modulating gene expression. Methylation has long been suspected to alter the physical properties of DNA, but the full spectrum of the evoked changes is unknown. Here we measured the methylation-induced nanomechanical changes in a DNA molecule with the sequence of a CpG island. For the molecule under tension, contour length, bending rigidity and intrinsic stiffness decreased in hypermethylated dsDNA, pointing at structural compaction which may facilitate DNA packaging in vivo. Intriguingly, increased forces were required to convert hypermethylated dsDNA into an extended S-form configuration. The reduction of force hysteresis during mechanical relaxation indicated that methylation generates a barrier against strand unpeeling and melting-bubble formation. The high structural stability is likely to have significant consequences on the recognition, replication, transcription, and reparation of hypermethylated genetic regions.
Collapse
Affiliation(s)
- Csaba I Pongor
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary
| | - Pasquale Bianco
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; Physiolab, Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - György Ferenczy
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Richárd Kellermayer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Baylor College of Medicine, Houston, Texas
| | - Miklós Kellermayer
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
40
|
Vörös Z, Csík G, Herényi L, Kellermayer MSZ. Stepwise reversible nanomechanical buckling in a viral capsid. NANOSCALE 2017; 9:1136-1143. [PMID: 28009879 DOI: 10.1039/c6nr06598h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Viruses are nanoscale infectious agents constructed of a proteinaceous capsid that protects the packaged genomic material. Nanoindentation experiments using atomic force microscopy have, in recent years, provided unprecedented insight into the elastic properties, structural stability and maturation-dependent mechanical changes in viruses. However, the dynamics of capsid behavior are still unresolved. Here we used high-resolution nanoindentation experiments on mature, DNA-filled T7 bacteriophage particles. The elastic regime of the nanoindentation force trace contained discrete, stepwise transitions that cause buckling of the T7 capsid with magnitudes that are integer multiples of ∼0.6 nm. Remarkably, the transitions are reversible and contribute to the rapid consolidation of the capsid structure against a force during cantilever retraction. The stepwise transitions were present even following the removal of the genomic DNA by heat treatment, indicating that they are related to the structure and dynamics of the capsomeric proteins. Dynamic force spectroscopy experiments revealed that the thermally activated consolidation step is ∼104 times faster than spontaneous buckling, suggesting that the capsid stability is under strong dynamic control. Capsid structural dynamics may play an important role in protecting the genomic material from harsh environmental impacts. The nanomechanics approach employed here may be used to investigate the structural dynamics of other viruses and nanoscale containers as well.
Collapse
Affiliation(s)
- Zsuzsanna Vörös
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47., Budapest H-1094, Hungary.
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47., Budapest H-1094, Hungary.
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47., Budapest H-1094, Hungary.
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47., Budapest H-1094, Hungary. and MTA-SE Molecular Biophysics Research Group, Semmelweis University, Tűzoltó u. 37-47., Budapest H-1094, Hungary
| |
Collapse
|
41
|
Powers K, Joumaa V, Jinha A, Moo EK, Smith IC, Nishikawa K, Herzog W. Titin force enhancement following active stretch of skinned skeletal muscle fibres. J Exp Biol 2017. [DOI: 10.1242/jeb.153502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In actively stretched skeletal muscle sarcomeres, titin-based force is enhanced, increasing the stiffness of active sarcomeres. Titin force enhancement in sarcomeres is vastly reduced in mdm, a genetic mutation with a deletion in titin. Whether loss of titin force enhancement is associated with compensatory mechanisms at higher structural levels of organization, such as single fibres or entire muscles, is unclear. The aim of this study was to determine whether mechanical deficiencies in titin force enhancement are also observed at the fibre level, and whether mechanisms compensate for the loss of titin force enhancement. Single skinned fibres from control and mutant mice were stretched actively and passively beyond filament overlap to observe titin-based force. Mutant fibres generated lower contractile stress (force divided by cross-sectional area) than control fibres. Titin force enhancement was observed in control fibres stretched beyond filament overlap, but was overshadowed in mutant fibres by an abundance of collagen and high variability in mechanics. However, titin force enhancement could be measured in all control fibers and most mutant fibres following short stretches, accounting for ∼25% of the total stress following active stretch. Our results show that the partial loss of titin force enhancement in myofibrils is not preserved in all mutant fibres and this mutation likely affects fibres differentially within a muscle. An increase in collagen helps to reestablish total force at long sarcomere lengths with the loss in titin force enhancement in some mutant fibres, increasing the overall strength of mutant fibres.
