1
|
Kougias DG, Southall MD, Scialli AR, Atillasoy E, Ejaz S, Schaeffer TH, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental and reproductive toxicity of acetaminophen. Crit Rev Toxicol 2025:1-48. [PMID: 39982149 DOI: 10.1080/10408444.2024.2446471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 02/22/2025]
Abstract
We previously developed a quantitative weight-of-evidence (QWoE) framework using prespecified scoring criteria for preclinical acetaminophen data to characterize potential developmental neurotoxicity outcomes with considerations for biological relevance of the response to adverse outcomes and the strength of methods and study design. The current analysis uses this framework to characterize potential developmental and reproductive toxicity (DART) outcomes following exposure to acetaminophen. Two-hundred forty-two QWoE entries were documented from in vivo rodent studies identified in 110 publications across five categories: DART endpoints in the context of (1) periadolescent/adulthood (nonpregnancy) exposures; (2) pregnant female exposures; and, for in utero or other developmental exposures, (3) anatomical abnormalities, (4) reproductive development, and (5) other physical development. A mean outcome score and methods score were calculated for 242 QWoE entries. Data analyzed in our framework were of moderate quality showing no consistent evidence of DART in male and female rodents following exposure to acetaminophen at therapeutic and/or non-systemically toxic doses. Similar results were found for the individual context- and outcome-related endpoint analyses and as segregated by sex. Overall, this QWoE analysis on the in vivo rodent data demonstrated no consistent evidence of adverse effects following exposure to therapeutic and/or non-systemically toxic acetaminophen on development or on the structure and function of the reproductive system.
Collapse
Affiliation(s)
| | | | | | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | |
Collapse
|
2
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025:1-55. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
3
|
Maniradhan M, Sivagurunathan N, Unnikrishnan AK, Anbiah VS, Calivarathan L. Selenium ameliorates oxidized phospholipid-mediated testicular dysfunction and epididymal sperm abnormalities following Bisphenol A exposure in adult Wistar rats. Reprod Toxicol 2024; 130:108751. [PMID: 39549767 DOI: 10.1016/j.reprotox.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound extensively utilized in the production of polycarbonate polymers and epoxy resins that, upon exposure, pose a significant threat to male reproductive health because of its estrogenic properties. Accumulating evidence suggests that BPA exposure disrupts the normal process of spermatogenesis, alters testicular morphology and function, and interferes with testicular steroidogenesis and hormonal signaling. However, the precise mechanism by which BPA affects testicular function remains unclear. In this study, we explored the mechanism underlying BPA-induced testicular abnormalities and evaluated the protective effects of Selenium (Se). Thirty-two adult male albino Wistar rats were divided into four groups, and BPA was administered at 50 mg/kg body weight, with or without Se supplementation, for 30 days. Se supplementation (2.5 mg/kg body weight) was initiated 1 week before BPA administration. BPA administration resulted in alterations in testicular architecture, characterized by basement membrane disintegration in the seminiferous tubules, reduced spermatogenic cell counts, and increased interstitial tubule noncellular space. Furthermore, BPA exposure increased the levels of oxidized phospholipids, lipid peroxides, and hydroxyl radicals and decreased the activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. In addition, BPA significantly reduced the activities of 3β- and 17β-hydroxysteroid dehydrogenases, interfering with testicular steroidogenesis. In rats, coadministration of Se and BPA reduced the levels of oxidized phospholipids and increased the activities of antioxidant enzymes, leading to improved testicular function and epididymal sperm parameters, suggesting that Se plays a critical role in alleviating endocrine disruptor-induced testicular dysfunctions in rats.
