1
|
Jiang R, Liu Q, Sun Y, Dai X, Xu F, Wang F. Finerenone as a Novel Treatment for Gitelman Syndrome: A Case Study of a 35-Year-Old Male with Adrenal Mass and Hypokalemia. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e944492. [PMID: 39488731 PMCID: PMC11542730 DOI: 10.12659/ajcr.944492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/18/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Gitelman syndrome (GS) is an autosomal recessive salt-losing tubulopathy characterized by renal potassium loss, hypokalemia, metabolic alkalosis, hypocalciuria, hypomagnesemia, and hyper-reninemic hyperaldosteronism. Finerenone is a non-steroidal mineralocorticoid receptor antagonist that inhibits receptor-mediated sodium reabsorption and decreases receptor overactivation. This report describes a 35-year-old man with hypokalemia, a mass in the right adrenal gland, and a diagnosis of Gitelman syndrome with a c.1456>A heterozygous variant of the SLC12A3 gene, treated with finerenone. CASE REPORT A 35-year-old man was admitted to the affiliated Hospital of Qingdao University because of a mass in the right adrenal gland. He was in generally good condition upon admission. He was a non-smoker and non-drinker. The examination at admission led to diagnosis of severe hypokalemia. Genetic tests showed that he carried a homozygous pathogenic variant c.1456>A in SLC12A3, which can confirm the diagnosis of Gitelman syndrome. Spironolactone was used to increase the blood potassium level, but after adverse effects were noted, finerenone was used, which greatly improved his blood potassium levels. CONCLUSIONS For patients with Gitelman syndrome who cannot tolerate adverse effects such as sex hormone-related adverse reactions from using non-selective mineralocorticoid receptor antagonists, especially male patients, finerenone may be considered as an adjunct therapy for potassium retention and magnesium supplementation. To the best of our knowledge, this is the first report in the world of using finerenone to treat Gitelman syndrome. This provides more options for treatment of patients in the future.
Collapse
Affiliation(s)
| | | | | | | | - Feng Xu
- Corresponding Authors: Feng Xu, e-mail: , Fang Wang, e-mail:
| | - Fang Wang
- Corresponding Authors: Feng Xu, e-mail: , Fang Wang, e-mail:
| |
Collapse
|
2
|
Ji X, Zhao N, Liu H, Wu Y, Liu L. Case report: Two novel compound heterozygous variant of SLC12A3 gene in a gitelman syndrome family and literature review. Front Genet 2024; 15:1391015. [PMID: 39055258 PMCID: PMC11269260 DOI: 10.3389/fgene.2024.1391015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
A 36-year-old unmarried male chef was incidentally diagnosed with hypokalemia during an evaluation for an acute perianal abscess. Despite potassium supplementation, he developed progressive weakness in his lower limbs, culminating in an inability to stand. Investigations confirmed severe hypokalemia, metabolic alkalosis, hypomagnesemia, secondary hyperaldosteronism, and low urinary calcium excretion, with normotension. The patient's long-standing stunted growth and lean physique since childhood were noted. Biochemical assays further identified type 2 diabetes mellitus and metabolic syndrome. Genetic analysis revealed three heterozygous SLC12A3 mutations (M1: c.421G>A: p.G141R, M2: c.509T>A:p.L170Q, and M3: c.704C>A: p.T235K), compound heterozygo us and derived from both parents, with M1 and M3 reported here for the first time. Treatment with spironolactone and oral potassium chloride stabilized his potassium levels. Following the administration of SGLT2 inhibitors in patients receiving hypoglycemic therapy, we observed a mild decrease in serum sodium levels. This case highlights the criticality of vigilant metabolic surveillance in Gitelman syndrome and advises prudence with SGLT2 inhibitors in those with concurrent type 2 diabetes, given the risk of potentially aggravate sodium loss.
Collapse
Affiliation(s)
- Xiaochen Ji
- Department of Internal Medicine, Dalian Medical University, Dalian, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Nan Zhao
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haixia Liu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yutong Wu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lichao Liu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Ben Bnina M, Elfekih H, Ghorchene A, Ben Abdessalem F, Hasni Y, Chadli Chaieb M. Intriguing association between type 1 diabetes mellitus, Gitelman syndrome and Cacci-Ricci disease: Triad of rare diseases: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241261019. [PMID: 38881979 PMCID: PMC11179443 DOI: 10.1177/2050313x241261019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
We report the case of a patient who exhibits a concurrent diagnosis of type 1 diabetes mellitus, Gitelman syndrome and Cacci-Ricci disease. A 27-year-old male patient was diagnosed with Gitelman syndrome at the age of 3 years. Fourteen years later, he developed an autoantibody-negative type 1 diabetes mellitus. Cacci-Ricci's disease was revealed by terminal hematuria and considered in view of the appearance found on the computed tomography (CT) scan. The finger-prick blood glucose level was 6 g/dl with no acetonuria. Creatinine clearance was 60 ml/min. Thyroid function tests were normal. Calcium, phosphorus and parathormone (PTH) levels were normal. Discussion: Gitelman syndrome is a rare disorder. The association between Gitelman syndrome and type 1 diabetes mellitus has been reported in the literature in two patients. Authors have investigated the association between Gitelman syndrome and type 2 diabetes mellitus. Several pathophysiological explanations have been put forward. Cacci-ricci disease is a rare, benign congenital anomaly. No association between type 1 diabetes mellitus, Gitelman syndrome and Cacci-Ricci disease has been reported in the literature. To our knowledge, this is the first case described in the literature.
Collapse
Affiliation(s)
- Molka Ben Bnina
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| | - Hamza Elfekih
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| | - Asma Ghorchene
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| | - Fatma Ben Abdessalem
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| | - Yosra Hasni
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| | - Molka Chadli Chaieb
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Endocrinology-Diabetology Department, Farhat-Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
4
|
Jiang L, Li D, Guo Q, Li Y, Zan L, Ao R. Adult classic Bartter syndrome: a case report with 5-year follow-up and literature review. Endocr J 2024; 71:537-542. [PMID: 38508775 DOI: 10.1507/endocrj.ej23-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Bartter syndrome (BS) is a rare, inherited salt-losing renal tubular disorder characterized by secondary hyperaldosteronism, hypokalemia, hypochloremia, metabolic alkalosis, and low-to-normal blood pressure. Classic BS, or BS Type 3, the most common subtype in the Asian population, is caused by a molecular defect in ClC-Kb, a voltage-gated chloride channel in renal tubules, due to CLCNKB gene mutation. Because the onset of BS is more common in children than in adults, the diagnosis, treatment outcomes, genotype/phenotype association, and follow-up of adult-onset BS Type 3 are limited. This case report describes the findings in a 20-year-old man who was admitted with hypokalemic paralysis, with clinical manifestations were similar to those of Gitelman syndrome (GS); however, the patient was later diagnosed to have BS Type 3 through genetic testing (NM_000085.4 (CLCNKB): c.1052G>T). A literature review showed that no homozygous mutations have been reported to date. After 5 years of treatment and follow-up, we found that this genotype requires high levels of potassium and is prone to urinary protein and metabolic syndrome. Distinguishing adult-onset BS from GS is challenging in clinical practice. However, genetic diagnosis can help solve this problem effectively, and genotypes play a guiding role in treatment planning.
