1
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
2
|
Hyun J, Chang R. Penetration of
C
60
into lung surfactant membranes: Molecular dynamics simulation studies. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiyeon Hyun
- Department of Physics University of Seoul Seoul South Korea
| | - Rakwoo Chang
- Department of Applied Chemistry University of Seoul Seoul South Korea
| |
Collapse
|
3
|
Hossain SI, Islam MZ, Saha SC, Deplazes E. Drug Meets Monolayer: Understanding the Interactions of Sterol Drugs with Models of the Lung Surfactant Monolayer Using Molecular Dynamics Simulations. Methods Mol Biol 2022; 2402:103-121. [PMID: 34854039 DOI: 10.1007/978-1-0716-1843-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lung surfactant monolayer (LSM) is a thin layer of lipids and proteins that forms the air/water interface of the alveoli. The primary function of the LSM is to reduce the surface tension at the air/water interface during breathing. The LSM also forms the main biological barrier for any inhaled particles, including drugs, to treat lung diseases. Elucidating the mechanism by which these drugs bind to and absorb into the LSM requires a molecular-level understanding of any drug-induced changes to the morphology, structure, and phase changes of the LSM.Molecular dynamics simulations have been used extensively to study the structure and dynamics of the LSM. The monolayer is usually simulated in at least two states: the compressed state, mimicking exhalation, and the expanded state, mimicking inhalation. In this chapter, we provide detailed instructions on how to set up, run, and analyze coarse-grained MD simulations to study the concentration-dependent effect of a sterol drug on the LSM, both in the expanded and compressed state.
Collapse
Affiliation(s)
- Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Z Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW, Australia
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
4
|
Gravel-Tatta L, DeWolf C, Badia A. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12365-12376. [PMID: 34644076 DOI: 10.1021/acs.langmuir.1c01906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle carriers show promise for drug delivery, including by inhalation, where the first barrier for uptake in the lungs is the monolayer pulmonary surfactant membrane that coats the air/alveoli interface and is critical to breathing. It is imperative to establish the fate of potential nanocarriers and their effects on the biophysical properties of the pulmonary surfactant. To this end, the impact of the nanoparticle surface charge on the lateral organization, thickness, and recompressibility of Langmuir monolayers of model phospholipid-only and phospholipid-protein mixtures was investigated using native and modified forms of nanophytoglycogen, a carbohydrate-based dendritic polymer extracted from corn as monodisperse nanoparticles. We show that the native (quasi-neutral) and anionic nanophytoglycogens have little impact on the phase behavior and film properties. By contrast, cationic nanophytoglycogen alters the film morphology and increases the hysteresis associated with the work of breathing due to its electrostatic interaction with the anionic phospholipids in the model systems. These findings specifically highlight the importance of surface charge as a selection criterion for inhaled nanoformulations.
Collapse
Affiliation(s)
- Laurianne Gravel-Tatta
- Département de Chimie, Université de Montréal, Complexe des Sciences, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| | - Antonella Badia
- Département de Chimie, Université de Montréal, Complexe des Sciences, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| |
Collapse
|
5
|
Lbadaoui-Darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1980215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*), Trento, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy
| | - Katerina S. Karadima
- Department of Chemical Engineering, University of Patras, Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | | | - Athanasios Nenes
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | - Satoshi Takahama
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Hossain SI, Gandhi NS, Hughes ZE, Saha SC. The role of SP-B1–25 peptides in lung surfactant monolayers exposed to gold nanoparticles. Phys Chem Chem Phys 2020; 22:15231-15241. [DOI: 10.1039/d0cp00268b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lung surfactant monolayer’s (acts as the first line barrier for inhaled nanoparticles) components (lipids and peptides) rearrange themselves by the influence of exposed gold nanoparticles at various stages of the breathing cycle.