Collapse
Affiliation(s)
- Meenu Maniradhan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Ajay Krishnan Unnikrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu 608002, India
| | - Vigil S Anbiah
- Central Animal House, Government Medical College & Hospital, Cuddalore District, Chidambaram, Tamil Nadu 608002, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
4
|
Luo XM, Tang M, Wei XH, Tang X, Peng YD. Association Between Nickel Exposure and Metabolic Syndrome: Data from NHANES 2017-2018. Cardiovasc Toxicol 2024; 24:1028-1036. [PMID: 39136863 DOI: 10.1007/s12012-024-09912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Previous studies have found a possible association between nickel and metabolic syndrome (MetS), but with conflicting results. No studies have determined whether nickel exposure increases the prevalence of MetS in the general U.S. population. Therefore, we used data from the National Health and Nutrition Examination Survey (NHANES) to assess the association between urinary nickel and MetS. Since urinary nickel levels were presented as a skewed distribution, they were normalized using a logarithmic transformation. Weighted multivariate logistic models, restricted cubic spline, threshold effect analysis, and subgroup analyses were used to examine the association between urinary nickel concentration and the risk of MetS and its components. Based on data from 1577 participants, individuals in the second, third, and fourth quartiles of urinary nickel had an adjusted OR for MetS of 1.42 (95% CI: 0.88, 2.28), 2.00 (95% CI: 1.22, 3.28), and 1.68 (95% CI: 1.05, 2.70), respectively, representing an inverted "L"-shaped nonlinear dose-response relationship with an inflection point at 0.2141 ng/L. Patients over the age of 40, males, less educated, and smokers are more susceptible to nickel exposure. In addition, there were significant associations between nickel and most components of the MetS, with the strongest to weakest correlations being high fasting glucose, reduced high-density lipoprotein, abdominal obesity, and elevated blood pressure; however, there was no significant correlation between nickel and hyperlipidemia. In conclusion, environmental nickel exposure increases the prevalence of MetS in U.S. adults, particularly in males over 40 years of age, those with less education, and smokers.
Collapse
Affiliation(s)
- Xiao-Min Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yong-De Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Laursen TQ, Ramlau-Hansen CH, Tøttenborg SS, Liew Z, Toft G, Gaml-Sørensen A, Hougaard KS, Bonde JPE, Ernst A. Maternal intake of paracetamol during pregnancy and biomarkers of male fecundity in young adult sons. Reprod Toxicol 2024; 127:108626. [PMID: 38815769 DOI: 10.1016/j.reprotox.2024.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Paracetamol is suggested to have endocrine disrupting properties possibly affecting fetal programming of reproductive health that might lead to impaired semen quality and changes in reproductive hormones. In this longitudinal study, we included 1058 young adult men born 1998-2000 into the Danish National Birth Cohort with follow-up at 18-21 years of age. The exposure, maternal intake of paracetamol, was modelled in three ways: dichotomized, trimester-specific, and as duration of exposure categorized into: short (1-2 weeks), medium (3-9 weeks) or long duration (>9 weeks) vs. no intake. Outcomes included semen characteristics, self-measured testis volume, and reproductive hormone levels. We used negative binominal regression to estimate the percentage difference and 95% confidence interval (CI) for each outcome. In total, 547 (48%) sons were prenatally exposed to paracetamol due to maternal intake at least once. Maternal intake of paracetamol during pregnancy was not associated with any of the biomarkers in the dichotomized or trimester-specific exposure models. For duration of exposure, sons of mothers with long duration of maternal intake of paracetamol showed tendencies towards lower semen concentration (-14% [95% CI: -31%; 8%]), a higher proportion of nonprogressive and immotile spermatozoa (8% [95% CI: -4%; 21%]) and higher DNA Fragmentation Index (16% [95% CI: -1%; 36%]) compared to son of mothers with no intake. Maternal intake of paracetamol during pregnancy was not clearly associated with biomarkers of male fecundity in adult sons. However, it cannot be ruled out that long duration of maternal intake of paracetamol might be associated with impaired semen characteristics.
