1
|
Lynn ML, Jimenez J, Castillo RL, Vasquez C, Klass MM, Baldo A, Kim A, Gibson C, Murphy AM, Tardiff JC. Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Circ Res 2024; 135:974-989. [PMID: 39328062 PMCID: PMC11502267 DOI: 10.1161/circresaha.124.325223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa L. Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Jesus Jimenez
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
| | - Romi L. Castillo
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Catherine Vasquez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Matthew M. Klass
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | - Anthony Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Andrew Kim
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Cyonna Gibson
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
- Department of Physiology, University of Arizona, Tucson, AZ
| |
Collapse
|
2
|
Vaniya A, Karlstaedt A, Gulkok D, Thottakara T, Liu Y, Fan S, Eades H, Vakrou S, Fukunaga R, Vernon HJ, Fiehn O, Abraham MR. Allele-specific dysregulation of lipid and energy metabolism in early-stage hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100073. [PMID: 39430912 PMCID: PMC11485168 DOI: 10.1016/j.jmccpl.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 10/22/2024]
Abstract
Introduction Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes that increase myocyte energy demand and lead to cardiac hypertrophy. However, it is unknown whether a common metabolic trait underlies cardiac phenotype at the early disease stage. To address this question and define cardiac biochemical pathology in early-stage HCM, we studied two HCM mouse models that express pathogenic variants in cardiac troponin T (Tnt2) or myosin heavy chain (Myh6) genes, and have marked differences in cardiac imaging phenotype, mitochondrial function at early disease stage. Methods We used a combination of echocardiography, transcriptomics, mass spectrometry-based untargeted metabolomics (GC-TOF, HILIC, CSH-QTOF), and computational modeling (CardioNet) to examine cardiac structural and metabolic remodeling at early disease stage (5 weeks of age) in R92W-TnT+/- and R403Q-MyHC+/- mutant mice. Data from mutants was compared with respective littermate controls (WT). Results Allele-specific differences in cardiac phenotype, gene expression and metabolites were observed at early disease stage. LV diastolic dysfunction was prominent in TnT mutants. Differentially-expressed genes in TnT mutant hearts were predominantly enriched in the Krebs cycle, respiratory electron transport, and branched-chain amino acid metabolism, whereas MyHC mutants were enriched in mitochondrial biogenesis, calcium homeostasis, and liver-X-receptor signaling. Both mutant hearts demonstrated significant alterations in levels of purine nucleosides, trisaccharides, dicarboxylic acids, acylcarnitines, phosphatidylethanolamines, phosphatidylinositols, ceramides and triglycerides; 40.4 % of lipids and 24.7 % of metabolites were significantly different in TnT mutants, whereas 10.4 % of lipids and 5.8 % of metabolites were significantly different in MyHC mutants. Both mutant hearts had a lower abundance of unsaturated long-chain acyl-carnitines (18:1, 18:2, 20:1), but only TnT mutants showed enrichment of FA18:0 in ceramide and cardiolipin species. CardioNet predicted impaired energy substrate metabolism and greater phospholipid remodeling in TnT mutants than in MyHC mutants. Conclusions Our systems biology approach revealed marked differences in metabolic remodeling in R92W-TnT and R403Q-MyHC mutant hearts, with TnT mutants showing greater derangements than MyHC mutants, at early disease stage. Changes in cardiolipin composition in TnT mutants could contribute to impairment of energy metabolism and diastolic dysfunction observed in this study, and predispose to energetic stress, ventricular arrhythmias under high workloads such as exercise.
Collapse
Affiliation(s)
- Arpana Vaniya
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Damla Gulkok
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Tilo Thottakara
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Hannah Eades
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hilary J. Vernon
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - M. Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
3
|
Sequeira V, Maack C, Reil GH, Reil JC. Exploring the Connection Between Relaxed Myosin States and the Anrep Effect. Circ Res 2024; 134:117-134. [PMID: 38175910 DOI: 10.1161/circresaha.123.323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Christoph Maack
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Germany (G.-H.R.)
| | - Jan-Christian Reil
- Klinik für Allgemeine und Interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R.)
| |
Collapse
|
4
|
Vaniya A, Karlstaedt A, Gulkok DA, Thottakara T, Liu Y, Fan S, Eades H, Fukunaga R, Vernon HJ, Fiehn O, Roselle Abraham M. Lipid metabolism drives allele-specific early-stage hypertrophic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.564562. [PMID: 38014251 PMCID: PMC10680657 DOI: 10.1101/2023.11.10.564562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.