Collapse
Affiliation(s)
- Sheikh I. Hossain
- School of Mechanical and Mechatronic Engineering
- University of Technology Sydney
- 81 Broadway
- Ultimo
- Australia
| | - Neha S. Gandhi
- School of Mathematical Sciences, Queensland University of Technology
- 2 George Street
- GPO Box 2434
- Brisbane
- Australia
| | - Zak E. Hughes
- School of Chemistry and Biosciences
- The University of Bradford
- Bradford
- UK
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering
- University of Technology Sydney
- 81 Broadway
- Ultimo
- Australia
| |
Collapse
|
7
|
Panzuela S, Tieleman DP, Mederos L, Velasco E. Molecular Ordering in Lipid Monolayers: An Atomistic Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13782-13790. [PMID: 31553617 DOI: 10.1021/acs.langmuir.9b02635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on atomistic simulations of DPPC lipid monolayers using the CHARMM36 lipid force field (and also the Slipid force field as a control case), combined with a four-point OPC water model. The entire two-phase region where domains of the "liquid-condensed" (LC) phase coexist with domains of the "liquid-expanded" (LE) phase has been explored. The simulations are long enough that the complete phase-transition stage, with two domains coexisting in the monolayer, is reached in all cases. Also, system sizes used are larger than those in previous works. As expected, domains of the minority phase are elongated, emphasizing the importance of anisotropic van der Waals and/or electrostatic dipolar interactions in the monolayer plane. The molecular structure is quantified in terms of distribution functions for the hydrocarbon chains and the PN dipoles. In contrast to previous work, where average distributions are calculated, distributions are here extracted for each of the coexisting phases by first identifying lipid molecules that belong to either LC or LE regions. In the case of the CHARMM36 force field, the three-dimensional distributions show that the average tilt angle of the chains with respect to the normal outward direction is (39.0 ± 0.1)° in the LC phase and (48.1 ± 0.5)° in the LC phase. In the case of the PN dipoles, the distributions indicate a tilt angle of (110.8 ± 0.5)° in the LC phase and (112.5 ± 0.5)° in the LE phase. These results are quantitatively different from those in previous works, which indicated a smaller normal component of the PN dipole. Also, the distributions of the monolayer-projected chains and PN dipoles have been calculated. Chain distributions peak along a particular direction in the LC domains, while they are uniform in the LE phase. Long-range ordering associated with the projected PN dipoles is absent in both phases. These results strongly suggest that LC domains do not exhibit dipolar ordering in the plane of the monolayer, the effect of these components being averaged out at short distances. Therefore, the only relevant component of the molecular dipoles, with regard to both intra- and long-range interdomain interactions, is normal to the monolayer. Also, the local orientation of chain projections is almost constant in LC domains and points in the direction along which domains are elongated, suggesting that the line tension driving the phase transition might be anisotropic with respect to the interfacial domain boundary.
Collapse
Affiliation(s)
- S Panzuela
- Departamento de Física Teórica de la Materia Condensada , Universidad Autónoma de Madrid , E-28049 Madrid , Spain
| | - D P Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , Calgary , Alberta T2N1N4 , Canada
| | - L Mederos
- Instituto de Ciencia de Materiales de Madrid , Consejo Superior de Investigaciones Científicas , C/Sor Juana Inés de la Cruz, 3 , E-28049 Madrid , Spain
| | - E Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Ciencias de Materiales Nicolás Cabrera, and IFIMAC , Universidad Autónoma de Madrid , E-28049 Madrid , Spain
| |
Collapse
|
8
|
Hu J, Liu H, Xu P, Shang Y, Liu H. Investigation of Drug for Pulmonary Administration-Model Pulmonary Surfactant Monolayer Interactions Using Langmuir-Blodgett Monolayer and Molecular Dynamics Simulation: A Case Study of Ketoprofen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13452-13460. [PMID: 31524404 DOI: 10.1021/acs.langmuir.9b02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pulmonary administration is widely used for the treatment of lung diseases. The interaction between drug molecules and pulmonary surfactants affects the efficacy of the drug directly. The location and distribution of drug molecules in a model pulmonary surfactant monolayer under different surface pressures can provide vivid information on the interaction between drug molecules and pulmonary surfactants during the pulmonary administration. Ketoprofen is a nonsteroidal anti-inflammatory drug for pulmonary administration. The effect of ketoprofen molecules on the lipid monolayer containing 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-glycerol (DPPG) is studied by surface pressure (π)-area (A) isotherms and compressibility modulus (Cs-1)-surface pressure (π) isotherms. The location and distribution of ketoprofen molecules in a lipid monolayer under different surface pressures are explored by surface tension, density profile, radial distribution function (RDF), and the potential of mean force (PMF) simulated by molecular dynamics (MD) simulation. The introduction of ketoprofen molecules affects the properties of DPPC/DPPG monolayers and the location and distribution of ketoprofen molecules in monolayers with various surface pressures. The existence of ketoprofen molecules hinders the formation of liquid-condensed (LC) films and decreases the compressibility of DPPC/DPPG monolayers. The location and distribution of ketoprofen molecules in the lipid monolayer are affected by cation-π interaction between the choline group of lipids and the benzene ring of ketoprofen, the steric hindrance of the lipid head groups, and the hydrophobicity of ketoprofen molecule itself, comprehensively. The contact state of lipid head group with water is determined by surface pressure, which affects the interaction between drug molecules and lipids and further dominates the location and distribution of ketoprofen in the lipid monolayer. This work confirms that ketoprofen molecules can affect the property and the inner structure of DPPC/DPPG monolayers during breathing. Furthermore, the results obtained using a mixed monolayer containing two major pulmonary surfactants DPPC/DPPG and ketoprofen molecules will be helpful for the in-depth understanding of the mechanism of inhaled administration therapy.