Collapse
Affiliation(s)
- Tina Quist Laursen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | | | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Gaml-Sørensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Kocaman EM, Şenol O, Yıldırım S, Atamanalp M, Özcan S, Bolat İ, Ucar A, Kiliçlioğlu M, Parlak V, Takkac M, Alak G. Analyzing the impact of synthetic and natural steroids: a study of cytochrome P450 metabolism, morphological alterations through metabolomics, and histopathological Examination. Toxicol Mech Methods 2024; 34:628-638. [PMID: 38379298 DOI: 10.1080/15376516.2024.2322006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
This study focuses on the comparative metabolic profiling and effects of two steroid types: natural and synthetic, specifically 17α-methyl testosterone (17α-MT) at varying concentrations (1.5, 2, and 3 mg/kg) in rainbow trout (Oncorhynchus mykiss). Over a 75-day feeding trial, growth metrics, such as feed efficiency, daily specific growth, live weight gain, total weight gain, and survival rate were systematically monitored every 15 days. At the end of the feeding trial, histopathology, immunohistochemistry, and metabolome analyses were performed in the high-concentration groups (3 mg/kg natural and 3 mg/kg synthetic), in which the lowest survival rate was determined. Key findings reveal that the type of hormone significantly influences growth parameters. While some natural steroids enhanced certain growth aspects, synthetic variants often yielded better results. The metabolomic analysis highlighted significant shifts in the metabolism of tryptophan, purine, folate, primary bile acids, phosphonates, phosphinates, and xenobiotics via cytochrome P450 pathways. Histopathologically, the natural hormone groups showed similar testicular, hepatic, muscular, gill, cerebral, renal, and intestinal tissue structures to the control, with minor DNA damage and apoptosis observed through immunohistochemistry. Conversely, the synthetic hormone groups exhibited moderate DNA damage and mild degenerative and necrotic changes in histopathology.
Collapse
Affiliation(s)
- Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytic Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Sinan Özcan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Metin Kiliçlioğlu
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Mehmet Takkac
- Department of English Language Education, Kazım Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Parveen S, Rizvi A, Akhtar K, Khan AA, Naseem I. Nickel-induced oxidative stress causes cell death in testicles: implications for male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1659-1670. [PMID: 37704774 DOI: 10.1007/s00210-023-02713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Aligarh region is well known for its lock industry. This lock industry utilises nickel for electroplating. There have been informal reports of infertility in men and women living near the lock industry. We analysed field water samples to investigate this link, and the results showed considerable nickel contamination. To further validate our results, we exposed male rats to relevant nickel levels in drinking water. This experimental exposure resulted in abnormal sperm morphology, decline in sperm count, significant change in activities of antioxidant enzymes, pronounced oxidative stress in the rat spermatocytes and decrease in serum testosterone level, as well as damage in the hypothalamus and pituitary (in all cases, the changes were most significant at the highest concentration used i.e 2.5 mg/l). The breeding experiments showed decline in live birth rate, while pups did not survive post birth in cages where males were given 2 and 2.5 mg/l concentrations of nickel in drinking water prior to mating. Our data strongly indicate a link between industrial nickel exposure and male infertility.
Collapse
Affiliation(s)
- Saima Parveen
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Asim Rizvi
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, Aligarh Muslim University, Aligarh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, JNMC, Aligarh Muslim University, Aligarh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
8
|
Corpuz-Hilsabeck M, Mohajer N, Culty M. Dysregulation of Immature Sertoli Cell Functions by Exposure to Acetaminophen and Genistein in Rodent Cell Models. Cells 2023; 12:1804. [PMID: 37443838 PMCID: PMC10340629 DOI: 10.3390/cells12131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sertoli cells are essential for germ cell development and function. Their disruption by endocrine disrupting chemicals (EDCs) or drugs could jeopardize spermatogenesis, contributing to male infertility. Perinatal exposure to EDCs and acetaminophen (APAP) disrupts male reproductive functions in animals and humans. Infants can be exposed simultaneously to the dietary soy phytoestrogen genistein (GEN) and APAP used for fever or pain relief. Our goal was to determine the effects of 10-100 µM APAP and GEN, alone or mixed, on immature Sertoli cells using mouse TM4 Sertoli cell line and postnatal-day 8 rat Sertoli cells, by measuring cell viability, proliferation, prostaglandins, genes and protein expression, and functional pathways. A value of 50 µM APAP decreased the viability, while 100 µM APAP and GEN decreased the proliferation. Sertoli cell and eicosanoid pathway genes were affected by GEN and mixtures, with downregulation of Sox9, Cox1, Cox2, and genes relevant for Sertoli cell function, while genes involved in inflammation were increased. RNA-seq analysis identified p53 and TNF signaling pathways as common targets of GEN and GEN mixture in both cell types. These results suggest that APAP and GEN dysregulate immature Sertoli cell function and may aid in elucidating novel EDC and drug targets contributing to the etiology of male infertility.