Collapse
Affiliation(s)
- Le Jiang
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| | - Dongmei Li
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| | - Qiansha Guo
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| | - Yunfeng Li
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| | - Lei Zan
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| | - Rihan Ao
- Department of Endocrinology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010000, China
| |
Collapse
|
5
|
Yin Y, Li L, Yu S, Xin Y, Zhu L, Hu X, Chen K, Gu W, Mu Y, Zang L, Lyu Z. The first compound heterozygous mutations in SLC12A3 and PDX1 genes: a unique presentation of Gitelman syndrome with distinct insulin resistance and familial diabetes insights. Front Endocrinol (Lausanne) 2024; 14:1327729. [PMID: 38333726 PMCID: PMC10850558 DOI: 10.3389/fendo.2023.1327729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Background Gitelman Syndrome (GS) patients frequently exhibit disrupted glucose metabolism, attributed to hypokalemia, hypomagnesemia and heightened aldosterone. This study delved into the genetic underpinnings linked to insulin resistance and diabetes in a GS patient, contextualized within his family history. Methods The hydrochlorothiazide and furosemide loading test were performed to ascertain the presence of GS. Oral glucose tolerance test (OGTT) evaluated glucose metabolism and insulin sensitivity. Whole-exome sequencing, validated by Sanger sequencing, was employed to confirm gene mutations, which were then tracked among the patient's relatives. Results Symptoms and laboratory examination confirmed the clinical diagnosis of GS. Comprehensive whole-exome sequencing, augmented by Sanger sequencing validation, revealed a compound heterozygous mutation within the SLC12A3 gene (c.1108G>C in exon 9, c.676G>A in exon 5 and c.2398G>A in exon 20) in the patient. The OGTT affirmed diabetes and heightened insulin resistance, distinct from previous patients with GS we evaluated. Further genetic analysis identified a missense heterozygous mutation (c.97C>G in exon 1) within the PDX1 gene, inherited from the patient's diabetic mother without GS. Furthermore, the patient's brother, with impaired glucose tolerance but regular potassium levels, also bore this mutation, hinting at additional impacts of the PDX1 gene mutation on glucose metabolism regulation beyond the known impacts of GS. Conclusion This study unveils unprecedented compound heterozygous mutations in the SLC12A3 and PDX1 genes in a GS patient. These findings illuminate the potential complex genetic factors influencing glucose metabolism disruptions in GS. Take-home message This research uncovers a novel combination of SLC12A3 and PDX1 gene mutations in a Gitelman Syndrome patient, revealing intricate genetic factors that potentially disrupt glucose metabolism and shedding light on familial diabetes links.
Collapse
Affiliation(s)
- Yaqi Yin
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Liqin Li
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding, China
| | - Songyan Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Xin
- School of Medicine, Nankai University, Tianjin, China
| | - Lili Zhu
- Department of Endocrinology and Cardiology, TaiYuan No.8 People Hospital, Taiyuan, China
| | - Xiao Hu
- Department of Internal Medicine, The 63790th Hospital of Chinese People’s Liberation Army, Xichang, China
| | - Kang Chen
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
6
|
Huang X, Wu M, Mou L, Zhang Y, Jiang J. Gitelman syndrome combined with diabetes mellitus: A case report and literature review. Medicine (Baltimore) 2023; 102:e36663. [PMID: 38115360 PMCID: PMC10727606 DOI: 10.1097/md.0000000000036663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
RATIONALE Gitelman syndrome (GS) is an uncommon autosomal recessive tubulopathy resulting from a functional deletion mutation in the SLC12A3 gene. Its onset is typically insidious and challenging to discern, and it is characterized by hypokalemia, metabolic alkalosis, and reduced urinary calcium excretion. There is limited literature on the diagnosis and management of GS in individuals with concomitant diabetes. PATIENT CONCERNS A 36-year-old male patient with a longstanding history of diabetes exhibited suboptimal glycemic control. Additionally, he presented with concurrent findings of hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis. DIAGNOSIS Building upon the patient's clinical manifestations and extensive laboratory evaluations, we conducted thorough genetic testing, leading to the identification of a compound heterozygous mutation within the SLC12A3 gene. This definitive finding confirmed the diagnosis of GS. INTERVENTIONS We have formulated a detailed medication regimen for patients, encompassing personalized selection of hypoglycemic medications and targeted electrolyte supplementation. OUTCOMES Following 1 week of comprehensive therapeutic intervention, the patient's serum potassium level effectively normalized to 3.79 mmol/L, blood glucose parameters stabilized, and there was significant alleviation of clinical symptoms. LESSONS GS has a hidden onset and requires early diagnosis and intervention based on patient related symptoms and laboratory indicators in clinical practice, and personalized medication plans need to be provided according to the specific situation of the patient.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Miaohui Wu
- School of Pharmacy, Fujian Medical University, Quanzhou, China
| | - Lunpan Mou
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jianjia Jiang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Kucharczyk P, Albano G, Deisl C, Ho TM, Bargagli M, Anderegg M, Wueest S, Konrad D, Fuster DG. Thiazides Attenuate Insulin Secretion Through Inhibition of Mitochondrial Carbonic Anhydrase 5b in β -Islet Cells in Mice. J Am Soc Nephrol 2023; 34:1179-1190. [PMID: 36927842 PMCID: PMC10356162 DOI: 10.1681/asn.0000000000000122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
SIGNIFICANCE STATEMENT Thiazide diuretics (thiazides) are among the most widely prescribed drugs worldwide, but their use is associated with glucose intolerance and new-onset diabetes mellitus. The molecular mechanisms remain elusive. Our study reveals that thiazides attenuate insulin secretion through inhibition of the mitochondrial carbonic anhydrase isoform 5b (CA5b) in pancreatic β cells. We furthermore discovered that pancreatic β cells express only one functional carbonic anhydrase isoform, CA5b, which is critical in replenishing oxaloacetate in the mitochondrial tricarboxylic acid (TCA) cycle (anaplerosis). These findings explain the mechanism for thiazide-induced glucose intolerance and reveal a fundamental role of CA5b in TCA cycle anaplerosis and insulin secretion in β cells. BACKGROUND Thiazide diuretics are associated with glucose intolerance and new-onset diabetes mellitus. Previous studies demonstrated that thiazides attenuate insulin secretion, but the molecular mechanisms remain elusive. We hypothesized that thiazides attenuate insulin secretion via one of the known molecular thiazide targets in β cells. METHODS We performed static insulin secretion experiments with islets of wild-type, Sodium/chloride co-transporter (NCC) (SLC12A3), and sodium-driven chloride/bicarbonate exchanger (NDCBE) (SLC4A8) knock-out (KO) mice and with murine Min6 cells with individual knockdown of carbonic anhydrase (CA) isoforms to identify the molecular target of thiazides in β cells. CA isoform 5b (CA5b) KO mice were then used to assess the role of the putative thiazide target CA5b in β -cell function and in mediating thiazide sensitivity in vitro and in vivo . RESULTS Thiazides inhibited glucose- and sulfonylurea-stimulated insulin secretion in islets and Min6 cells at pharmacologically relevant concentrations. Inhibition of insulin secretion by thiazides was CO 2 /HCO 3- -dependent, not additive to unselective CA inhibition with acetazolamide, and independent of extracellular potassium. By contrast, insulin secretion was unaltered in islets of mice lacking the known molecular thiazide targets NCC or NDCBE. CA expression profiling with subsequent knockdown of individual CA isoforms suggested mitochondrial CA5b as a molecular target. In support of these findings, thiazides significantly attenuated Krebs cycle anaplerosis through reduction of mitochondrial oxaloacetate synthesis. CA5b KO mice were resistant to thiazide-induced glucose intolerance, and thiazides did not alter insulin secretion in CA5b KO islets. CONCLUSIONS Thiazides attenuate insulin secretion via inhibition of the mitochondrial CA5b isoform in β cells of mice.