Collapse
Affiliation(s)
- Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hengjiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Pu Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
9
|
Velasco E, Mederos L. Anisotropic line tension of domains in lipid monolayers. Phys Rev E 2019; 100:032413. [PMID: 31639977 DOI: 10.1103/physreve.100.032413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We formulate a simple effective model to describe molecular interactions in a lipid monolayer and calculate the line tension between coexisting domains. The model represents lipid molecules in terms of two-dimensional anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating from lipid chains and dipolar forces between dipole groups in the molecular heads. The model stresses the liquid-crystalline nature of the ordered phase in lipid monolayers and explains coexistence properties between ordered and disordered phases in terms of molecular parameters. Thermodynamic and interfacial properties of the model are analyzed using density-functional theory. In particular, the line tension at the interface between ordered and disordered phases turns out to be highly anisotropic with respect to the angle between the nematic director and the interface separating the coexisting phases. This important feature mainly results from the tilt angle of lipid chains and, to a lesser extent, from dipolar interactions perpendicular to the monolayer. The role of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with computer simulation results for lipid monolayers.
Collapse
Affiliation(s)
- E Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - L Mederos
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz, 3, E-28049 Madrid, Spain
| |
Collapse
|
10
|
Hossain SI, Gandhi NS, Hughes ZE, Gu Y, Saha SC. Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1458-1467. [DOI: 10.1016/j.bbamem.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
|
11
|
Albert RK, Smith B, Perlman CE, Schwartz DA. Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury? Am J Respir Crit Care Med 2019; 200:140-151. [PMID: 31022350 PMCID: PMC6635778 DOI: 10.1164/rccm.201903-0497pp] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bradford Smith
- Department of Bioengineering, University of Colorado, Aurora, Colorado; and
| | - Carrie E. Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | | |
Collapse
|
12
|
Zhao Q, Li Y, Chai X, Geng Y, Cao Y, Xu L, Zhang L, Huang J, Ning P, Tian S. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health. CHEMOSPHERE 2019; 222:603-610. [PMID: 30731380 DOI: 10.1016/j.chemosphere.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Understanding the interaction between pulmonary surfactant (PS) and inhalable pollutants is vital for risk assessment of respiratory health. Here, PS extracted from porcine lung (EPS) was used to investigate the interaction of PS with nano-silica particles and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that silica significantly affected the phase behavior and foaming ability of EPS; EPS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) exhibited great enhancing effect on PAHs solubility, which follows the order: EPS > DPPC > BSA, and it was positively correlated with the hydrophobicity of PAHs. Further experiments demonstrated that mixed phospholipids of EPS were largely responsible for the solubilization of EPS on PAHs. In the presence of EPS, DPPC or BSA, adsorption of PAHs by silica was notably inhibited, indicating competitive adsorption between PAHs and PS components on silica. These findings provide evidence for the surface chemistry by which PS facilitates the solubilization of PAHs and reducing the adsorption of PAHs on silica, which may be helpful for deeply understanding the effects of particulate matter and PAHs on lung health.
Collapse
Affiliation(s)
- Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linzhen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Guzmán E, Santini E. Lung surfactant-particles at fluid interfaces for toxicity assessments. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Liu H, Liu Y, Shang Y, Liu H. Toxicant Deposition and Transport in Alveolus: A Classical Density Functional Prediction. Chem Res Toxicol 2018; 31:1398-1404. [PMID: 30479130 DOI: 10.1021/acs.chemrestox.8b00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deposition and transport of toxicants on pulmonary surfactant are important processes in human health and medical care. We have introduced classical density functional theory (CDFT) to provide insight into this process. Nine typical toxicants in PM2.5 were considered, and their free energy and structural information have been examined. The free energy profile indicates that PbO, As2O3, and CdO are the three toxicants most easily deposited in the pulmonary alveolus, which is consistent with survey data. CuO appears to be the easiest toxicant to transport through the surfactant. Structural analysis indicates that the toxicants tend to pass through the surfactant with rotation. The configuration of the pulmonary surfactant was examined by extending our previous work to polymer systems, and it appears that both the configurational entropy and the direct interaction between the surfactant and the toxicant dominate the configuration of the pulmonary surfactant.