Collapse
Affiliation(s)
| | | | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
10
|
Zhu Z, Wang Z, Wang J, Cao Q, Yang H, Zhang Y. Transcriptomic analysis of lipid metabolism in zebrafish offspring of parental long-term exposure to bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51654-51664. [PMID: 36811785 DOI: 10.1007/s11356-023-25844-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is one of the most common environmental endocrine disruptor chemicals (EDCs) and exhibits reproductive, cardiovascular, immune, and neurodevelopmental toxic effects. The development of the offspring was examined in the present investigation to determine the cross-generational effects of long-term exposure of parental zebrafish to environmental concentrations of BPA (15 and 225 µg/L). Parents were exposed to BPA for 120 days, and their offspring were evaluated at 7 days after fertilization in BPA-free water. The offspring exhibited higher mortality, deformity, and heart rates, and showed significant fat accumulation in abdominal region. RNA-Seq data showed that more lipid metabolism-related KEGG pathways, such as the PPAR signaling pathway, adipocytokine signaling pathway, and ether lipid metabolism pathway were enriched in the 225 µg/L BPA-treated offspring compared to 15 µg/L BPA-treated offspring, indicating greater effects of high dose BPA on offspring lipid metabolism. Lipid metabolism-related genes implied that BPA is responsible for disrupting lipid metabolic processes in the offspring through increased lipid production, abnormal transport, and disruption of lipid catabolism. The present study will be helpful for further evaluation of the reproductive toxicity of environmental BPA to organisms and the subsequent parent-mediated intergenerational toxicity.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Ziying Wang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Jiayu Wang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
12
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
13
|
Ermler S, Kortenkamp A. Systematic review of associations of polychlorinated biphenyl (PCB) exposure with declining semen quality in support of the derivation of reference doses for mixture risk assessments. Environ Health 2022; 21:94. [PMID: 36217156 PMCID: PMC9552438 DOI: 10.1186/s12940-022-00904-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mixture risk assessments require reference doses for common health endpoints of all the chemicals to be considered together. In support of a mixture risk assessment for male reproductive health, we conducted a systematic review of the literature on associations between exposures to Polychlorinated Biphenyls (PCBs) and declines in semen quality. PCBs can act as Aryl-hydrocarbon Receptor (AhR)-agonists and Androgen Receptor (AR)-antagonists, both mechanisms which can affect sperm parameters. PCBs and other AR-antagonists can produce additive combination effects. Based on these observations our objective was to systematically gather data from animal and human studies to derive a reference dose for declines in semen quality for individual PCB. METHODS We systematically reviewed and evaluated the evidence in human epidemiological and experimental animal studies on associations between PCBs and deteriorations in semen quality. Human data and findings from animal studies with PCB mixtures were considered as supporting evidence. Information for individual congeners from animal studies was required for inclusion in mixture risk assessment. Using a robust confidence rating approach, we identified suitable studies to derive reference doses for individual PCB congeners. RESULTS Evaluation of human epidemiological studies revealed several reports of adverse effects on sperm parameters linked to PCB exposures, although some studies reported improved semen quality. Our review of experimental animal studies found that treatments with PCBs affected semen quality, in most cases adversely. We found robust evidence that PCB-118 and -169 were linked to declines in semen quality. Evidence for adverse effects of PCB-126, -132, -149, and -153 was moderate, whereas for PCB-77 it was slight and for PCB-180 indeterminate. Using widely accepted risk assessment procedures, we estimated reference dose values of 0.0029 µg/kg/day for PCB-118 and 0.00533 µg/kg/day for PCB-169. In addition, we derived values for PCB-126: 0.000073 µg/kg/day, PCB-132: 0.0228 µg/kg/day, PCB-149: 0.656 µg/kg/day, and PCB-153: 0.0058 µg/kg/day. CONCLUSIONS We found robust evidence for links between PCB exposure and deteriorations in semen quality, and derived reference doses for a set of congeners. We intend to use these values in combination with congener-specific exposure data in a mixture risk assessment for declines in semen quality, involving several other antiandrogenic chemicals.