Collapse
Affiliation(s)
- Patrycja Kucharczyk
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giuseppe Albano
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christine Deisl
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Matteo Bargagli
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manuel Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Yang L, Fan J, Liu Y, Ren Y, Liu Z, Fu H, Qi H, Yang J. Case report: Gitelman syndrome with diabetes: Confirmed by both hydrochlorothiazide test and genetic testing. Medicine (Baltimore) 2023; 102:e33959. [PMID: 37327293 PMCID: PMC10270490 DOI: 10.1097/md.0000000000033959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONALE Gitelman syndrome (GS) is an autosomal recessive tubulopathy caused by mutations of the SLC12A3 gene. It is characterized by hypokalemic metabolic alkalosis, hypomagnesemia and hypocalciuria. Hypokalemia, hypomagnesemia, and increased renin-angiotensin-aldosterone system (RAAS) activity can cause glucose metabolism dysfunction. The diagnosis of GS includes clinical diagnosis, genetic diagnosis and functional diagnosis. The gene diagnosis is the golden criterion while as functional diagnosis is of great value in differential diagnosis. The hydrochlorothiazide (HCT) test is helpful to distinguish GS from batter syndrome, but few cases have been reported to have HCT testing. PATIENT CONCERNS A 51-year-old Chinese woman presented to emergency department because of intermittent fatigue for more than 10 years. DIAGNOSES Laboratory test results showed hypokalemia, hypomagnesemia, hypocalciuria and metabolic alkalosis. The HCT test showed no response. Using next-generation and Sanger sequencing, we identified 2 heterozygous missense variants (c.533C > T:p.S178L and c.2582G > A:p.R861H) in the SLC12A3 gene. In addition, the patient was diagnosed with type 2 diabetes mellitus 7 years ago. Based on these findings, the patient was diagnosed with GS with type 2 diabetic mellitus (T2DM). INTERVENTIONS She was given potassium and magnesium supplements, and dapagliflozin was used to control her blood glucose. OUTCOMES After treatments, her fatigue symptoms were reduced, blood potassium and magnesium levels were increased, and blood glucose levels were well controlled. LESSONS When GS is considered in patients with unexplained hypokalemia, the HCT test can be used for differential diagnosis, and genetic testing can be continued to confirm the diagnosis when conditions are available. GS patients often have abnormal glucose metabolism, which is mainly caused by hypokalemia, hypomagnesemia, and secondary activation of RAAS. When a patient is diagnosed with GS and type 2 diabetes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) can be used to control the blood glucose level and assist in raising blood magnesium.
Collapse
Affiliation(s)
- Luyang Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinmeng Fan
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yi Ren
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zekun Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hairui Fu
- Department of Orthopedics, Affiliated Fenyang Hospital of Shanxi Medical University, Fenyang, Shanxi Province, China
- Department of Orthopedics, Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hao Qi
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
10
|
Zhang L, Peng X, Zhao B, Xia P, Wen Y, Ye W, Li X, Li X, Ye W, Cheng H, Chen L. Clinicopathological Features of Gitelman Syndrome with Proteinuria and Renal Dysfunction. Nephron Clin Pract 2023; 147:531-540. [PMID: 36806220 PMCID: PMC10614443 DOI: 10.1159/000529775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
INTRODUCTION Gitelman syndrome (GS) is a rare renal tubular salt-wasting disorder. Besides kidney electrolyte loss, proteinuria and renal dysfunction were also observed. However, their incidence, risk factors, pathological features, and prognosis were unclear. METHODS We retrospectively reviewed 116 GS patients and analyzed their clinical, genetic, and pathological characteristics. We also systematically reviewed articles on GS with proteinuria and renal dysfunction. RESULTS Twenty-three GS patients had proteinuria (69.6%) and renal dysfunction (43.5%) with a mean age of 35.3 ± 13.2 years, and 65.2% were male. Compared to patients without proteinuria or renal dysfunction, these patients had elevated plasma angiotensin II level (440.2 ± 351.7 vs. 253.2 ± 187.4 pg/mL, p = 0.031) and three times higher incidence of diabetes. The renal pathology of nine biopsied patients indicated hypertrophy of the juxtaglomerular apparatus (100%), chronic tubulointerstitial changes (66.7%), intrarenal vascular changes (66.7%), and glomerulopathy (55.6%). More extensive renin staining was observed in patients with GS than in the control group with glomerular minor lesion (p < 0.001). During a median of 85 months (range, 11-205 months) of follow-up for 19 out of the 23 GS-renal patients, the renal function was generally stable, except one died of cancer and one developed end-stage renal disease because of concomitant membranous nephropathy and IgA nephropathy. CONCLUSION Proteinuria and renal dysfunction were more common than expected and might indicate glomerulopathy and vascular lesions besides a tubulointerstitial injury in GS. Renal function may maintain stable with effective therapy in most cases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Peng
- Department of Nephrology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Bingbin Zhao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peng Xia
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yubin Wen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Ye
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuemei Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuewang Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenling Ye
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Cheng