Collapse
|
15
|
Sosnowski TR. Particles on the lung surface - physicochemical and hydrodynamic effects. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Penetration of antimicrobial peptides in a lung surfactant model. Colloids Surf B Biointerfaces 2018; 167:345-353. [PMID: 29689490 DOI: 10.1016/j.colsurfb.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Molecular dynamics simulations were successfully performed to understand the absorption mechanism of antimicrobial peptides LL-37, CATH-2, and SMAP-29 in a lung surfactant model. The antimicrobial peptides quickly penetrate in the lung surfactant model in dozens or hundreds nanoseconds, but they electrostatically interact with the lipid polar heads during the simulation time of 2 μs. This electrostatic interaction should be the explanation for the inactivation of the antimicrobial peptides when co-administrated with lung surfactant. As they strongly interact with the lipid polar heads of the lung surfactant, there is no positive charge available on the antimicrobial peptide to attack the negatively charged bacteria membrane. In order to avoid the interaction of peptides with the lipid polar heads, sodium cholate was used to form nanoparticles which act as an absorption enhancer of all antimicrobial peptides used in this investigation. The nanoparticles of 150 molecules of sodium cholate with one peptide were inserted on the top of the lung surfactant model. The nanoparticles penetrated into the lung surfactant model, spreading the sodium cholate molecules around the lipid polar heads. The sodium cholate molecules seem to protect the peptides from the interaction with the lipid polar heads, leaving them free to be delivered to the water phase. The penetration of peptides alone or even the peptide nanoparticles with sodium cholate do not collapse the lung surfactant model, indicating to be a promisor drug delivery system to the lung. The implications of this finding are that antimicrobial peptides may only be co-administered with an absorption enhancer such as sodium cholate into lung surfactant in order to avoid inactivation of their antimicrobial activity.
Collapse
|
17
|
Estrada-López ED, Murce E, Franca MPP, Pimentel AS. Prednisolone adsorption on lung surfactant models: insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Adv 2017. [DOI: 10.1039/c6ra28422a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adsorption of prednisolone on a lung surfactant model was successfully performed using coarse grained molecular dynamics.
Collapse
Affiliation(s)
| | - Erika Murce
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Matheus P. P. Franca
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Andre S. Pimentel
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rio de Janeiro
- Brazil
| |
Collapse
|
18
|
Wu R, Qiu X, Shi Y, Deng M. Molecular dynamics simulation of the atomistic monolayer structures of N-acyl amino acid-based surfactants. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1261289] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R.China
| | - Xinlong Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R.China
| | - Yiqin Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R.China
| | - Manli Deng
- Key Laboratory of Colloid and Interface Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R.China
| |
Collapse
|
19
|
Hughes ZE, Walsh TR. Elucidating the mechanisms of nanodiamond-promoted structural disruption of crystallised lipid. SOFT MATTER 2016; 12:8338-8347. [PMID: 27722729 DOI: 10.1039/c6sm01155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs. Our simulations reveal the molecular-scale mechanisms by which this disruption takes place, indicating that the nanodiamonds serve a dual purpose. First, the nanodiamonds are predicted to facilitate delivery of surfactant to the lipid/water interface, and second, nanodiamond adsorption acts to roughen the lipid/water interface, enhancing ingress of surfactant into the bilayer. We find the balance of the hydrophobic surface area of the nanodiamond and the nanodiamond surface charge density to be a key determinant of the effectiveness of using nanodiamonds to facilitate lipid disruption. For the nanodiamond size considered here, we identify a moderate surface charge density, that ensures the nanodiamonds are neither too hydrophobic nor too hydrophilic, to be optimal.
Collapse
Affiliation(s)
- Zak E Hughes
- Institute for Frontier Materials, Deakin University, Geelong, Australia.
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Australia.
| |
Collapse
|
20
|
Whitwell H, Mackay RM, Elgy C, Morgan C, Griffiths M, Clark H, Skipp P, Madsen J. Nanoparticles in the lung and their protein corona: the few proteins that count. Nanotoxicology 2016; 10:1385-94. [PMID: 27465202 DOI: 10.1080/17435390.2016.1218080] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The formation of protein coronae on nanoparticles (NPs) has been investigated almost exclusively in serum, despite the prevailing route of exposure being inhalation of airborne particles. In addition, an increasing number of nanomedicines, that exploit the airways as the site of delivery, are undergoing medical trials. An understanding of the effects of NPs on the airways is therefore required. To further this field, we have described the corona formed on polystyrene (PS) particles with different surface modifications and on titanium dioxide particles when incubated in human bronchoalveolar lavage fluid (BALF) from patients with pulmonary alveolar proteinosis (PAP). We show, using high-resolution quantitative mass spectrometry (MS(E)), that a large number of proteins bind with low copy numbers but that a few "core" proteins bind to all particles tested with high fidelity, averaging the surface properties of the different particles independent of the surface properties of the specific particle. The averaging effect at the particle surface means that differing cellular effects may not be due to the protein corona but due to the surface properties of the nanoparticle once inside the cell. Finally, the adherence of surfactant associated proteins (SP-A, B and D) suggests that there may be interactions with lipids and pulmonary surfactant (PSf), which could have potential in vivo health effects for people with chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), or those who have increased susceptibility toward other respiratory diseases.