Collapse
|
5
|
Lynn ML, Jimenez J, Castillo RL, Klass MM, Vasquez C, Baldo A, Gibson C, Murphy AM, Tardiff JC. The HCM - Linked Mutation Arg92Leu in TNNT2 Allosterically Alters the cTnC - cTnI Interface and Disrupts the PKA-mediated Regulation of Myofilament Relaxation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549569. [PMID: 37503299 PMCID: PMC10370115 DOI: 10.1101/2023.07.18.549569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca 2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort which suggests potential involvement of myofilament regulators of relaxation. Yet, a molecular level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cardiac troponin C-cardiac troponin I (cTnC-cTnI) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. Methods HCM mutations R92L-cTnT (Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo , in vitro, and in silico via 2D echocardiography, western blotting, ex vivo hemodynamics, stopped-flow kinetics, time resolved fluorescence resonance energy transfer (TR-FRET), and molecular dynamics simulations. Results The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset of diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D 23 D 24 ) was sufficient to recover diastolic function to Non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca 2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D 23 D 24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via TR-FRET revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing TR-FRET distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. Conclusion These data indicate that the early diastolic dysfunction observed in a subset of HCM is likely attributable to structural changes at the cTnC-cTnI interface that impair accessibility of PKA thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
|
6
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
8
|
He H, Mulhern RM, Oldham WM, Xiao W, Lin YD, Liao R, Loscalzo J. L-2-Hydroxyglutarate Protects Against Cardiac Injury via Metabolic Remodeling. Circ Res 2022; 131:562-579. [PMID: 36043417 PMCID: PMC9533473 DOI: 10.1161/circresaha.122.321227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND L-2-hydroxyglutarate (L2HG) couples mitochondrial and cytoplasmic energy metabolism to support cellular redox homeostasis. Under oxygen-limiting conditions, mammalian cells generate L2HG to counteract the adverse effects of reductive stress induced by hypoxia. Very little is known, however, about whether and how L2HG provides tissue protection from redox stress during low-flow ischemia (LFI) and ischemia-reperfusion injury. We examined the cardioprotective effects of L2HG accumulation against LFI and ischemia-reperfusion injury and its underlying mechanism using genetic mouse models. METHODS AND RESULTS L2HG accumulation was induced by homozygous (L2HGDH [L-2-hydroxyglutarate dehydrogenase]-/-) or heterozygous (L2HGDH+/-) deletion of the L2HGDH gene in mice. Hearts isolated from these mice and their wild-type littermates (L2HGDH+/+) were subjected to baseline perfusion and 90-minute LFI or 30-minute no-flow ischemia followed by 60- or 120-minute reperfusion. Using [13C]- and [31P]-NMR (nuclear magnetic resonance) spectroscopy, high-performance liquid chromatography, reverse transcription quantitative reverse transcription polymerase chain reaction, ELISA, triphenyltetrazolium staining, colorimetric/fluorometric spectroscopy, and echocardiography, we found that L2HGDH deletion induces L2HG accumulation at baseline and under stress conditions with significant functional consequences. In response to LFI or ischemia-reperfusion, L2HG accumulation shifts glucose flux from glycolysis towards the pentose phosphate pathway. These key metabolic changes were accompanied by enhanced cellular reducing potential, increased elimination of reactive oxygen species, attenuated oxidative injury and myocardial infarction, preserved cellular energy state, and improved cardiac function in both L2HGDH-/- and L2HGDH+/- hearts compared with L2HGDH+/+ hearts under ischemic stress conditions. CONCLUSION L2HGDH deletion-induced L2HG accumulation protects against myocardial injury during LFI and ischemia-reperfusion through a metabolic shift of glucose flux from glycolysis towards the pentose phosphate pathway. L2HG offers a novel mechanism for eliminating reactive oxygen species from myocardial tissue, mitigating redox stress, reducing myocardial infarct size, and preserving high-energy phosphates and cardiac function. Targeting L2HG levels through L2HGDH activity may serve as a new therapeutic strategy for cardiovascular diseases related to oxidative injury.
Collapse
Affiliation(s)
- Huamei He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ryan M Mulhern
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - William M Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Wusheng Xiao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Yi-Dong Lin
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ronglih Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially fatal form of idiopathic heart failure with variable prevalence across different countries and ethnic groups. The cause of PPCM is unclear, but environmental and genetic factors and pregnancy-associated conditions such as pre-eclampsia can contribute to the development of PPCM. Furthermore, animal studies have shown that impaired vascular and metabolic function might be central to the development of PPCM. A better understanding of the pathogenic mechanisms involved in the development of PPCM is necessary to establish new therapies that can improve the outcomes of patients with PPCM. Pregnancy hormones tightly regulate a plethora of maternal adaptive responses, including haemodynamic, structural and metabolic changes in the cardiovascular system. In patients with PPCM, the peripartum period is associated with profound and rapid hormonal fluctuations that result in a brief period of disrupted cardiovascular (metabolic) homeostasis prone to secondary perturbations. In this Review, we discuss the latest studies on the potential pathophysiological mechanisms of and risk factors for PPCM, with a focus on maternal cardiovascular changes associated with pregnancy. We provide an updated framework to further our understanding of PPCM pathogenesis, which might lead to an improvement in disease definition.
Collapse
|
10
|
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, Woldeyes RA, Koyano TT, Fong R, Ma N, Tian L, Traber GM, Chan F, Perrino J, Reddy S, Chiu W, Wu JC, Woo JY, Ruppel KM, Spudich JA, Snyder MP, Contrepois K, Bernstein D. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2021; 144:1714-1731. [PMID: 34672721 PMCID: PMC8608736 DOI: 10.1161/circulationaha.121.053575] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.
Collapse
Affiliation(s)
- Sara Ranjbarvaziri
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristina B. Kooiker
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Fajardo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alison Schroer Vander Roest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahel A. Woldeyes
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Ning Ma
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Lei Tian
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Gavin M. Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Frandics Chan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - John Perrino
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA, USA
| | - Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Joseph C. Wu
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Joseph Y. Woo
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Kathleen M. Ruppel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
12
|
Lavine KJ, Greenberg MJ. Beyond genomics-technological advances improving the molecular characterization and precision treatment of heart failure. Heart Fail Rev 2020; 26:405-415. [PMID: 32885327 DOI: 10.1007/s10741-020-10021-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure and cardiovascular mortality. In the past 20 years, there has been an overwhelming focus on developing therapeutics that target common downstream disease pathways thought to be involved in all forms of heart failure independent of the initial etiology. While this strategy is effective at the population level, individual responses vary tremendously and only approximately one third of patients receive benefit from modern heart failure treatments. In this perspective, we propose that DCM should be considered as a collection of diseases with a common phenotype of left ventricular dilation and systolic dysfunction rather than a single disease entity, and that mechanism-based classification of disease subtypes will revolutionize our understanding and clinical approach towards DCM. We discuss how these efforts are central to realizing the potential of precision medicine and how they are empowered by the development of new tools that allow investigators to strategically employ genomic and transcriptomic information. Finally, we outline an investigational strategy to (1) define DCM at the patient level, (2) develop new tools to model and mechanistically dissect subtypes of human heart failure, and (3) harness these insights for the development of precision therapeutics.
Collapse
Affiliation(s)
- Kory J Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8086, St. Louis, MO, 63110, USA.