- Department of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Gitelman syndrome is a recessive salt-wasting disorder characterized by hypomagnesemia, hypokalemia, metabolic alkalosis and hypocalciuria. The majority of patients are explained by mutations and deletions in the SLC12A3 gene, encoding the Na+-Cl--co-transporter (NCC). Recently, additional genetic causes of Gitelman-like syndromes have been identified that should be considered in genetic screening. This review aims to provide a comprehensive overview of the clinical, genetic and mechanistic aspects of Gitelman(-like) syndromes. RECENT FINDINGS Disturbed Na+ reabsorption in the distal convoluted tubule (DCT) is associated with hypomagnesemia and hypokalemic alkalosis. In Gitelman syndrome, loss-of-function mutations in SLC12A3 cause impaired NCC-mediated Na+ reabsorption. In addition, patients with mutations in CLCKNB, KCNJ10, FXYD2 or HNF1B may present with a similar phenotype, as these mutations indirectly reduce NCC activity. Furthermore, genetic investigations of patients with Na+-wasting tubulopathy have resulted in the identification of pathogenic variants in MT-TI, MT-TF, KCNJ16 and ATP1A1. These novel findings highlight the importance of cell metabolism and basolateral membrane potential for Na+ reabsorption in the DCT. SUMMARY Altogether, these findings extend the genetic spectrum of Gitelman-like electrolyte alterations. Genetic testing of patients with hypomagnesemia and hypokalemia should cover a panel of genes involved in Gitelman-like syndromes, including the mitochondrial genome.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Cizmecioglu A. METFORMIN-AND GLICLAZIDE-BASED DIABETES TREATMENT EXPERIENCE IN A PATIENT WITH GITELMAN SYNDROME. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:241-243. [PMID: 36212262 PMCID: PMC9512375 DOI: 10.4183/aeb.2022.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Gitelman Syndrome (GS) is a genetic tubulopathy frequently linked with insulin resistance. The possibility of developing Diabetes Mellitus (DM) in GS increases with the causes of insulin resistance. Hypokalemia is one of the most common electrolyte disorders in GS, and most diabetic drugs can cause hypokalemia. Considering this dilemma, we presented a DM treatment experience in a GS case. CASE PRESENTATION A 47-year-old male GS patient with a potassium-rich diet complained of weight loss and dry mouth for 2-3 months. The laboratory tests revealed a higher HbA1c level, as high as 11.8%. The remaining abnormal laboratory test results (hypokalemia, hypomagnesemia, metabolic alkalosis) indicated a patient with GS. The patient was placed on a metformin+gliclazide-based treatment. Oral potassium and magnesium supplementation were started for the patient whose hypokalemia increased in the first control, and the potassium dose was doubled in the third control. In the first-month follow-up visit, it was observed that the blood potassium level was improved, and hyperglycemia was optimized. CONCLUSION In brief, any treatment for DM can be selected in GS patients with DM by performing frequent electrolyte monitoring. Like our case, oral potassium supplementation was adequate for the metformin + gliclazide combination-coincidence hypokalemia.
Collapse
Affiliation(s)
- A. Cizmecioglu
- Correspondence to: Ahmet Cizmecioglu MD, Selcuk University, Faculty of Medicine, Department of Internal Medicine, Konya, Turkey, E-mail:
| |
Collapse
|
14
|
Jiang L, Peng X, Zhao B, Zhang L, Xu L, Li X, Nie M, Chen L. Frequent SLC12A3 mutations in Chinese Gitelman syndrome patients: structure and function disorder. Endocr Connect 2022; 11:EC-21-0262.R2. [PMID: 34860177 PMCID: PMC8859957 DOI: 10.1530/ec-21-0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
PURPOSES This study was conducted to identify the frequent mutations from reported Chinese Gitelman syndrome (GS) patients, to predict the three-dimensional structure change of human Na-Cl co-transporter (hNCC), and to test the activity of these mutations and some novel mutations in vitro and in vivo. METHODS SLC12A3 gene mutations in Chinese GS patients previously reported in the PubMed, China National Knowledge Infrastructure, and Wanfang database were summarized. Predicted configurations of wild type (WT) and mutant proteins were achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, N534K, Q617R, and R928C) were generated by site-directed mutagenesis. 22Na+ uptake experiment was carried out in the Xenopus laevisoocyte expression system. In the study, 35 GS patients and 20 healthy volunteers underwent the thiazide test. RESULTS T60M, T163M, D486N, R913Q, R928C, and R959frameshift were frequent SLC12A3 gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein's three-dimensional structure was predicted to be altered in all mutations. Compared with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all six mutations: T60M 22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 41 ± 15.5%, Q617R 63 ± 22.1%, and D486N 77 ± 20.4%. In thiazide test, the net increase in chloride fractional excretion in 20 healthy controls was significantly higher than GS patients with or without T60M or D486N mutations. CONCLUSIONS Frequent mutations (T60M, D486N, and R928C) and novel mutations (L215F, N534K, and Q617R) lead to protein structure alternation and protein dysfunction verified by 22Na+ uptake experiment in vitro and thiazide test on the patients.
Collapse
Affiliation(s)
- Lanping Jiang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Nephrology & Key Laboratory of Nephrology, National Health Commission and Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Peng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Renal Division, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Bingbin Zhao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lubin Xu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence should be addressed to L Chen or M Nie: or
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence should be addressed to L Chen or M Nie: or
| |
Collapse
|
15
|
Wang F, Guo M, Li J, Ma S. Novel mutations of the SLC12A3 gene in patients with Gitelman syndrome. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:629-633. [PMID: 34657521 DOI: 10.1080/00365513.2021.1989715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mutations in the SLC12A3 gene have been reported to cause Gitelman syndrome (GS). This study aimed to investigate the genetic mutations and clinical features of patients with GS. Four pedigrees (4 GS patients and 14 family members) were enrolled. The symptoms, laboratory results, management, and genotypes were analyzed. Genomic DNA was screened for gene variations using Sanger sequencing. DNA sequences were compared with reference sequences. The effects of the mutations were predicted using prediction tools (Mutation Taster, PolyPhen-2, SIFT, and PROVEAN). Genetic analysis revealed six genetic variants of SLC12A3, including three novel heterozygous mutations (c.2T > C, c.1609C > T, c.3055G > A) and three previously characterized mutations (c.1456G > A, c.2542G > A, c.1077C > G). These mutations were predicted to exert a damaging effect based on predictive in silico tools. GS patients had low blood pressure and low levels of serum K+, serum Mg2+, and 24-h urinary Ca2+ but high levels of 24-h urinary K+. These clinical manifestations and genotypes were consistent with the diagnostic criteria of GS. The study described the phenotypes and genotypes of 4 pedigrees involving GS patients, demonstrating the importance of SLC12A3 gene screening for GS.