Collapse
Affiliation(s)
- Harry Whitwell
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK
| | - Rose-Marie Mackay
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK
| | - Christine Elgy
- c School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Cliff Morgan
- d Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Mark Griffiths
- d Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Howard Clark
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Paul Skipp
- b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Jens Madsen
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
21
|
Baoukina S, Tieleman DP. Computer simulations of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2431-2440. [PMID: 26922885 DOI: 10.1016/j.bbamem.2016.02.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/26/2023]
Abstract
Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
22
|
Arick DQ, Choi YH, Kim HC, Won YY. Effects of nanoparticles on the mechanical functioning of the lung. Adv Colloid Interface Sci 2015; 225:218-28. [PMID: 26494653 DOI: 10.1016/j.cis.2015.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Nanotechnology is a rapidly expanding field that has very promising applications that will improve industry, medicine, and consumer products. However, despite the growing widespread use of engineered nanoparticles in these areas, very little has been done to assess the potential health risks they may pose to high-risk areas of the body, particularly the lungs. In this review we first briefly discuss the structure of the lungs and establish that the pulmonary surfactant (PS), given its vulnerability and huge contribution to healthy lung function, is a mechanism of great concern when evaluating potential nanoparticle interactions within the lung. To warrant that these interactions can occur, studies on the transport of nanoaerols are reviewed to highlight that a plethora of factors contribute to a nanoparticle's ability to travel to the deep regions of the lung where PS resides. The focus of this review is to determine the extent that physicochemical characteristics of nanoparticles such as size, hydrophobicity, and surface charge effect PS function. Numerous nanoparticle types are taken into consideration in order to effectively evaluate observed consistencies across numerous nanoparticle types and develop general trends that exist among the physicochemical characteristics of interest. Biological responses from other mechanisms/components of the lung are briefly discussed to provide further insights on how the toxicology of different nanoparticles is determined. We conclude by discussing general trends that summarize consistencies observed among the studies in regard to physicochemical properties and their effects on monolayer function, addressing current gaps in our understanding, and discussing the future outlook of this field of research.
Collapse
Affiliation(s)
- Davis Q Arick
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Hwa Choi
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyun Chang Kim
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - You-Yeon Won
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Korea.
| |
Collapse
|
23
|
Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: A physicochemical perspective. Adv Colloid Interface Sci 2015; 218:48-68. [PMID: 25708746 DOI: 10.1016/j.cis.2015.01.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/21/2022]
Abstract
Understanding interactions between nanoparticles (NPs) with biological matter, particularly cells, is becoming increasingly important due to their growing application in medicine and materials, and consequent biological and environmental exposure. For NPs to be utilised to their full potential, it is important to correlate their functional characteristics with their physical properties, which may also be used to predict any adverse cellular responses. A key mechanism for NPs to impart toxicity is to gain cellular entry directly. Many parameters affect the behaviour of nanomaterials in a cellular environment particularly their interactions with cell membranes, including their size, shape and surface chemistry as well as factors such as the cell type, location and external environment (e.g. other surrounding materials, temperature, pH and pressure). Aside from in vitro and in vivo experiments, model cell membrane systems have been used in both computer simulations and physicochemical experiments to elucidate the mechanisms for NP cellular entry. Here we present a brief overview of the effects of NPs physical parameters on their cellular uptake, with focuses on 1) related research using model membrane systems and physicochemical methodologies; and 2) proposed physical mechanisms for NP cellular entrance, with implications to their nanotoxicity. We conclude with a suggestion that the energetic process of NP cellular entry can be evaluated by studying the effects of NPs on lipid mesophase transitions, as the molecular deformations and thus the elastic energy cost are analogous between such transitions and endocytosis. This presents an opportunity for contributions to understanding nanotoxicity from a physicochemical perspective.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, University of Bristol, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, Clinical Science at North Bristol, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
24
|
Nisoh N, Karttunen M, Monticelli L, Wong-ekkabut J. Lipid monolayer disruption caused by aggregated carbon nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra17006g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbon nanoparticles (CNP) have significant impact on the Pulmonary Surfactant (PS), the first biological barrier in the respiratory system.