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8231, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Zhao J, Conklin DJ, Guo Y, Zhang X, Obal D, Guo L, Jagatheesan G, Katragadda K, He L, Yin X, Prodhan MAI, Shah J, Hoetker D, Kumar A, Kumar V, Wempe MF, Bhatnagar A, Baba SP. Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) Increases Histidine Dipeptide Levels and Prevents Myocardial Ischemia Reperfusion Injury. J Am Heart Assoc 2020; 9:e015222. [PMID: 32515247 PMCID: PMC7429021 DOI: 10.1161/jaha.119.015222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy trans-2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury. METHODS AND RESULTS We report here that β-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury. Cardiospecific overexpression of ATPGD1 increased myocardial histidyl dipeptides levels and protected the heart from I/R injury. Isolated cardiac myocytes from ATPGD1-transgenic hearts were protected against hypoxia reoxygenation injury. The overexpression of ATPGD1 prevented the accumulation of acrolein and 4-hydroxy trans-2-nonenal-protein adducts in ischemic hearts and delayed acrolein or 4-hydroxy trans-2-nonenal-induced hypercontracture in isolated cardiac myocytes. Changes in the levels of ATP, high-energy phosphates, intracellular pH, and glycolysis during low-flow ischemia in the wild-type mice hearts were attenuated in the ATPGD1-transgenic hearts. Two natural dipeptide analogs (anserine and balenine) that can either quench aldehydes or buffer intracellular pH, but not both, failed to protect against I/R injury. CONCLUSIONS Either exogenous administration or enhanced endogenous formation of histidyl dipeptides prevents I/R injury by attenuating changes in intracellular pH and preventing the accumulation of lipid peroxidation derived aldehydes.
Collapse
Affiliation(s)
- Jingjing Zhao
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Daniel J. Conklin
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Yiru Guo
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of LouisvilleKY
| | - Xiang Zhang
- Department of ChemistryUniversity of LouisvilleKY
| | - Detlef Obal
- Department of Anesthesiology and Perioperative and Pain MedicineStanford UniversityPalo AltoCA
| | - Luping Guo
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Ganapathy Jagatheesan
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Kartik Katragadda
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Liqing He
- Department of ChemistryUniversity of LouisvilleKY
| | - Xinmin Yin
- Department of ChemistryUniversity of LouisvilleKY
| | | | - Jasmit Shah
- Department of MedicineThe Aga Khan UniversityMedical CollegeNairobiKenya
| | - David Hoetker
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Amit Kumar
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Vijay Kumar
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Michael F. Wempe
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Aruni Bhatnagar
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Shahid P. Baba
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| |
Collapse
|
14
|
Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165774. [PMID: 32217077 DOI: 10.1016/j.bbadis.2020.165774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
15
|
The relation between sarcomere energetics and the rate of isometric tension relaxation in healthy and diseased cardiac muscle. J Muscle Res Cell Motil 2019; 42:47-57. [PMID: 31745760 PMCID: PMC7932984 DOI: 10.1007/s10974-019-09566-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Full muscle relaxation happens when [Ca2+] falls below the threshold for force activation. Several experimental models, from whole muscle organs and intact muscle down to skinned fibers, have been used to explore the cascade of kinetic events leading to mechanical relaxation. The use of single myofibrils together with fast solution switching techniques, has provided new information about the role of cross-bridge (CB) dissociation in the time course of isometric force decay. Myofibril’s relaxation is biphasic starting with a slow seemingly linear phase, with a rate constant, slow kREL, followed by a fast mono-exponential phase. Sarcomeres remain isometric during the slow force decay that reflects CB detachment under isometric conditions while the final fast relaxation phase begins with a sudden give of few sarcomeres and is then dominated by intersarcomere dynamics. Based on a simple two-state model of the CB cycle, myofibril slow kREL represents the apparent forward rate with which CBs leave force generating states (gapp) under isometric conditions and correlates with the energy cost of tension generation (ATPase/tension ratio); in short slow kREL ~ gapp ~ tension cost. The validation of this relationship is obtained by simultaneously measuring maximal isometric force and ATP consumption in skinned myocardial strips that provide an unambiguous determination of the relation between contractile and energetic properties of the sarcomere. Thus, combining kinetic experiments in isolated myofibrils and mechanical and energetic measurements in multicellular cardiac strips, we are able to provide direct evidence for a positive linear correlation between myofibril isometric relaxation kinetics (slow kREL) and the energy cost of force production both measured in preparations from the same cardiac sample. This correlation remains true among different types of muscles with different ATPase activities and also when CB kinetics are altered by cardiomyopathy-related mutations. Sarcomeric mutations associated to hypertrophic cardiomyopathy (HCM), a primary cardiac disorder caused by mutations in genes encoding sarcomeric proteins, have been often found to accelerate CB turnover rate and increase the energy cost of myocardial contraction. Here we review data showing that faster CB detachment results in a proportional increase in the energetic cost of tension generation in heart samples from both HCM patients and mouse models of the disease.
Collapse
|
16
|
Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116:17831-17840. [PMID: 31427533 PMCID: PMC6731759 DOI: 10.1073/pnas.1910962116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility but also causes cellular hypertrophy and impairs cardiomyocytes' ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results help link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
17
|
Jiang J, Hoagland D, Palatinus JA, He H, Iyyathurai J, Jourdan LJ, Bultynck G, Wang Z, Zhang Z, Schey K, Poelzing S, McGowan FX, Gourdie RG. Interaction of α Carboxyl Terminus 1 Peptide With the Connexin 43 Carboxyl Terminus Preserves Left Ventricular Function After Ischemia-Reperfusion Injury. J Am Heart Assoc 2019; 8:e012385. [PMID: 31422747 PMCID: PMC6759879 DOI: 10.1161/jaha.119.012385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background α Carboxyl terminus 1 (αCT1) is a 25–amino acid therapeutic peptide incorporating the zonula occludens‐1 (ZO‐1)–binding domain of connexin 43 (Cx43) that is currently in phase 3 clinical testing on chronic wounds. In mice, we reported that αCT1 reduced arrhythmias after cardiac injury, accompanied by increases in protein kinase Cε phosphorylation of Cx43 at serine 368. Herein, we characterize detailed molecular mode of action of αCT1 in mitigating cardiac ischemia‐reperfusion injury. Methods and Results To study αCT1‐mediated increases in phosphorylation of Cx43 at serine 368, we undertook mass spectrometry of protein kinase Cε phosphorylation assay reactants. This indicated potential interaction between negatively charged residues in the αCT1 Asp‐Asp‐Leu‐Glu‐Iso sequence and lysines (Lys345, Lys346) in an α‐helical sequence (helix 2) within the Cx43‐CT. In silico modeling provided further support for this interaction, indicating that αCT1 may interact with both Cx43 and ZO‐1. Using surface plasmon resonance, thermal shift, and phosphorylation assays, we characterized a series of αCT1 variants, identifying peptides that interacted with either ZO‐1–postsynaptic density‐95/disks large/zonula occludens‐1 2 or Cx43‐CT, but with limited or no ability to bind both molecules. Only peptides competent to interact with Cx43‐CT, but not ZO‐1–postsynaptic density‐95/disks large/zonula occludens‐1 2 alone, prompted increased pS368 phosphorylation. Moreover, in an ex vivo mouse model of ischemia‐reperfusion injury, preischemic infusion only with those peptides competent to bind Cx43 preserved ventricular function after ischemia‐reperfusion. Interestingly, a short 9–amino acid variant of αCT1 (αCT11) demonstrated potent cardioprotective effects when infused either before or after ischemic injury. Conclusions Interaction of αCT1 with the Cx43, but not ZO‐1, is correlated with cardioprotection. Pharmacophores targeting Cx43‐CT could provide a translational approach to preserving heart function after ischemic injury.