Collapse
Affiliation(s)
- Sibylle Ermler
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Andreas Kortenkamp
- College of Health, Medicine and Life Sciences, Centre for Pollution Research and Policy, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
14
|
Kortenkamp A, Scholze M, Ermler S, Priskorn L, Jørgensen N, Andersson AM, Frederiksen H. Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. ENVIRONMENT INTERNATIONAL 2022; 165:107322. [PMID: 35691715 DOI: 10.1016/j.envint.2022.107322] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Semen quality in men continues to decline in Western countries, but the contours of the issue remain obscure, in relation to contributing chemicals. OBJECTIVES To obtain more clarity about the chemicals that drive the deterioration of semen quality, we conducted a mixture risk assessment based on European exposures. METHODS We included chemicals capable of affecting semen quality after prenatal exposures, among them androgen receptor antagonists, substances that disrupt prostaglandin signalling, suppress testosterone synthesis, inhibit steroidogenic enzymes or activate the aryl hydrocarbon receptor. We employed the Hazard Index approach (HI), based on risk quotients of exposures in Europe and reference doses for reductions in semen quality. By summing up the risk quotients of the 29 chemicals included in the assessment we examined fold-exceedances of "acceptable" mixture exposures relative to an index value of 1. For bisphenols A, F, S, phthalates DEHP, DnBP, BBzP, DiNP, n-butyl paraben and paracetamol we relied on biomonitoring studies in which these 9 chemicals were measured together in the same subjects. This allowed us to construct personalised Hazard Indices. RESULTS Highly exposed subjects experienced combined exposures to the 9 chemicals that exceeded the index value of 1 by more than 100-fold; the median was a 17-fold exceedance. Accounting for median background exposures to the remaining 20 chemicals added a Hazard Index of 1.39. Bisphenol A made the largest contribution to the HI, followed by polychlorinated dioxins, bisphenols S and F and DEHP. Eliminating bisphenol A alone would still leave unacceptably high mixture risks. Paracetamol is also a driver of mixture risks among subjects using the drug. CONCLUSIONS Tolerable exposures to substances associated with deteriorations of semen quality are exceeded by a large margin. Bisphenols, polychlorinated dioxins, phthalates and analgesics drive these risks. Dedicated efforts towards lowering exposures to these substances are necessary to mitigate risks.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom.
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Sibylle Ermler
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Lærke Priskorn
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Niels Jørgensen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Hanne Frederiksen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
15
|
Kortenkamp A, Martin O, Ermler S, Baig A, Scholze M. Bisphenol A and declining semen quality: A systematic review to support the derivation of a reference dose for mixture risk assessments. Int J Hyg Environ Health 2022; 241:113942. [DOI: 10.1016/j.ijheh.2022.113942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
16
|
Ermler S, Kortenkamp A. Declining semen quality and polybrominated diphenyl ethers (PBDEs): Review of the literature to support the derivation of a reference dose for a mixture risk assessment. Int J Hyg Environ Health 2022; 242:113953. [PMID: 35334436 DOI: 10.1016/j.ijheh.2022.113953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022]
Abstract
To support a mixture risk assessment for chemicals that interfere with male reproductive health, we reviewed the literature to identify studies of polybrominated diphenyl ethers (PBDEs) and poor semen quality. Several epidemiological studies have shown associations of PBDE exposures with declining semen quality, non-descending testes and penile malformations. In rodent studies, poor semen quality, changes in testosterone levels and reproductive tissues have been observed. In vitro studies with reporter gene constructs show PBDE congeners as androgen receptor antagonists, and mixture studies in these systems have demonstrated that PBDE congeners act together with other androgen receptor antagonists. These observations led us to attempt the estimation of reference doses for specific PBDE congeners that can be used in a future mixture risk assessment for deteriorations of semen quality. While epidemiological studies provide support for such associations, they were uninformative for derivations of reference doses, due to the incompatibility of dose metrics used in exposure assessments. We therefore based our estimates on animal studies. Using a rigorous confidence rating approach, we found robust evidence that BDE-47 produced reductions in semen quality. We identified only one high confidence study of BDE-99 and accordingly evaluated the strength of evidence as moderate. One high confidence, and several medium confidence experimental studies observed declines in semen quality after BDE-209 exposure. Using established risk assessment procedures, we estimated that BDE-47 exposures below 0.15 μg/kg/d are unlikely to lead to reductions in semen quality. The corresponding exposures for BDE-99 and BDE-209 are 0.003 μg/kg/d and 1000 μg/kg/d. It is planned to use these estimates as reference doses in a mixture risk assessment of deteriorations in semen quality, involving multiple other chemicals also contributing to poor semen quality.