Collapse
Affiliation(s)
- Nililla Nisoh
- Department of Physics
- Faculty of Science
- Kasetsart University
- Bangkok
- Thailand
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | | | | |
Collapse
|
25
|
Padilla-Chavarría HI, Guizado TRC, Pimentel AS. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01443c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dibenz[a,h]anthracene and its metabolite may form aggregates, which have implications in the clearance process of the lung surfactant phospholipid bilayers.
Collapse
Affiliation(s)
- Helmut I. Padilla-Chavarría
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Teobaldo R. C. Guizado
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| | - Andre S. Pimentel
- Departamento de Química
- Pontifícia Universidade Católica do Rio de Janeiro
- Rua Marques de São Vicente
- Rio de Janeiro
- Brazil
| |
Collapse
|
26
|
Lin X, Zuo YY, Gu N. Shape affects the interactions of nanoparticles with pulmonary surfactant. SCIENCE CHINA MATERIALS 2015; 58:28-37. [PMID: 28748123 PMCID: PMC5523932 DOI: 10.1007/s40843-014-0018-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interactions with the pulmonary surfactant, the initial biological barrier of respiratory pathway, determine the potential therapeutic applications and toxicological effects of inhaled nanoparticles (NPs). Although much attention has been paid to optimize the physicochemical properties of NPs for improved delivery and targeting, shape effects of the inhaled NPs on their interactions with the pulmonary surfactant are still far from clear. Here, we studied the shape effects of NPs on their penetration abilities and structural disruptions to the dipalmitoyl-phosphatidylcholine (DPPC) monolayer (being model pulmonary surfactant film) using coarse-grained molecular dynamics simulations. It is found that during the inspiration process (i.e., surfactant film expansion), shape effects are negligible. However, during the expiration process (i.e., surfactant film compression), NPs of different shapes show various penetration abilities and degrees of structural disruptions to the DPPC monolayer. We found that rod-like NPs showed the highest degree of penetration and the smallest side-effects to the DPPC monolayer. Our results may provide a useful insight into the design of NPs for respiratory therapeutics.
Collapse
Affiliation(s)
- Xubo Lin
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Hawaii 96822, USA
| | - Ning Gu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
27
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
28
|
Kim Y, Kwak Y, Chang R. Free Energy of PAMAM Dendrimer Adsorption onto Model Biological Membranes. J Phys Chem B 2014; 118:6792-802. [DOI: 10.1021/jp501755k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Yongkyu Kwak
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|
29
|
Sachan AK, Galla HJ. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1069-1075. [PMID: 24339125 DOI: 10.1002/smll.201300315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 09/07/2013] [Indexed: 06/03/2023]
Abstract
Interaction between hydrophobic nanoparticles (NPs) and a pulmonary surfactant (PS) film leads to a shift in molecular packing of surfactant molecules in the PS film around the interacting NPs. The resultant structural arrangement of surfactants around the NPs may be a potential structural factor responsible for their high retention ability within the film. Moreover, during this interaction, surfactant molecules coat the NPs and change their surface properties.
Collapse
Affiliation(s)
- Amit K Sachan
- Institute of Biochemistry, Westfälische Wilhelms Universität, Wilhelm-Klemm-Str.2, Münster, 48149, Germany; Institute of Medical Physics and Biophysics, Westfälische Wilhelms Universität, Robert-Koch-Str. 31, Münster, 48149, Germany
| | | |
Collapse
|
30
|
Lin X, Bai T, Zuo YY, Gu N. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. NANOSCALE 2014; 6:2759-2767. [PMID: 24464138 DOI: 10.1039/c3nr04163h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs with different hydrophobicity and sizes on a dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface. Four different NPs were considered, including hydrophilic and hydrophobic NPs, each with two diameters of 3 nm and 5 nm (the sizes are comparable to that of generation 3 and 5 PAMAM dendrimers, which have been widely used for nanoscale drug carrier systems). Our simulations showed that hydrophilic NPs can readily penetrate into the aqueous phase with little or no disturbance on the DPPC monolayer. However, hydrophobic NPs tend to induce large structural disruptions, thus inhibiting the normal phase transition of the DPPC monolayer upon film compression. Our simulations also showed that this inhibitory effect of hydrophobic NPs can be mitigated through PEGylation. Our results provide useful guidelines for molecular design of NPs as carrier systems for pulmonary drug delivery.