Collapse
Affiliation(s)
- Feng Wang
- Department of Transfusion Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Manli Guo
- Department of Endocrinology and Metabolism, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China
| | - Shaogang Ma
- Department of Endocrinology and Metabolism, the Third People's Hospital of Bengbu, Bengbu, China
| |
Collapse
|
16
|
Liu Z, Wang S, Zhang R, Wang C, Lu J, Shao L. A novel compound heterozygous variant of the SLC12A3 gene in Gitelman syndrome with diabetes and the choices of the appropriate hypoglycemic drugs: a case report. BMC Med Genomics 2021; 14:198. [PMID: 34348722 PMCID: PMC8336329 DOI: 10.1186/s12920-021-01047-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gitelman syndrome (GS) is an autosomal recessive tubulopathy caused by mutations of the SLC12A3 gene. It is characterized by hypokalemic metabolic alkalosis, hypomagnesemia and hypocalciuria. It is universally known that both hypokalemia and hypomagnesemia can influence insulin secretion and insulin resistance, but the exact mechanisms require further study. We identified a novel deletion variant of the SLC12A3 gene and discussed the appropriate hypoglycemic drugs in Gitelman syndrome (GS) patients with type 2 diabetes. CASE PRESENTATION A 55-year-old diabetic female patient was hospitalized for evaluation because of paroxysmal general weakness and numbness of extremities for one year. We suspected that she was suffering from GS by initial estimation. Direct Sanger sequencing was used to analyze the causative gene SLC12A3 of GS. Oral glucose tolerance test (OGTT) was carried out to assess the glucose metabolism and insulin resistance status. Genetic analysis revealed that she was a compound heterozygote for a recurrent missense mutation c.179C > T and a novel deletion c.1740delC in SLC12A3, thus her diagnosis of GS was confirmed. The patient was treated with potassium chloride (3.0 g/d) and magnesium chloride (element magnesium 350 mg/d) on the basis of initial treatment of diabetes with hypoglycemic drug (Repaglinide, 3.0 mg/day). However, she developed frequent hypoglycemia after one week. OGTT showed that her glucose metabolism and insulin resistance much improved after potassium and magnesium supplemental therapy. Then we changed the hypoglycemic agent to a dipeptidyl peptidase-4 (DPP-4) inhibitor (Trajenta 5 mg/d), since then her blood glucose level remained normal during two-year of follow-up. CONCLUSION We have identified a novel deletion of the SLC12A3 gene and discussed the appropriate hypoglycemic drugs in Gitelman syndrome (GS) patients with type 2 diabetes. We suggested that attention need to be paid to blood glucose monitoring in GS patients, especially when hypokalemia and hypomagnesemia are corrected. Besides, the insufficient blood volume and serum electrolyte disturbance should also be taken into consideration in the selecting hypoglycemic drugs for GS patients.
Collapse
Affiliation(s)
- Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, People's Republic of China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, People's Republic of China
- Deparkment of Dermatology, Peking University First Hospital, Beijing, People's Republic of China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, People's Republic of China
| | - Cui Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, People's Republic of China
| | - Jingru Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
17
|
Yamamoto Y, Mitamura K, Norikane T, Fujimoto K, Takami Y, Nishiyama Y. Abnormal FDG Biodistribution in a Patient With Gitelman Syndrome. Clin Nucl Med 2021; 46:e264-e265. [PMID: 33315671 DOI: 10.1097/rlu.0000000000003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Gitelman syndrome is an autosomal recessive renal tubulopathy. A 38-year-old woman was diagnosed with Gitelman syndrome. Eight years later, 18F-FDG PET/CT was performed to evaluate recurrence of endometrial cancer. FDG PET images showed an extremely abnormal FDG biodistribution. They showed decreased brain uptake, increased cardiac muscle uptake, and diffuse increased muscle and adipose tissue uptake. This pattern is similar to high insulin state; however, her glucose level was normal, and insulin level was very low.
Collapse
Affiliation(s)
- Yuka Yamamoto
- From the Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Franken GAC, Adella A, Bindels RJM, de Baaij JHF. Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiol (Oxf) 2021; 231:e13528. [PMID: 32603001 PMCID: PMC7816272 DOI: 10.1111/apha.13528] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Hypomagnesaemia is a common feature of renal Na+ wasting disorders such as Gitelman and EAST/SeSAME syndrome. These genetic defects specifically affect Na+ reabsorption in the distal convoluted tubule, where Mg2+ reabsorption is tightly regulated. Apical uptake via TRPM6 Mg2+ channels and basolateral Mg2+ extrusion via a putative Na+ -Mg2+ exchanger determines Mg2+ reabsorption in the distal convoluted tubule. However, the mechanisms that explain the high incidence of hypomagnesaemia in patients with Na+ wasting disorders of the distal convoluted tubule are largely unknown. In this review, we describe three potential mechanisms by which Mg2+ reabsorption in the distal convoluted tubule is linked to Na+ reabsorption. First, decreased activity of the thiazide-sensitive Na+ /Cl- cotransporter (NCC) results in shortening of the segment, reducing the Mg2+ reabsorption capacity. Second, the activity of TRPM6 and NCC are determined by common regulatory pathways. Secondary effects of NCC dysregulation such as hormonal imbalance, therefore, might disturb TRPM6 expression. Third, the basolateral membrane potential, maintained by the K+ permeability and Na+ -K+ -ATPase activity, provides the driving force for Na+ and Mg2+ extrusion. Depolarisation of the basolateral membrane potential in Na+ wasting disorders of the distal convoluted tubule may therefore lead to reduced activity of the putative Na+ -Mg2+ exchanger SLC41A1. Elucidating the interconnections between Mg2+ and Na+ transport in the distal convoluted tubule is hampered by the currently available models. Our analysis indicates that the coupling of Na+ and Mg2+ reabsorption may be multifactorial and that advanced experimental models are required to study the molecular mechanisms.
Collapse
Affiliation(s)
- Gijs A. C. Franken
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Anastasia Adella
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Jeroen H. F. de Baaij
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
19
|
Chen Q, Wang X, Min J, Wang L, Mou L. Kidney stones and moderate proteinuria as the rare manifestations of Gitelman syndrome. BMC Nephrol 2021; 22:12. [PMID: 33413160 PMCID: PMC7791706 DOI: 10.1186/s12882-020-02211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Gitelman syndrome (GS) is an autosomal recessive inherited salt-losing tubulopathy (SLT). Here, we describe, for the first time, a case of GS without Gitelman-like features and with concomitant kidney stones, cysts and diabetic nephropathy (DN). Case presentation We described a male patient had a 19-year history of recurrent fatigue. From childhood, he had polydipsia and polyuria, paroxysmal tetany and palpitation. Serum biochemistry revealed chronic hypokalemia, metabolic alkalosis, normomagnesemia, mildly elevated Cr. Concomitant 24 h urine collection showed inappropriate renal potassium wasting, borderline hypercalciuria, moderate proteinuria consisting of major glomerular. Ultrasound of urinary tract showed bilateral and multiple kidney stones and cysts. Whole exome sequencing (WES) identified compound heterozygous mutations of SLC12A3. The unusual association of SLTs and glomerular proteinuria prompted us to perform a renal biopsy. Renal pathology showed renal involvement consistent with GS and early stage of diabetic nephropathy (DN). After treatment with KCl, magnesium oxide, perindopril and acarbose, the patient had been cured. The fatigue didn’t relapse. Conclusion GS had high variability of phenotype, GS may have no Gitelman-like features, kidney stones are not the exclusion criteria of GS. Renal biopsy should be warranted for GS patients with moderate to massive glomerular proteinuria.