Collapse
Affiliation(s)
- Jingbo Jiang
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Shenzhen Children's Hospital Shenzhen China.,Department of Pediatric Cardiology Guangdong Cardiovascular Institute Guangdong General Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Daniel Hoagland
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA
| | - Joseph A Palatinus
- Cedars-Sinai Heart Smidt Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Huamei He
- Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia and University of Pennsylvania Philadelphia PA
| | - Jegan Iyyathurai
- Department Cellular and Molecular Medicine KU Leuven Laboratory of Molecular and Cellular Signaling Leuven Belgium
| | - L Jane Jourdan
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA
| | - Geert Bultynck
- Department Cellular and Molecular Medicine KU Leuven Laboratory of Molecular and Cellular Signaling Leuven Belgium
| | - Zhen Wang
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN
| | - Zhiwei Zhang
- Department of Pediatric Cardiology Guangdong Cardiovascular Institute Guangdong General Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Kevin Schey
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Department of Biomedical Engineering and Mechanics Virginia Tech Blacksburg VA
| | - Francis X McGowan
- Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia and University of Pennsylvania Philadelphia PA
| | - Robert G Gourdie
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Department of Biomedical Engineering and Mechanics Virginia Tech Blacksburg VA
| |
Collapse
|
18
|
van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, Hilfiker-Kleiner D, Hamdani N, Leite-Moreira AF, Mayr M, Falcão-Pires I, Thum T, Dawson DK, Balligand JL, Heymans S. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1273-1280. [PMID: 29912308 PMCID: PMC6054261 DOI: 10.1093/cvr/cvy147] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an overview of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies, which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy. This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medical School Hannover, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre & King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Ines Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
19
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
20
|
Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 2019; 593:1616-1626. [PMID: 31209876 DOI: 10.1002/1873-3468.13496] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy and is mainly caused by mutations of genes encoding cardiac sarcomeric proteins. HCM is characterized by hypertrophy of the left ventricle, frequently involving the septum, that is not explained solely by loading conditions. HCM has a heterogeneous clinical profile, but diastolic dysfunction and ventricular arrhythmias represent two dominant features of the disease. Preclinical evidence indicates that the enhanced Calcium (Ca2+ ) sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric mutations, but can also result from secondary mutation-driven alterations. Here, we review experimental and clinical evidence indicating that increased myofilament Ca2+ sensitivity lies upstream of numerous cellular derangements which potentially contribute to the progression of HCM toward heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| |
Collapse
|
21
|
Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems. Pflugers Arch 2019; 471:661-671. [PMID: 30848350 DOI: 10.1007/s00424-019-02269-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
The classic clinical definition of hypertrophic cardiomyopathy (HCM) as originally described by Teare is deceptively simple, "left ventricular hypertrophy in the absence of any identifiable cause." Longitudinal studies, however, including a seminal study performed by Frank and Braunwald in 1968, clearly described the disorder much as we know it today, a complex, progressive, and highly variable cardiomyopathy affecting ~ 1/500 individuals worldwide. Subsequent genetic linkage studies in the early 1990s identified mutations in virtually all of the protein components of the cardiac sarcomere as the primary molecular cause of HCM. In addition, a substantial proportion of inherited dilated cardiomyopathy (DCM) has also been linked to sarcomeric protein mutations. Despite our deep understanding of the overall function of the sarcomere as the primary driver of cardiac contractility, the ability to use genotype in patient management remains elusive. A persistent challenge in the field from both the biophysical and clinical standpoints is how to rigorously link high-resolution protein dynamics and mechanics to the long-term cardiovascular remodeling process that characterizes these complex disorders. In this review, we will explore the depth of the problem from both the standpoint of a multi-subunit, highly conserved and dynamic "machine" to the resultant clinical and structural human phenotype with an emphasis on new, integrative approaches that can be widely applied to identify both novel disease mechanisms and new therapeutic targets for these primary biophysical disorders of the cardiac sarcomere.
Collapse
|
22
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
23
|
Piroddi N, Witjas-Paalberends ER, Ferrara C, Ferrantini C, Vitale G, Scellini B, Wijnker PJM, Sequiera V, Dooijes D, Dos Remedios C, Schlossarek S, Leung MC, Messer A, Ward DG, Biggeri A, Tesi C, Carrier L, Redwood CS, Marston SB, van der Velden J, Poggesi C. The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM. J Gen Physiol 2018; 151:18-29. [PMID: 30578328 PMCID: PMC6314385 DOI: 10.1085/jgp.201812160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomeric proteins, but the pathogenic mechanism is unclear. Piroddi et al. find impairment of cross-bridge kinetics and energetics in human sarcomeres with a TNNT2 mutation, suggesting that HCM involves inefficient ATP utilization. Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (kACT) and the rate constant of isometric relaxation (slow kREL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces kACT, slow kREL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases kACT, slow kREL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Nicoletta Piroddi
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy
| | - E Rosalie Witjas-Paalberends
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Claudia Ferrara
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy.,LENS, Sesto Fiorentino (Firenze), Florence, Italy
| | - Giulia Vitale
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy
| | - Beatrice Scellini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy
| | - Paul J M Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vasco Sequiera
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Dennis Dooijes
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Clinical Genetics, University Medical Center, Utrecht, Netherlands
| | - Cristobal Dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Man Ching Leung
- National Heart and Lung Institute, Imperial College, London, England, UK
| | - Andrew Messer
- National Heart and Lung Institute, Imperial College, London, England, UK
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Chiara Tesi
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | | | - Steven B Marston
- National Heart and Lung Institute, Imperial College, London, England, UK
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,Clinical Genetics, University Medical Center, Utrecht, Netherlands.,ICIN-Netherlands, Heart Institute, Utrecht, Netherlands
| | - Corrado Poggesi
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Florence, Italy .,LENS, Sesto Fiorentino (Firenze), Florence, Italy
| |
Collapse
|
24
|
Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018; 5:120. [PMID: 30283789 PMCID: PMC6156537 DOI: 10.3389/fcvm.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ann Wang
- InvivoSciences Inc., Madison, WI, United States
| | | | | |
Collapse
|
25
|
Regnier M. Mechanistic complexity of contractile dysfunction in hypertrophic cardiomyopathy. J Gen Physiol 2018; 150:1051-1053. [PMID: 30037852 PMCID: PMC6080894 DOI: 10.1085/jgp.201812091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reflections on recent work providing mechanistic insight into the pathological effects of a cardiac troponin T mutation.