Collapse
Affiliation(s)
- Xubo Lin
- State Key Laboratory of Bioelectronics and Jiangsu key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | | | | | | |
Collapse
|
31
|
Interaction of Nanoparticles with Lipid Monolayers and Lung Surfactant Films. MEASURING BIOLOGICAL IMPACTS OF NANOMATERIALS 2014. [DOI: 10.1007/11663_2014_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Lai JYW, Elvati P, Violi A. Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion. Phys Chem Chem Phys 2014; 16:7969-79. [DOI: 10.1039/c4cp00112e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Stochastic Nanoparticle Simulator (SNAPS) has been developed to investigate Polycyclic Aromatic Hydrocarbon (PAH) growth in combustion. Simulations elucidated novel, atomistic insight into the chemical composition and morphology of nascent PAHs.
Collapse
Affiliation(s)
- Jason Y. W. Lai
- Department of Mechanical Engineering
- University of Michigan
- Ann Arbor, USA
| | - Paolo Elvati
- Department of Mechanical Engineering
- University of Michigan
- Ann Arbor, USA
| | - Angela Violi
- Department of Mechanical Engineering
- University of Michigan
- Ann Arbor, USA
| |
Collapse
|
33
|
Hu G, Jiao B, Shi X, Valle RP, Fan Q, Zuo YY. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS NANO 2013; 7:10525-33. [PMID: 24266809 PMCID: PMC5362675 DOI: 10.1021/nn4054683] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the mechanisms by which inhaled nanoparticles interact with the pulmonary surfactant film are still largely unknown. Here, using combined in vitro and in silico methods, we show how hydrophobicity and surface charge of nanoparticles differentially regulate the translocation and interaction with the pulmonary surfactant film. While hydrophilic nanoparticles generally translocate quickly across the pulmonary surfactant film, a significant portion of hydrophobic nanoparticles are trapped by the surfactant film and encapsulated in lipid protrusions upon film compression. Our results support a novel model of pulmonary surfactant lipoprotein corona associated with inhaled nanoparticles of different physicochemical properties. Our data suggest that the study of pulmonary nanotoxicology and nanoparticle-based pulmonary drug delivery should consider this lipoprotein corona.
Collapse
Affiliation(s)
- Guoqing Hu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- Address correspondence to ;
| | - Bao Jiao
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinghua Shi
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Russell P. Valle
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Qihui Fan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Address correspondence to ;
| |
Collapse
|
34
|
Neale C, Madill C, Rauscher S, Pomès R. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. J Chem Theory Comput 2013; 9:3686-703. [DOI: 10.1021/ct301005b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chris Neale
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Chris Madill
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Sarah Rauscher
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Régis Pomès
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| |
Collapse
|
35
|
Abstract
A lipid monolayer lining a boundary between two immiscible phases forms a complex interface with inhomogeneous distribution of forces. Unlike lipid bilayers, monolayers are formed in asymmetric environment and their properties depend strongly on lipid surface density. The monolayer properties are also affected significantly by the representation of the pure interface. Here we give a brief theoretical introduction and describe methods to simulate lipid monolayers starting from force-fields and system setup to reproducing state points on the surface tension (pressure)-area isotherms and transformations between them.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
36
|
Elvati P, Violi A. Free energy calculation of permeant-membrane interactions using molecular dynamics simulations. Methods Mol Biol 2012; 926:189-202. [PMID: 22975966 DOI: 10.1007/978-1-62703-002-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nanotoxicology, the science concerned with the safe use of nanotechnology and nanostructure design for biological applications, is a field of research that has recently received great attention, as a result of the rapid growth in nanotechnology. Many nanostructures are of a scale and chemical composition similar to many biomolecular environments, and recent papers have reported evident toxicity of selected nanoparticles. Molecular simulations can help develop a mechanistic understanding of how structural properties affect bioactivity. In this chapter, we describe how to compute the free energy of interactions between cellular membranes and benzene, the main constituent of some toxic carbonaceous particles, with well-tempered metadynamics. This algorithm reconstructs the free energy surface and accelerates rare events in a coarse-grained representation of the system.