Collapse
Affiliation(s)
- Qi Chen
- Department of Nephrology, The First People's Hospital of Huzhou, 313000, Huzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Wang
- Department of Nephrology, The First People's Hospital of Huzhou, 313000, Huzhou, Zhejiang, People's Republic of China
| | - Jingjing Min
- Department of Neurology, The First People's Hospital of Huzhou, 313000, Huzhou, Zhejiang, People's Republic of China
| | - Lin Wang
- Guangzhou Kingmed Diagnostic Laboratory Ltd, 510320, Guangzhou, Guangzhou, Guangdong, People's Republic of China
| | - Lijun Mou
- Division of Nephrology, Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, People's Republic of China.
| |
Collapse
|
20
|
He G, Gang X, Sun Z, Wang P, Wang G, Guo W. Type 2 diabetes mellitus caused by Gitelman syndrome-related hypokalemia: A case report. Medicine (Baltimore) 2020; 99:e21123. [PMID: 32702863 PMCID: PMC7373581 DOI: 10.1097/md.0000000000021123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gitelman syndrome (GS) is an autosomal-recessive disease caused by SLC12A3 gene mutations. It is characterized by hypokalemic metabolic alkalosis in combination with hypomagnesemia and hypocalciuria. Recently, patients with GS are found at an increased risk for developing type 2 diabetes mellitus (T2DM). However, diagnosis of hyperglycemia in GS patients has not been thoroughly investigated, and family studies on SLC12A3 mutations and glucose metabolism are rare. Whether treatment including potassium and magnesium supplements, and spironolactone can ameliorate impaired glucose tolerance in GS patients, also needs to be investigated. PATIENT CONCERNS We examined a 55-year-old Chinese male with intermittent fatigue and persistent hypokalemia for 17 years. DIAGNOSES Based on the results of the clinical data, including electrolytes, oral glucose tolerance test (OGTT), and genetic analysis of the SLC12A3 gene, GS and T2DM were newly diagnosed in the patient. Two mutations of the SLC12A3 gene were found in the patient, one was a missense mutation p.N359K in exon 8, and the other was a novel insert mutation p.I262delinsIIGVVSV in exon 6. SLC12A3 genetic analysis and OGTT of 9 other family members within 3 generations were also performed. Older brother, youngest sister, and son of the patient carried the p.N359K mutation in exon 8. The older brother and the youngest sister were diagnosed with T2DM and impaired glucose tolerance by OGTT, respectively. INTERVENTIONS The patient was prescribed potassium and magnesium (potassium magnesium aspartate, potassium chloride) oral supplements and spironolactone. The patient was also suggested to maintain a high potassium diet. Acarbose was used to maintain the blood glucose levels. OUTCOMES The electrolyte imbalance including hypokalemia and hypomagnesemia, and hyperglycemia were improved with a remission of the clinical manifestations. CONCLUSION GS is one of the causes for manifestation of hypokalemia. SLC12A3 genetic analysis plays an important role in diagnosis of GS. Chinese male GS patients characterized with heterozygous SLC12A3 mutation should be careful toward occurrence of T2DM. Moreover, the patients with only 1 SLC12A3 mutant allele should pay regular attention to blood potassium and glucose levels. GS treatment with potassium and magnesium supplements, and spironolactone can improve impaired glucose metabolism.
Collapse
Affiliation(s)
- Guangyu He
- Department of Endocrinology and Metabolism
| | | | | | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | | | | |
Collapse
|
21
|
Urwin S, Willows J, Sayer JA. The challenges of diagnosis and management of Gitelman syndrome. Clin Endocrinol (Oxf) 2020; 92:3-10. [PMID: 31578736 DOI: 10.1111/cen.14104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Gitelman syndrome is an inherited tubulopathy characterized by renal salt wasting from the distal convoluted tubule. Defects in the sodium chloride cotransporter (encoded by SLC12A3) underlie this autosomal recessive condition. This article focuses on the specific challenges of diagnosing and treating Gitelman syndrome, with use of an illustrative case report. Symptoms relate to decreased serum potassium and magnesium levels, which include muscle weakness, tetany, fatigue and palpitations. Sudden cardiac deaths have been reported. Making a diagnosis may be difficult given its rarity but is important. A knowledge of the serum and urine biochemical picture is vital to distinguish it from a broad differential diagnosis, and application of genetic testing can resolve difficult cases. There is a group of Gitelman syndrome heterozygous carriers that experience symptoms and electrolyte disturbance and these patients should be managed in a similar way, though here genetic investigations become key in securing a difficult diagnosis. Potassium and magnesium replacement is the cornerstone of treatment, though practically this can be hard for patients to manage and often does not fully relieve symptoms even when serum levels are normalized. Challenges arise due to the lack of randomized controlled trials focussing on treatment of this rare disease; hence, clinicians endorse strategies in line with correction of the underlying pathophysiology such as sodium loading or pharmacological treatments, which seem to help some patients. Focussed dietary advice and knowing the best tolerated preparations of potassium and magnesium medications are useful tools for the physician, as well as an awareness of the specific burdens that this patient group face in order to signpost appropriate support.
Collapse
Affiliation(s)
- Stephanie Urwin
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jamie Willows
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Werissa NA, Piko P, Fiatal S, Kosa Z, Sandor J, Adany R. SNP-Based Genetic Risk Score Modeling Suggests No Increased Genetic Susceptibility of the Roma Population to Type 2 Diabetes Mellitus. Genes (Basel) 2019; 10:genes10110942. [PMID: 31752367 PMCID: PMC6896051 DOI: 10.3390/genes10110942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In a previous survey, an elevated fasting glucose level (FG) and/or known type 2 diabetes mellitus (T2DM) were significantly more frequent in the Roma population than in the Hungarian general population. We assessed whether the distribution of 16 single nucleotide polymorphisms (SNPs) with unequivocal effects on the development of T2DM contributes to this higher prevalence. METHODS Genetic risk scores, unweighted (GRS) and weighted (wGRS), were computed and compared between the study populations. Associations between GRSs and FG levels and T2DM status were investigated in separate and combined study populations. RESULTS The Hungarian general population carried a greater genetic risk for the development of T2DM (GRSGeneral = 15.38 ± 2.70 vs. GRSRoma = 14.80 ± 2.68, p < 0.001; wGRSGeneral = 1.41 ± 0.32 vs. wGRSRoma = 1.36 ± 0.31, p < 0.001). In the combined population models, GRSs and wGRSs showed significant associations with elevated FG (p < 0.001) and T2DM (p < 0.001) after adjusting for ethnicity, age, sex, body mass index (BMI), high-density Lipoprotein Cholesterol (HDL-C), and triglyceride (TG). In these models, the effect of ethnicity was relatively strong on both outcomes (FG levels: βethnicity = 0.918, p < 0.001; T2DM status: ORethnicity = 2.484, p < 0.001). CONCLUSIONS The higher prevalence of elevated FG and/or T2DM among Roma does not seem to be directly linked to their increased genetic load but rather to their environmental/cultural attributes. Interventions targeting T2DM prevention among Roma should focus on harmful environmental exposures related to their unhealthy lifestyle.