Collapse
|
26
|
Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, O'Rourke B, Aon MA, Abraham MR. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 2018; 3:94493. [PMID: 29563334 DOI: 10.1172/jci.insight.94493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation-bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti-TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lars Sorensen
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kirubel Woldemichael
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roberto Pineda-Reyes
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill C Tardiff
- Department of Internal Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - M Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| |
Collapse
|
27
|
Gilda JE, Gomes AV. Proteasome dysfunction in cardiomyopathies. J Physiol 2017; 595:4051-4071. [PMID: 28181243 DOI: 10.1113/jp273607] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in removing unwanted intracellular proteins and is involved in protein quality control, signalling and cell death. Because the heart is subject to continuous metabolic and mechanical stress, the proteasome plays a particularly important role in the heart, and proteasome dysfunction has been suggested as a causative factor in cardiac dysfunction. Proteasome impairment has been detected in cardiomyopathies, heart failure, myocardial ischaemia, and hypertrophy. Proteasome inhibition is also sufficient to cause cardiac dysfunction in healthy pigs, and patients using a proteasome inhibitor for cancer therapy have a higher incidence of heart failure. In this Topical Review we discuss the experimental data which suggest UPS dysfunction is a common feature of cardiomyopathies, with an emphasis on hypertrophic cardiomyopathy caused by sarcomeric mutations. We also propose potential mechanisms by which cardiomyopathy-causing mutations may lead to proteasome impairment, such as altered calcium handling and increased oxidative stress due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA.,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
28
|
Gilda JE, Lai X, Witzmann FA, Gomes AV. Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations. Mol Cell Proteomics 2016; 15:1962-81. [PMID: 27022107 DOI: 10.1074/mcp.m115.057380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca(2+) sensitivity of the myofilament; however, the R278C mutation does not alter Ca(2+) sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism.
Collapse
Affiliation(s)
| | - Xianyin Lai
- ¶Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Frank A Witzmann
- ¶Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Aldrin V Gomes
- From the ‡Department of Neurobiology, Physiology, and Behavior, §Department of Physiology and Membrane Biology, University of California, Davis, California 95616;
| |
Collapse
|
29
|
Abstract
Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca(2+) binding strength and the energy required to remove Ca(2+) from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca(2+) dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca(2+) ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design.
Collapse
|
30
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
31
|
Sequeira V, Najafi A, McConnell M, Fowler ED, Bollen IAE, Wüst RCI, dos Remedios C, Helmes M, White E, Stienen GJM, Tardiff J, Kuster DWD, van der Velden J. Synergistic role of ADP and Ca(2+) in diastolic myocardial stiffness. J Physiol 2015; 593:3899-916. [PMID: 26096258 DOI: 10.1113/jp270354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023] Open
Abstract
Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca(2+) ] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca(2+) ] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca(2+) handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca(2+) ] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca(2+) in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca(2+) both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca(2+) ] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca(2+) overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca(2+) ]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca(2+) , and thereby increase myocardial stiffness.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Aref Najafi
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mark McConnell
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ewan D Fowler
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ilse A E Bollen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney, Australia
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ed White
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Jil Tardiff
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Diederik W D Kuster
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
32
|
Vakrou S, Abraham MR. Hypertrophic cardiomyopathy: a heart in need of an energy bar? Front Physiol 2014; 5:309. [PMID: 25191275 PMCID: PMC4137386 DOI: 10.3389/fphys.2014.00309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) has been recently recognized as the most common inherited cardiovascular disorder, affecting 1 in 500 adults worldwide. HCM is characterized by myocyte hypertrophy resulting in thickening of the ventricular wall, myocyte disarray, interstitial and/or replacement fibrosis, decreased ventricular cavity volume and diastolic dysfunction. HCM is also the most common cause of sudden death in the young. A large proportion of patients diagnosed with HCM have mutations in sarcomeric proteins. However, it is unclear how these mutations lead to the cardiac phenotype, which is variable even in patients carrying the same causal mutation. Abnormalities in calcium cycling, oxidative stress, mitochondrial dysfunction and energetic deficiency have been described constituting the basis of therapies in experimental models of HCM and HCM patients. This review focuses on evidence supporting the role of cellular metabolism and mitochondria in HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - M Roselle Abraham
- Division of Cardiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
33
|
Ingwall JS. The energetic cost of contraction is higher in the myocardium of patients with hypertrophic cardiomyopathy. Cardiovasc Res 2014; 103:192-3. [PMID: 24935429 DOI: 10.1093/cvr/cvu145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joanne S Ingwall
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Witjas-Paalberends ER, Güçlü A, Germans T, Knaapen P, Harms HJ, Vermeer AMC, Christiaans I, Wilde AAM, Dos Remedios C, Lammertsma AA, van Rossum AC, Stienen GJM, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 2014; 103:248-57. [PMID: 24835277 DOI: 10.1093/cvr/cvu127] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic cost of contraction in the development of human HCM disease. METHODS AND RESULTS Energetic cost of contraction was studied in vitro by measurements of force development and ATPase activity in cardiac muscle strips from 26 manifest HCM patients (11 MYBPC3mut, 9 MYH7mut, and 6 sarcomere mutation-negative, HCMsmn). In addition, in vivo, the ratio between external work (EW) and myocardial oxygen consumption (MVO2) to obtain myocardial external efficiency (MEE) was determined in 28 pre-hypertrophic mutation carriers (14 MYBPC3mut and 14 MYH7mut) and 14 healthy controls using [(11)C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Tension cost (TC), i.e. ATPase activity during force development, was higher in MYBPC3mut and MYH7mut compared with HCMsmn at saturating [Ca(2+)]. TC was also significantly higher in MYH7mut at submaximal, more physiological [Ca(2+)]. EW was significantly lower in both mutation carrier groups, while MVO2 did not differ. MEE was significantly lower in both mutation carrier groups compared with controls, showing the lowest efficiency in MYH7 mutation carriers. CONCLUSION We provide direct evidence that sarcomere mutations perturb the energetic cost of cardiac contraction. Gene-specific severity of cardiac abnormalities may underlie differences in disease onset and suggests that early initiation of metabolic treatment may be beneficial, in particular, in MYH7 mutation carriers.