Collapse
Affiliation(s)
- Paolo Elvati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
37
|
Sachan AK, Harishchandra RK, Bantz C, Maskos M, Reichelt R, Galla HJ. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer. ACS NANO 2012; 6:1677-1687. [PMID: 22288983 DOI: 10.1021/nn204657n] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The pulmonary surfactant film spanning the inner alveolar surface prevents alveolar collapse during the end-exhalation and reduces the work of breathing. Nanoparticles (NPs) present in the atmosphere or nanocarriers targeted through the pulmonary route for medical purposes challenge this biological barrier. During interaction with or passage of NPs through the alveolar surfactant, the biophysical functioning of the film may be altered. However, experimental evidence showing detailed biophysical interaction of NPs with the pulmonary surfactant film are scant. In this study, we have investigated the impact of a hydrophobic polyorganosiloxane (AmOrSil20) NPs on the integrity as well as on the structural organization of the model pulmonary surfactant film. Primarily, scanning force microscopic techniques and electron microscopy have been used to visualize the topology as well as to characterize the localization of nanoparticles within the compressed pulmonary surfactant film. We could show that the NPs partition in the fluid phase of the compressed film at lower surface pressure, and at higher surface pressure, such NPs interact extensively with the surface-associated structures. Major amounts of NPs are retained at the interface and are released slowly into the aqueous subphase during repeated compression/expansion cycles. Further, the process of vesicle insertion into the interfacial film was observed to slow down with increasing NP concentrations. The hydrophobic AmOrSil20 NPs up to a given concentration do not substantially affect the structural organization and functioning of pulmonary surfactant film; however, such NPs do show drastic impacts at higher concentrations.
Collapse
Affiliation(s)
- Amit Kumar Sachan
- Institute of Biochemistry, Westfälische Wilhelms Universität, Wilhelm-Klemm-Str.2, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Fan Q, Wang YE, Zhao X, Loo JSC, Zuo YY. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS NANO 2011; 5:6410-6. [PMID: 21761867 PMCID: PMC4854525 DOI: 10.1021/nn2015997] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inhaled nanoparticles (NPs) must first interact with the pulmonary surfactant (PS) lining layer that covers the entire internal surface of the respiratory tract and plays an important role in surface tension reduction and host defense. Interactions with the PS film determine the subsequent clearance, retention, and translocation of the inhaled NPs and hence their potential toxicity. To date, little is known how NPs interact with PS, and whether or not NPs have adverse effects on the biophysical function of PS. We found a time-dependent toxicological effect of hydroxyapatite NPs (HA-NPs) on a natural PS, Infasurf, and the time scale of surfactant inhibition after particle exposure was comparable to the turnover period of surfactant metabolism. Using a variety of in vitro biophysicochemical characterization techniques, we have determined the inhibition mechanism to be due to protein adsorption onto the HA-NPs. Consequently, depletion of surfactant proteins from phospholipid vesicles caused conversion of original large vesicles into much smaller vesicles with poor surface activity. These small vesicles, in turn, inhibited biophysical function of surfactant films after adsorption at the air-water interface. Cytotoxicity study found that the HA-NPs at the studied concentration were benign to human bronchial epithelial cells, thereby highlighting the importance of evaluating biophysical effect of NPs on PS. The NP-PS interaction mechanism revealed by this study may not only provide new insight into the toxicological study of nanoparticles but also shed light on the feasibility of NP-based pulmonary drug delivery.
Collapse
Affiliation(s)
- Qihui Fan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yi E. Wang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xinxin Zhao
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798
| | - Joachim S. C. Loo
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Address correspondence to
| |
Collapse
|
39
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 989] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Nanomaterials in biological environment: a review of computer modelling studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:103-15. [DOI: 10.1007/s00249-010-0651-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 01/13/2023]
|
41
|
Chang RW, Lee JM. Dynamics of C60Molecules in Biological Membranes: Computer Simulation Studies. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.11.3195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Fiedler SL, Violi A. Simulation of nanoparticle permeation through a lipid membrane. Biophys J 2010; 99:144-52. [PMID: 20655842 DOI: 10.1016/j.bpj.2010.03.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 11/30/2022] Open
Abstract
A metric of nanoparticle toxicity is the passive permeability rate through cellular membranes. To assess the influence of nanoparticle morphology on this process, the permeability of buckyball-sized molecules through a representative lipid bilayer was investigated by molecular-dynamics simulation. When C(60) was compared with a prototypical opened C(60) molecule and a representative combustion-generated particle, C(68)H(29), the calculated free-energy profiles along the permeation coordinate revealed a sizable variation in form and depth. The orientation of the anisotropic molecules was determined by monitoring the principal axis corresponding to the largest moment of inertia, and free rotation was shown to be hindered in the bilayer interior. Diffusion constant values of the permeant molecules were calculated from a statistical average of seven to 10 trajectories at five locations along the permeation coordinate. A relatively minor variation of the values was observed in the bilayer interior; however, local resistance values spanned up to 24 orders of magnitude from the water layer to the bilayer center, due primarily to its exponential dependence on free energy. The permeability coefficient values calculated for the three similarly sized but structurally distinct nanoparticles showed a significant variance. The use of C(60) to represent similarly sized carbonaceous nanoparticles for assessments of toxicity is questioned.
Collapse
Affiliation(s)
- Steven L Fiedler
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
43
|
Kumar P, Bohidar H. Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|