Collapse
Affiliation(s)
- Krysta Powers
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| | - Venus Joumaa
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| | - Azim Jinha
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| | - Eng Kuan Moo
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| | - Ian Curtis Smith
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver Street, Biological Sciences (Building 21), Flagstaff, AZ USA, 86001
| | - Walter Herzog
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada, T2N 1N4
| |
Collapse
|
42
|
Hessel AL, Nishikawa KC. Effects of a titin mutation on negative work during stretch-shortening cycles in skeletal muscles. J Exp Biol 2017; 220:4177-4185. [DOI: 10.1242/jeb.163204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023]
Abstract
Negative work occurs in muscles during braking movements such as downhill walking or landing after a jump. When performing negative work during stretch-shortening cycles, viscoelastic structures within muscles store energy during stretch, return a fraction of this energy during shortening, and dissipate the remaining energy as heat. Because tendons and extracellular matrix are relatively elastic rather than viscoelastic, energy is mainly dissipated by cross bridges and titin. Recent studies demonstrate that titin stiffness increases in active skeletal muscles, suggesting that titin contributions to negative work may have been underestimated in previous studies. The muscular dystrophy with myositis (mdm) mutation in mice results in a deletion in titin that leads to reduced titin stiffness in active muscle, providing an opportunity to investigate the contribution of titin to negative work in stretch-shortening cycles. Using the work loop technique, extensor digitorum longus and soleus muscles from mdm and wild type mice were stimulated during the stretch phase of stretch-shortening cycles to investigate negative work. The results demonstrate that, compared to wild type muscles, negative work is reduced in muscles from mdm mice. We suggest that changes in the viscoelastic properties of mdm titin reduce energy storage by muscles during stretch and energy dissipation during shortening. Maximum isometric stress is also reduced in muscles from mdm mice, possibly due to impaired transmission of cross bridge force, impaired cross bridge function, or both. Functionally, the reduction in negative work could lead to increased muscle damage during eccentric contractions that occur during braking movements.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, PO Box 4185, Flagstaff, AZ 86011, USA
| | - Kiisa C. Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, PO Box 4185, Flagstaff, AZ 86011, USA
| |
Collapse
|
43
|
Importance of contraction history on muscle force of porcine urinary bladder smooth muscle. Int Urol Nephrol 2016; 49:205-214. [DOI: 10.1007/s11255-016-1482-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
|
44
|
Colombini B, Nocella M, Bagni MA. Non-crossbridge stiffness in active muscle fibres. ACTA ACUST UNITED AC 2016; 219:153-60. [PMID: 26792325 DOI: 10.1242/jeb.124370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| |
Collapse
|
45
|
Theory for nonlinear dynamic force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:225-233. [PMID: 27461369 PMCID: PMC5346443 DOI: 10.1007/s00249-016-1158-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information on the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear manner. For example, bacterial adhesion pili and polymers with worm-like chain properties are structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work, we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory, we modeled a bio-complex expressed on a stiff, an elastic, and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found that the nonlinear DFS (NLDFS) theory correctly predicted the numerical results. We also present a protocol suggesting an experimental approach and analysis method of the data to estimate the bond length and the thermal off-rate.
Collapse
|
46
|
Does weightlifting increase residual force enhancement? J Biomech 2016; 49:2047-2052. [DOI: 10.1016/j.jbiomech.2016.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|
47
|
Heidlauf T, Klotz T, Rode C, Altan E, Bleiler C, Siebert T, Röhrle O. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction. Biomech Model Mechanobiol 2016; 15:1423-1437. [PMID: 26935301 DOI: 10.1007/s10237-016-0772-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin-myosin interactions, force enhancement based on actin-titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin's free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle's cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle's cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany.
| | - Thomas Klotz
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Christian Rode
- Institute of Motion Science, Friedrich-Schiller-University, Seidelstr. 20, 07749, Jena, Germany
| | - Ekin Altan
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Christian Bleiler
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| |
Collapse
|
48
|
Powers K, Nishikawa K, Joumaa V, Herzog W. Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin. J Exp Biol 2016; 219:1311-6. [DOI: 10.1242/jeb.132027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/17/2016] [Indexed: 01/23/2023]
Abstract
In the cross-bridge theory, contractile force is produced by cross-bridges that form between actin and myosin filaments. However, when a contracting muscle is stretched, its active force vastly exceeds the force that can be attributed to cross-bridges. This unexplained, enhanced force has been thought to originate in the giant protein titin, which becomes stiffer in actively compared to passively stretched sarcomeres by an unknown mechanism. We investigated this mechanism using a genetic mutation (mdm) with a small but crucial deletion in the titin protein. Myofibrils from normal and mdm mice were stretched from sarcomere lengths of 2.5 to 6.0 μm. Actively stretched myofibrils from normal mice were stiffer and generated more force than passive myofibrils at all sarcomere lengths. No increase in stiffness, and just a small increase in force, was observed in actively compared to passively stretched mdm myofibrils. These results are in agreement with the idea that titin force enhancement stiffens and stabilizes the sarcomere during contraction and that this mechanism is lost with the mdm mutation.
Collapse
Affiliation(s)
- Krysta Powers
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada T2N 1N4
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver Street, Biological Sciences, Building 21, Flagstaff, AZ USA 86001
| | - Venus Joumaa
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Human Performance Laboratory, KNB 404, 2500 University Dr. NW, Calgary, AB Canada T2N 1N4
| |
Collapse
|
49
|
Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations. PLoS One 2015; 10:e0121726. [PMID: 25880774 PMCID: PMC4400131 DOI: 10.1371/journal.pone.0121726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/15/2015] [Indexed: 12/02/2022] Open
Abstract
Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon.
Collapse
|
50
|
Schappacher-Tilp G, Leonard T, Desch G, Herzog W. A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One 2015; 10:e0117634. [PMID: 25816319 PMCID: PMC4376863 DOI: 10.1371/journal.pone.0117634] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/29/2014] [Indexed: 12/18/2022] Open
Abstract
We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.
Collapse
Affiliation(s)
| | - Timothy Leonard
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Gertrud Desch
- Department of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|