Collapse
Affiliation(s)
- Sibylle Ermler
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
17
|
Boizet-Bonhoure B, Déjardin S, Rossitto M, Poulat F, Philibert P. Using Experimental Models to Decipher the Effects of Acetaminophen and NSAIDs on Reproductive Development and Health. FRONTIERS IN TOXICOLOGY 2022; 4:835360. [PMID: 35295217 PMCID: PMC8915900 DOI: 10.3389/ftox.2022.835360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin (acetylsalicylic acid), diclofenac and ibuprofen (IBU), and analgesic drugs, such as acetaminophen (APAP, or paracetamol), are widely used to treat inflammation and pain. APAP and IBU are over-the-counter drugs and are among the most commonly taken drugs in the first trimester of pregnancy, even in combination. Furthermore, these drugs and their metabolites are released in the environment, and can be frequently detected in wastewater, surface water, and importantly in drinking water. Although their environmental concentrations are much lower than the therapeutics doses, this suggests an uncontrolled low-dose exposure of the general population, including pregnant women and young children, two particularly at risk populations. Epidemiological studies show that exposure to these molecules in the first and second trimester of gestation can favor genital malformations in new-born boys. To investigate the cellular, molecular and mechanistic effects of exposure to these molecules, ex vivo studies with human or rodent gonadal explants and in vivo experiments in rodents have been performed in the past years. This review recapitulates recent data obtained in rodent models after in utero or postnatal exposure to these drugs. The first part of this review discusses the mechanisms by which NSAIDs and analgesics may impair gonadal development and maturation, puberty development, sex hormone production, maturation and function of adult organs, and ultimately fertility in the exposed animals and their offspring. Like other endocrine disruptors, NSAIDs and APAP interfere with endocrine gland function and may have inter/transgenerational adverse effects. Particularly, they may target germ cells, resulting in reduced quality of male and female gametes, and decreased fertility of exposed individuals and their descendants. Then, this review discusses the effects of exposure to a single drug (APAP, aspirin, or IBU) or to combinations of drugs during early embryogenesis, and the consequences on postnatal gonadal development and adult reproductive health. Altogether, these data may increase medical and public awareness about these reproductive health concerns, particularly in women of childbearing age, pregnant women, and parents of young children.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- *Correspondence: Brigitte Boizet-Bonhoure,
| | - Stéphanie Déjardin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | | | - Francis Poulat
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Pascal Philibert
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Laboratory of Biochemistry and Molecular Biology, Carèmeau Hospital, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
18
|
Uldbjerg CS, Koch T, Lim YH, Gregersen LS, Olesen CS, Andersson AM, Frederiksen H, Coull BA, Hauser R, Juul A, Bräuner EV. OUP accepted manuscript. Hum Reprod Update 2022; 28:687-716. [PMID: 35466359 PMCID: PMC9434240 DOI: 10.1093/humupd/dmac013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Globally, the ages at pubertal onset for girls and boys have been decreasing during recent decades, partly attributed to excess body fat accumulation. However, a growing body of literature has recognized that endocrine disrupting chemicals (EDCs) may play an important role in this global trend, but the association has not yet been fully established. OBJECTIVE AND RATIONALE EDCs can interfere with normal hormone function and metabolism and play a role in pubertal onset. We aimed to systematically identify and evaluate the current evidence on the timing of pubertal onset in girls and boys following prenatal or postnatal exposures to xenobiotic EDCs. SEARCH METHODS Following PRISMA guidelines, we performed a systematic literature search of original peer-reviewed publications in the PubMed database through a block search approach using a combination of index MeSH and free text search terms. Publications were considered if they covered biomarkers of prenatal or postnatal exposures to xenobiotic EDCs (European Commission's list of category 1 EDCs) measured in maternal or child biospecimen and pubertal onset defined by the progression of the following milestones (and assessed in terms of the following measures): menarche (age), thelarche (Tanner staging) and pubarche (Tanner staging), in girls, and genital stage (Tanner staging), testicular volume (ml) and pubarche (Tanner staging), in boys. OUTCOMES The literature search resulted in 703 references, of which we identified 52 publications fulfilling the eligibility criteria for the qualitative trend synthesis and 23 publications for the meta-analysis. The qualitative trend synthesis provided data on 103 combinations of associations between prenatal or postnatal exposure to EDC compounds groups and puberty outcomes and the meta-analysis enabled 18 summary risk estimates of meta-associations. WIDER IMPLICATIONS Statistically significant associations in the qualitative trend synthesis suggested that postnatal exposure to phthalates may be associated with earlier thelarche and later pubarche. However, we did not find consistent evidence in the meta-analysis for associations between timing of pubertal onset in girls and boys and exposures to any of the studied xenobiotic EDCs. We were not able to identify specific pre- or postnatal windows of exposure as particularly critical and susceptible for effects of EDCs. Current evidence is subject to several methodological challenges and inconsistencies and evidence on specific exposure-outcome associations remains too scarce to firmly confirm EDC exposure as a risk factor for changes in age of pubertal onset in the general child population. To create a more uniform foundation for future comparison of evidence and to strengthen pooled studies, we recommend the use of more standardized approaches in the choice of statistical analyses, with exposure transformations, and in the definitions and assessments of puberty outcomes. The impact of mixtures of EDC exposures on the association also remains unestablished and would be valuable to elucidate for prenatal and postnatal windows of exposure. Future large, longitudinal epidemiological studies are needed to clarify the overall association.