Collapse
Affiliation(s)
- E Rosalie Witjas-Paalberends
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Ahmet Güçlü
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hendrik J Harms
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Alexa M C Vermeer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cris Dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, University of Sydney, Sydney, Australia
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | | | - Arend F Schinkel
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michelle Michels
- Thorax Center, Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Cardiology, Boston, MA, USA
| | - Corrado Poggesi
- Department of Physiology, University of Florence, Florence, Italy
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
35
|
Poggesi C, Ho CY. Muscle dysfunction in hypertrophic cardiomyopathy: what is needed to move to translation? J Muscle Res Cell Motil 2014; 35:37-45. [PMID: 24493262 DOI: 10.1007/s10974-014-9374-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/02/2014] [Indexed: 02/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere genes. As such, HCM provides remarkable opportunities to study how changes to the heart's molecular motor apparatus may influence cardiac structure and function. Although the genetic basis of HCM is well-described, there is much more limited understanding of the precise consequences of sarcomere mutations--how they remodel the heart, and how these changes lead to the dramatic clinical consequences associated with HCM. More precise characterization of the mechanisms leading from sarcomere mutation to altered cardiac muscle function is critical to gain insight into fundamental disease biology and phenotypic evolution. Such knowledge will help foster development of novel treatment strategies aimed at correcting and preventing disease development in HCM.
Collapse
Affiliation(s)
- Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 63, 50134, Florence, Italy,
| | | |
Collapse
|
36
|
He H, Tao H, Xiong H, Duan SZ, McGowan FX, Mortensen RM, Balschi JA. Rosiglitazone causes cardiotoxicity via peroxisome proliferator-activated receptor γ-independent mitochondrial oxidative stress in mouse hearts. Toxicol Sci 2014; 138:468-81. [PMID: 24449420 DOI: 10.1093/toxsci/kfu015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aims to test the hypothesis that thiazolidinedione rosiglitazone (RSG), a selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, causes cardiotoxicity independently of PPARγ. Energy metabolism and mitochondrial function were measured in perfused hearts isolated from C57BL/6, cardiomyocyte-specific PPARγ-deficient mice, and their littermates. Cardiac function and mitochondrial oxidative stress were measured in both in vitro and in vivo settings. Treatment of isolated hearts with RSG at the supratherapeutic concentrations of 10 and 30 μM caused myocardial energy deficiency as evidenced by the decreases in [PCr], [ATP], ATP/ADP ratio, energy charge with a concomitant cardiac dysfunction as indicated by the decreases in left ventricular systolic pressure, rates of tension development and relaxation, and by an increase in end-diastolic pressure. When incubated with tissue homogenate or isolated mitochondria at these same concentrations, RSG caused mitochondrial dysfunction as evidenced by the decreases in respiration rate, substrate oxidation rates, and activities of complexes I and IV. RSG also increased complexes I- and III-dependent O₂⁻ production, decreased glutathione content, inhibited superoxide dismutase, and increased the levels of malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine in mitochondria, consistent with oxidative stress. N-acetyl-L-cysteine (NAC) 20 mM prevented RSG-induced above toxicity at those in vitro settings. Cardiomyocyte-specific PPARγ deletion and PPARγ antagonist GW9662 did not prevent the observed cardiotoxicity. Intravenous injection of 10 mg/kg RSG also caused cardiac dysfunction and oxidative stress, 600 mg/kg NAC antagonized these adverse effects. In conclusion, this study demonstrates that RSG at supratherapeutic concentrations causes cardiotoxicity via a PPARγ-independent mechanism involving oxidative stress-induced mitochondrial dysfunction in mouse hearts.
Collapse
Affiliation(s)
- Huamei He
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
37
|
Xiong D, He H, James J, Tokunaga C, Powers C, Huang Y, Osinska H, Towbin JA, Purevjav E, Balschi JA, Javadov S, McGowan FX, Strauss AW, Khuchua Z. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance. Am J Physiol Heart Circ Physiol 2013; 306:H326-38. [PMID: 24285112 DOI: 10.1152/ajpheart.00931.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD(-/-)) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD(-/-) mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions.
Collapse
Affiliation(s)
- Dingding Xiong
- Heart Institute of Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Song W, Vikhorev PG, Kashyap MN, Rowlands C, Ferenczi MA, Woledge RC, MacLeod K, Marston S, Curtin NA. Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2013; 304:H1513-24. [PMID: 23604709 DOI: 10.1152/ajpheart.00951.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the contractile performance of papillary muscle from a mouse model of hypertrophic cardiomyopathy [α-cardiac actin (ACTC) E99K mutation] with nontransgenic (non-TG) littermates. In isometric twitches, ACTC E99K papillary muscle produced three to four times greater force than non-TG muscle under the same conditions independent of stimulation frequency and temperature, whereas maximum isometric force in myofibrils from these muscles was not significantly different. ACTC E99K muscle relaxed slower than non-TG muscle in both papillary muscle (1.4×) and myofibrils (1.7×), whereas the rate of force development after stimulation was the same as non-TG muscle for both electrical stimulation in intact muscle and after a Ca²⁺ jump in myofibrils. The EC₅₀ for Ca²⁺ activation of force in myofibrils was 0.39 ± 0.33 μmol/l in ACTC E99K myofibrils and 0.80 ± 0.11 μmol/l in non-TG myofibrils. There were no significant differences in the amplitude and time course of the Ca²⁺ transient in myocytes from ACTC E99K and non-TG mice. We conclude that hypercontractility is caused by higher myofibrillar Ca²⁺ sensitivity in ACTC E99K muscles. Measurement of the energy (work + heat) released in actively cycling heart muscle showed that for both genotypes, the amount of energy turnover increased with work done but with decreasing efficiency as energy turnover increased. Thus, ACTC E99K mouse heart muscle produced on average 3.3-fold more work than non-TG muscle, and the cost in terms of energy turnover was disproportionately higher than in non-TG muscles. Efficiency for ACTC E99K muscle was in the range of 11-16% and for non-TG muscle was 15-18%.