Collapse
Affiliation(s)
- Nardos Abebe Werissa
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- Doctorial School of Health Sciences, University of Debrecen, 4028 Debrecen, Hungary
| | - Peter Piko
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Zsigmond Kosa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, 4400 Nyíregyháza, Hungary;
| | - Janos Sandor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Roza Adany
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
- Correspondence: ; Tel: +36-5251-2764
| |
Collapse
|
23
|
De la Cruz-Cano E, Jiménez-González CDC, Morales-García V, Pineda-Pérez C, Tejas-Juárez JG, Rendón-Gandarilla FJ, Jiménez-Morales S, Díaz-Gandarilla JA. Arg913Gln variation of SLC12A3 gene is associated with diabetic nephropathy in type 2 diabetes and Gitelman syndrome: a systematic review. BMC Nephrol 2019; 20:393. [PMID: 31660880 PMCID: PMC6819471 DOI: 10.1186/s12882-019-1590-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract Background Diabetic nephropathy is a global common cause of chronic kidney disease and end-stage renal disease. A lot of research has been conducted in biomedical sciences, which has enhanced understanding of the pathophysiology of diabetic nephropathy and has expanded the potential available therapies. An increasing number of evidence suggests that genetic alterations play a major role in development and progression of diabetic nephropathy. This systematic review was focused on searching an association between Arg913Gln variation in SLC12A3 gene with diabetic nephropathy in individuals with Type 2 Diabetes and Gitelman Syndrome. Methods An extensive systematic review of the literature was completed using PubMed, EBSCO and Cochrane Library, from their inception to January 2018. The PRISMA guidelines were followed and the search strategy ensured that all possible studies were identified to compile the review. Inclusion criteria for this review were: 1) Studies that analyzed the SLC12A3 gene in individuals with Type 2 Diabetes and Gitelman Syndrome. 2) Use of at least one analysis investigating the association between the Arg913Gln variation of SLC12A3 gene with diabetic nephropathy. 3) Use of a case–control or follow-up design. 4) Investigation of type 2 diabetes mellitus in individuals with Gitelman’s syndrome, with a history of diabetic nephropathy. Results The included studies comprised 2106 individuals with diabetic nephropathy. This review shows a significant genetic association in most studies in the Arg913Gln variation of SLC12A3 gene with the diabetic nephropathy, pointing out that the mutations of this gene could be a key predictor of end-stage renal disease. Conclusions The results showed in this systematic review contribute to better understanding of the association between the Arg913Gln variation of SLC12A3 gene with the pathogenesis of diabetic nephropathy in individuals with T2DM and GS.
Collapse
Affiliation(s)
- Eduardo De la Cruz-Cano
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, C. P. 86650, Comalcalco, Tabasco, Mexico.,Secretaría de Salud, Hospital General de Comalcalco, Departamento de Laboratorio de Análisis Clínicos, C.P. 86300, Comalcalco, Tabasco, Mexico
| | - Cristina Del C Jiménez-González
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, C. P. 86650, Comalcalco, Tabasco, Mexico
| | - Vicente Morales-García
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, C. P. 86650, Comalcalco, Tabasco, Mexico
| | - Conny Pineda-Pérez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, C.P. 86100, Villahermosa, Tabasco, Mexico
| | - Juan G Tejas-Juárez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, C. P. 86650, Comalcalco, Tabasco, Mexico
| | - Francisco J Rendón-Gandarilla
- Universidades para el Bienestar Benito Juárez García, Medicina Integral y Salud Comunitaria, Juan R. Escudero, Guerrero, C.P. 39940, Mexico
| | - Silvia Jiménez-Morales
- Instituto Nacional de Medicina Genómica (INMEGEN), Laboratorio Genómica del Cáncer, Periférico Sur No. 4809, Col. Arenal Tepepan, Deleg. Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - José A Díaz-Gandarilla
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, C. P. 86650, Comalcalco, Tabasco, Mexico.
| |
Collapse
|
24
|
Zeng Y, Li P, Fang S, Wu C, Zhang Y, Lin X, Guan M. Genetic Analysis of SLC12A3 Gene in Chinese Patients with Gitelman Syndrome. Med Sci Monit 2019; 25:5942-5952. [PMID: 31398183 PMCID: PMC6703089 DOI: 10.12659/msm.916069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The incidence of Gitelman syndrome (GS) has been increasing in our hospital. The aim of this study was to explore the diagnostic accuracy and features of SLC12A3 gene in Chinese patients with GS. Material/Methods We searched the literature about Chinese patients with GS in the PubMed database up to July 2018 and also included 8 GS Chinese patients from our hospital in our analysis that explored the features of SLC12A3 gene. We divided all the patients into 3 groups according to diagnostic consensus. Complete compliance was defined to mean containing 2 allelic mutations, partial compliance to mean one allelic mutation, and clinical compliance to mean no mutations. Results Totally, 137 patients were enrolled in this study and 90 mutations were counted. Missense mutations accounted for over 72% in Chinese GS patients and the most common one was Thr60Met. According to the consensus, there were 102 patients (74.5%) in the complete compliance group, 31 patients (22.6%) in the partial compliance group, and only 4 patients (2.9%) in the clinical compliance group. Conclusions The SLC12A3 gene analysis in Chinese GS patients revealed that the most common mutation was Thr60Met, one of the missense mutations. Most of the patients were in the complete compliance group (i.e., 2 allelic mutations); the other cases might be explained by gene rearrangement.