Collapse
Affiliation(s)
| | | | - Y -H Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - L S Gregersen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C S Olesen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A -M Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - B A Coull
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - R Hauser
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - A Juul
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| | - E V Bräuner
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| |
Collapse
|
19
|
Østergaard CS, Ernst A, Gaml-Sørensen A, Brix N, Toft G, Haervig KK, Hougaard KS, Bonde JP, Tøttenborg SS, Ramlau-Hansen CH. Use of paracetamol (acetaminophen) as a nonprescription analgesic and semen quality in young men: A cross-sectional study. Andrology 2021; 10:495-504. [PMID: 34779581 DOI: 10.1111/andr.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Paracetamol (acetaminophen) is a frequently used nonprescription analgesic with suggested endocrine-disrupting properties. Epidemiological evidence on the effect of paracetamol on male fecundity is sparse. OBJECTIVES To investigate if the use of paracetamol as an oral nonprescription mild analgesic was associated with semen quality in young men. MATERIALS AND METHODS This cross-sectional study was based on data from the Fetal Programming of Semen Quality (FEPOS; 2017-2019) cohort of 1058 young men (18-21 years) included in the Danish National Birth Cohort. Participants completed a comprehensive online questionnaire on health behavior including analgesic use and provided a semen sample. Negative binomial regression models were used to estimate the percentage differences (adjusted mean ratios [aMR]) in semen quality characteristics according to paracetamol use (no; yes) and frequency of use (almost never; <1/month; ≥1/month; ≥1/week). RESULTS In total, 28% of the 913 participants with available data reported the use of paracetamol within the last 6 months. We found a slightly higher total sperm count (aMR 1.13 95% CI [0.99-1.30]) in users compared to nonusers but other semen characteristics were unaffected. The frequency of use was suggestive of lower total sperm count and morphologically normal sperm cells primarily among users ≥1/week, however, CIs were wide. DISCUSSION We were unable to account for the underlying reason for paracetamol use, which may induce confounding by indication. Exposure misclassification due to recall is likely but probably nondifferential due to the participants' young age and unawareness of semen quality. Due to the rapid plasma half-life of paracetamol and few frequent users, it was not possible to conclude on potential high-dose effects. CONCLUSION Our findings do not suggest any strong detrimental effect of paracetamol use on semen quality within this sample of young Danish men. However, the effects of high dose and frequent use cannot be excluded.