Collapse
Affiliation(s)
- Weihua Song
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tardiff JC. It's never too early to look: subclinical disease in sarcomeric dilated cardiomyopathy. ACTA ACUST UNITED AC 2013; 5:483-6. [PMID: 23074334 DOI: 10.1161/circgenetics.112.964817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
He H, Hoyer K, Tao H, Rice R, Jimenez J, Tardiff JC, Ingwall JS. Myosin-driven rescue of contractile reserve and energetics in mouse hearts bearing familial hypertrophic cardiomyopathy-associated mutant troponin T is mutation-specific. J Physiol 2012; 590:5371-88. [PMID: 22907055 DOI: 10.1113/jphysiol.2012.234252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The thin filament protein troponin T (TnT) is a regulator of sarcomere function. Whole heart energetics and contractile reserve are compromised in transgenic mice bearing missense mutations at R92 within the tropomyosin-binding domain of cTnT, despite being distal to the ATP hydrolysis domain of myosin. These mutations are associated with familial hypertrophic cardiomyopathy (FHC). Here we test the hypothesis that genetically replacing murine αα-MyHC with murine ββ-MyHC in hearts bearing the R92Q cTnT mutation, a particularly lethal FHC-associated mutation, leads to sufficiently large perturbations in sarcomere function to rescue whole heart energetics and decrease the cost of contraction. By comparing R92Q cTnT and R92L cTnT mutant hearts, we also test whether any rescue is mutation-specific. We defined the energetic state of the isolated perfused heart using (31)P-NMR spectroscopy while simultaneously measuring contractile performance at four work states. We found that the cost of increasing contraction in intact mouse hearts with R92Q cTnT depends on the type of myosin present in the thick filament. We also found that the salutary effect of this manoeuvre is mutation-specific, demonstrating the major regulatory role of cTnT on sarcomere function at the whole heart level.
Collapse
Affiliation(s)
- Huamei He
- NMR Laboratory for Physiological Chemistry, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pound KM, Arteaga GM, Fasano M, Wilder T, Fischer SK, Warren CM, Wende AR, Farjah M, Abel ED, Solaro RJ, Lewandowski ED. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia. J Mol Cell Cardiol 2011; 51:236-43. [PMID: 21640727 DOI: 10.1016/j.yjmcc.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/26/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 min of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP versus 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. This article is part of a Special Issue entitled "Possible Editorial".
Collapse
Affiliation(s)
- Kayla M Pound
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research and Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Sixteen years ago, mutations in cardiac troponin (Tn)T and α-tropomyosin were linked to familial hypertrophic cardiomyopathy, thus transforming the disorder from a disease of the β-myosin heavy chain to a disease of the cardiac sarcomere. From the outset, studies suggested that mutations in the regulatory thin filament caused a complex, heterogeneous pattern of ventricular remodeling with wide variations in clinical expression. To date, the clinical heterogeneity is well matched by an extensive array of nearly 100 independent mutations in all components of the cardiac thin filament. Significant advances in our understanding of the biophysics of myofilament activation, coupled to the emerging evidence that thin filament linked cardiomyopathies are progressive, suggests that a renewed focus on the most proximal events in both the molecular and clinical pathogenesis of the disease will be necessary to achieve the central goal of using genotype information to manage affected patients. In this review, we examine the existing biophysical and clinical evidence in support of a more proximal definition of thin filament cardiomyopathies. In addition, new high-resolution, integrated approaches are presented to help define the way forward as the field works toward developing a more robust link between genotype and phenotype in this complex disorder.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Adult Cardiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, Lin RZ, Melero-Martin JM, Dolmatova E, Duffy HS, Gise AV, Zhou P, Hu YW, Wang G, Zhang B, Wang L, Hall JL, Moses MA, McGowan FX, Pu WT. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 2011; 121:1894-904. [PMID: 21505261 DOI: 10.1172/jci45529] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/23/2011] [Indexed: 12/15/2022] Open
Abstract
The epicardium makes essential cellular and paracrine contributions to the growth of the fetal myocardium and the formation of the coronary vasculature. However, whether the epicardium has similar roles postnatally in the normal and injured heart remains enigmatic. Here, we have investigated this question using genetic fate-mapping approaches in mice. In uninjured postnatal heart, epicardial cells were quiescent. Myocardial infarction increased epicardial cell proliferation and stimulated formation of epicardium-derived cells (EPDCs), which remained in a thickened layer on the surface of the heart. EPDCs did not adopt cardiomyocyte or coronary EC fates, but rather differentiated into mesenchymal cells expressing fibroblast and smooth muscle cell markers. In vitro and in vivo assays demonstrated that EPDCs secreted paracrine factors that strongly promoted angiogenesis. In a myocardial infarction model, EPDC-conditioned medium reduced infarct size and improved heart function. Our findings indicate that epicardium modulates the cardiac injury response by conditioning the subepicardial environment, potentially offering a new therapeutic strategy for cardiac protection.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Cardiology, Children’s Hospital Boston, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Frazier AH, Ramirez-Correa GA, Murphy AM. Molecular mechanisms of sarcomere dysfunction in dilated and hypertrophic cardiomyopathy. PROGRESS IN PEDIATRIC CARDIOLOGY 2011; 31:29-33. [PMID: 21297871 PMCID: PMC3032173 DOI: 10.1016/j.ppedcard.