Collapse
Affiliation(s)
- Yanmei Zeng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Ping Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shu Fang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Chunyan Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yudan Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaochun Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
25
|
Blanchard A, Vallet M, Dubourg L, Hureaux M, Allard J, Haymann JP, de la Faille R, Arnoux A, Dinut A, Bergerot D, Becker PH, Courand PY, Baron S, Houillier P, Tack I, Devuyst O, Jeunemaitre X, Azizi M, Vargas-Poussou R. Resistance to Insulin in Patients with Gitelman Syndrome and a Subtle Intermediate Phenotype in Heterozygous Carriers: A Cross-Sectional Study. J Am Soc Nephrol 2019; 30:1534-1545. [PMID: 31285285 DOI: 10.1681/asn.2019010031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gitelman syndrome is a salt-losing tubulopathy caused by mutations in the SLC12A3 gene, which encodes the thiazide-sensitive sodium-chloride cotransporter. Previous studies suggested an intermediate phenotype for heterozygous carriers. METHODS To evaluate the phenotype of heterozygous carriers of pathogenic SLC12A3 mutations, we performed a cross-sectional study of patients with Gitelman syndrome, heterozygous carriers, and healthy noncarriers. Participants measured their BP at home for three consecutive days before hospital admission for blood and urine sampling and an oral glucose tolerance test. RESULTS We enrolled 242 participants, aged 18-75 years, including 81 heterozygous carriers, 82 healthy noncarriers, and 79 patients with Gitelman syndrome. The three groups had similar age, sex ratio, and body mass index. Compared with healthy noncarriers, heterozygous carriers showed significantly higher serum calcium concentration (P=0.01) and a trend for higher plasma aldosterone (P=0.06), but measures of home BP, plasma and urine electrolytes, renin, parathyroid hormone, vitamin D, and response to oral glucose tolerance testing were similar. Patients with Gitelman syndrome had lower systolic BP and higher heart rate than noncarriers and heterozygote carriers; they also had significantly higher fasting serum glucose concentration, higher levels of markers of insulin resistance, and a three-fold higher sensitivity to overweight. According to oral glucose tolerance testing, approximately 14% of patients with Gitelman syndrome were prediabetic, compared with 5% of heterozygous carriers and 4% of healthy noncarriers. CONCLUSIONS Heterozygous carriers had a weak intermediate phenotype, between that of healthy noncarriers and patients with Gitelman syndrome. Moreover, the latter are at risk for development of type 2 diabetes, indicating the heightened importance of body weight control in these patients.
Collapse
Affiliation(s)
- Anne Blanchard
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Marion Vallet
- Department of Physiological Functional Investigations, Université Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - Laurence Dubourg
- Department of Physiological Functional Investigations, Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marguerite Hureaux
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Genetics
| | - Julien Allard
- Department of Nephrology, Hôpital Dupuytren, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Clinical Investigations Center-1435, Institut National de la Santé et de la Recherche Médicale, Limoges, France
| | - Jean-Philippe Haymann
- Department of Physiological Functional Investigations, Hôpital Tenon, Assistance Publique Hôpitaux des Hôpitaux de Paris, Paris, France.,Faculty of Medicine, Université Pierre et Marie Curie, Paris, France.,Unité Mixte de Recherche_S 1155, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Renaud de la Faille
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Arnoux
- Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Clinical Research Unit, and
| | - Aurelie Dinut
- Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Clinical Research Unit, and
| | - Damien Bergerot
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Pierre-Hadrien Becker
- Department of Biochemistry, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Pierre-Yves Courand
- Clinical Investigations Center.,Department of Cardiology, Croix-Rousse and Lyon-Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphanie Baron
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Physiological Functional Investigations, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pascal Houillier
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Physiological Functional Investigations, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ivan Tack
- Department of Physiological Functional Investigations, Université Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium; and
| | - Xavier Jeunemaitre
- Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Department of Genetics.,Unité Mixte de Recherche_970, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Michel Azizi
- Clinical Investigations Center.,Faculty of Medicine, Paris Descartes Université, Sorbonne Paris Cité, Paris, France.,Clinical Investigations Center-1418, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | |
Collapse
|
26
|
Yang LY, Yin JH, Yang J, Ren Y, Xiang CY, Wang CY. Liquorice-induced severe hypokalemic rhabdomyolysis with Gitelman syndrome and diabetes: A case report. World J Clin Cases 2019; 7:1200-1205. [PMID: 31183353 PMCID: PMC6547317 DOI: 10.12998/wjcc.v7.i10.1200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Licorice-induced severe hypokalemic rhabdomyolysis is clinically rare. Gitelman syndrome (GS) is the most common inherited renal tubular disease, while diabetes is one of the most prevalent diseases in the world. Recently, some studies have found that GS patients had higher diabetic morbidity. However, the coexistence of these three diseases has yet to be reported.
CASE SUMMARY We report the case of a 62-year-old Chinese man who was admitted with weakness in the extremities, muscle pain, and dark-colored urine. He had consumed liquorice water daily for seven days prior to admission. The laboratory tests revealed a serum potassium level of 1.84 mmol/L, magnesium 0.68 mmol/L, creatinine phosphokinase (CK) 10117 IU/L, and marked hemoglobinuria. Fractional chloride excretion and fractional magnesium excretion were increased. Plasma renin activity and aldosterone concentration were within the normal ranges. Sequence analysis of the SLC12A3 gene revealed that he had compound heterozygous mutations. The diagnosis of liquorice-induced severe hypokalemic rhabdomyolysis with GS and diabetes was thus genetically confirmed. Serum potassium and CK quickly improved with potassium replacement therapy, hydration, and discontinuation of liquorice ingestion. Upon follow-up at 3 mo, the levels of CK, myoglobin, and potassium remained normal, and magnesium was above 0.6 mmol/L.
CONCLUSION This case emphasizes that liquorice consumption and GS should be considered causes of hypokalemia and that the diabetic status of GS patients should be noted in the clinic.
Collapse
Affiliation(s)
- Lu-Yang Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Hua Yin
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Ren
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Chen-Yu Xiang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Chun-Yan Wang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
27
|
Filippatos TD, Rizos CV, Tzavella E, Elisaf MS. Gitelman syndrome: an analysis of the underlying pathophysiologic mechanisms of acid-base and electrolyte abnormalities. Int Urol Nephrol 2017; 50:91-96. [PMID: 28744758 DOI: 10.1007/s11255-017-1653-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/05/2017] [Indexed: 01/25/2023]
Abstract
Gitelman syndrome is the most common inherited tubular disease resulting from mutations of the SLC12A3 gene that encodes the thiazide-sensitive sodium-chloride cotransporter in the early distal convoluted tubules. The review presents the underlying pathophysiologic mechanisms of acid-base and electrolyte abnormalities observed in patients with Gitelman syndrome. The syndrome is usually characterized by hypokalemic metabolic alkalosis in combination with hypomagnesemia and hypocalciuria. Additionally, increased chloride excretion and renin/aldosterone levels, hypophosphatemia (occasionally), hyponatremia (rarely) and glucose intolerance/insulin resistance have been reported. The knowledge of the pathophysiologic mechanisms is useful for the treatment of patients with Gitelman syndrome as well as for the understanding of other tubular diseases.
Collapse
Affiliation(s)
- T D Filippatos
- Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece.
| | - C V Rizos
- Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - E Tzavella
- Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - M S Elisaf
- Department of Internal Medicine, Medical School, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|