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sarcomeres form the molecular motor of the cardiomyocyte and consist of a complex multi-protein of thick and thin filaments which are anchored to the cytoskeleton. The thick filament, composed of myosin and associated proteins, and the thin filament composed of actin, tropomyosin and the troponins develop actinmyosin crossbridges which cycle in response to calcium resulting in sliding of the filaments and contraction. The thin filament in fixed to the cardiomyocyte cytoskeleton at the Z-disc, a complex of structural and regulatory proteins. A giant protein, titin, provides an external scaffold and regulates passive force in diastole. Both genetic disorders and acquired conditions may affect proteins of the sarcomere. Genetic disorders of the thick and thin filament proteins are the predominant cause of hypertrophic cardiomyopathy. These mutations lead to abnormal sarcomere function, often an enhanced sensitivity to calcium, and impaired relaxation. This may result in secondary changes in calcium cycling and amplification of hypertrophic signaling cascades. Correcting the abnormal function of the sarcomere as well as intervening in later stages of the pathophysiologic cascades may ameliorate disease. In dilated cardiomyopathy genetic abnormalities in the sarcomere, Z-disc, calcium regulatory and cytoskeletal proteins as well as the dystrophin complex may be causal for disease. In dilated cardiomyopathy, disturbances in post-translational modifications of the sarcomere my also play a prominent role. Experimental models indicate that altered phosphorylation of sarcomeric proteins may impair systolic and diastolic function as well as the response to heart rate and afterload. Thus correcting these post-translational changes are legitimate targets for future therapeutic strategies for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Aisha H Frazier
- Departments of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
45
|
Xu Q, Dewey S, Nguyen S, Gomes AV. Malignant and benign mutations in familial cardiomyopathies: Insights into mutations linked to complex cardiovascular phenotypes. J Mol Cell Cardiol 2010; 48:899-909. [DOI: 10.1016/j.yjmcc.2010.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/01/2010] [Accepted: 03/06/2010] [Indexed: 12/17/2022]
|
46
|
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 2009; 48:882-92. [PMID: 19914256 DOI: 10.1016/j.yjmcc.2009.10.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
Abstract
Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.
Collapse
Affiliation(s)
- Ruth H Willott
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
47
|
Shen W, Vatner DE, Vatner SF, Ingwall JS. Progressive loss of creatine maintains a near normal DeltaG approximately (ATP) in transgenic mouse hearts with cardiomyopathy caused by overexpressing Gsalpha. J Mol Cell Cardiol 2009; 48:591-9. [PMID: 19913550 DOI: 10.1016/j.yjmcc.2009.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/16/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
Myocardial [ATP] falls in the failing heart. One potential compensatory mechanism for maintaining a near normal free energy of ATP hydrolysis (DeltaG approximately (ATP)), despite a fall in [ATP], may be the reduction of myocardial creatine (Cr). To test this, we conducted a longitudinal study using transgenic mice overexpressing cardiac Gsalpha, which slowly developed cardiomyopathy. Myocardial energetics measured using (31)P NMR spectroscopy and isovolumic contractile performance were determined in perfused hearts isolated from 5-, 10-, 17-month-old Gsalpha and age-matched littermate wild type (WT) mice. In young Gsalpha hearts, contractile performance was enhanced with near normal cardiac energetics. With age, as contractile performance progressively decreased in Gsalpha hearts, [ATP] and [PCr] progressively decreased while [Pi] increased only modestly; no changes were observed in WT hearts. Myocardial (but not skeletal) [Cr] in Gsalpha mice decreased, beginning at an early age (1.5 months). Consequently, cytosolic [ADP] and the free energy available from ATP hydrolysis were maintained at normal levels in Gsalpha hearts, despite decreased [ATP]. During increased cardiac work caused by supplying isoproterenol, the relationship between the rate pressure product (RPP) and DeltaG approximately (ATP) in Gsalpha mouse hearts demonstrated an increased cost of contraction in failing hearts. Thus, our results suggest that the decrease of myocardial [Cr] and net Pi efflux play compensatory roles by maintaining a nearly normal free energy of ATP hydrolysis in the dysfunctional heart; however, it also increased the cost of contraction, which may contribute to the lower contractile reserve in the failing heart.
Collapse
Affiliation(s)
- Weiqun Shen
- NMR Laboratory for Physiological Chemistry, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
48
|
Mechanical and Energetic Consequences of HCM-Causing Mutations. J Cardiovasc Transl Res 2009; 2:441-51. [DOI: 10.1007/s12265-009-9131-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
49
|
Lombardi R, Bell A, Senthil V, Sidhu J, Noseda M, Roberts R, Marian AJ. Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovasc Res 2008; 79:109-17. [PMID: 18349139 DOI: 10.1093/cvr/cvn078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM Mutations in a sarcomeric protein can cause hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM), the opposite ends of a spectrum of phenotypic responses of the heart to mutations. We posit the contracting phenotypes could result from differential effects of the mutant proteins on interactions among the sarcomeric proteins. To test the hypothesis, we generated transgenic mice expressing either cardiac troponin T (cTnT)-Q92 or cTnT-W141, known to cause HCM and DCM, respectively, in the heart. METHODS AND RESULTS We phenotyped the mice by echocardiography, histology and immunoblotting, and real-time polymerase chain reaction. We detected interactions between the sarcomeric proteins by co-immunoprecipitation and determined Ca2+ sensitivity of myofibrillar protein ATPase activity by Carter assay. The cTnT-W141 mice exhibited dilated hearts and decreased systolic function. In contrast, the cTnT-Q92 mice showed smaller ventricles and enhanced systolic function. Levels of cardiac troponin I, cardiac alpha-actin, alpha-tropomyosin, and cardiac troponin C co-immunoprecipitated with anti-cTnT antibodies were higher in the cTnT-W141 than in the cTnT-Q92 mice, as were levels of alpha-tropomyosin co-immunoprecipitated with an anti-cardiac alpha-actin antibody. In contrast, levels of cardiac troponin I co-immunoprecipitated with an anti-cardiac alpha-actin antibody were higher in the cTnT-Q92 mice. Ca2+ sensitivity of myofibrillar ATPase activity was increased in HCM but decreased in DCM mice compared with non-transgenic mice. CONCLUSION Differential interactions among the sarcomeric proteins containing cTnT-Q92 or cTnT-W141 are responsible for the contrasting phenotypes of HCM or DCM, respectively.
Collapse
Affiliation(s)
- Raffaella Lombardi
- Center for Cardiovascular Genetic Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|