Collapse
Affiliation(s)
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Gaml-Sørensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Katia Keglberg Haervig
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, Wilson VS, Gray LE. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. ENVIRONMENT INTERNATIONAL 2021; 156:106615. [PMID: 34000504 PMCID: PMC8380680 DOI: 10.1016/j.envint.2021.106615] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
21
|
Cripps SM, Mattiske DM, Pask AJ. Erectile Dysfunction in Men on the Rise: Is There a Link with Endocrine Disrupting Chemicals? Sex Dev 2021; 15:187-212. [PMID: 34134123 DOI: 10.1159/000516600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is one of the most prevalent chronic conditions affecting men. ED can arise from disruptions during development, affecting the patterning of erectile tissues in the penis and/or disruptions in adulthood that impact sexual stimuli, neural pathways, molecular changes, and endocrine signalling that are required to drive erection. Sexual stimulation activates the parasympathetic system which causes nerve terminals in the penis to release nitric oxide (NO). As a result, the penile blood vessels dilate, allowing the penis to engorge with blood. This expansion subsequently compresses the veins surrounding the erectile tissue, restricting venous outflow. As a result, the blood pressure localised in the penis increases dramatically to produce a rigid erection, a process known as tumescence. The sympathetic pathway releases noradrenaline (NA) which causes detumescence: the reversion of the penis to the flaccid state. Androgen signalling is critical for erectile function through its role in penis development and in regulating the physiological processes driving erection in the adult. Interestingly, estrogen signalling is also implicated in penis development and potentially in processes which regulate erectile function during adulthood. Given that endocrine signalling has a prominent role in erectile function, it is likely that exposure to endocrine disrupting chemicals (EDCs) is a risk factor for ED, although this is an under-researched field. Thus, our review provides a detailed description of the underlying biology of erectile function with a focus on the role of endocrine signalling, exploring the potential link between EDCs and ED based on animal and human studies.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Calvert L, Green MP, De Iuliis GN, Dun MD, Turner BD, Clarke BO, Eamens AL, Roman SD, Nixon B. Assessment of the Emerging Threat Posed by Perfluoroalkyl and Polyfluoroalkyl Substances to Male Reproduction in Humans. Front Endocrinol (Lausanne) 2021; 12:799043. [PMID: 35356147 PMCID: PMC8959433 DOI: 10.3389/fendo.2021.799043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Per-fluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated chemicals used widely in industry and consumer products. Due to their extensive use and chemical stability, PFAS are ubiquitous environmental contaminants and as such, form an emerging risk factor for male reproductive health. The long half-lives of PFAS is of particular concern as the propensity to accumulate in biological systems prolong the time taken for excretion, taking years in many cases. Accordingly, there is mounting evidence supporting a negative association between PFAS exposure and an array of human health conditions. However, inconsistencies among epidemiological and experimental findings have hindered the ability to definitively link negative reproductive outcomes to specific PFAS exposure. This situation highlights the requirement for further investigation and the identification of reliable biological models that can inform health risks, allowing sensitive assessment of the spectrum of effects of PFAS exposure on humans. Here, we review the literature on the biological effects of PFAS exposure, with a specific focus on male reproduction, owing to its utility as a sentinel marker of general health. Indeed, male infertility has increasingly been shown to serve as an early indicator of a range of co-morbidities such as coronary, inflammatory, and metabolic diseases. It follows that adverse associations have been established between PFAS exposure and the incidence of testicular dysfunction, including pathologies such as testicular cancer and a reduction in semen quality. We also give consideration to the mechanisms that render the male reproductive tract vulnerable to PFAS mediated damage, and discuss novel remediation strategies to mitigate the negative impact of PFAS contamination and/or to ameliorate the PFAS load of exposed individuals.
Collapse
Affiliation(s)
- Leah Calvert
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Mark P. Green
- School of BioSciences, Faculty of Science, University of Melbourne, VIC, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Matthew D. Dun
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Brett D. Turner
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
- Priority Research Centre for Geotechnical Science and Engineering, University of Newcastle, Callaghan, NSW, Australia
| | - Bradley O. Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew L. Eamens
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
| | - Shaun D. Roman
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|
23
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
24
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
25
|
Developmental, behavioral and endocrine alterations in male rats at early and late postnatal life following in utero exposure to low dose di- n-butylphthalate. Toxicol Res 2020; 37:173-181. [PMID: 33868975 DOI: 10.1007/s43188-020-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 10/23/2022] Open
Abstract
Environmental chemical pollutants that interfere with hormonal homeostasis or hormone signaling are the relevant agents inducing congenital or postnatally developed reproductive abnormalities in human beings, wild and domestic animals. In this study, we are examining reproductive effects of prenatal exposure of male rats to a low dose di-n-butylphthalate (DBP). Wistar female rats were given intragastrically DBP at a daily dose of 100 mg/kg b.w. during 15th-21st days of pregnancy. Anogenital distance (AGD) in male offspring decreased on postnatal day (PND) 2 followed by its normalization on PND 7 and 10. There were no other visible teratogenic lesions in the newborns. The testicle descent into scrotum of control males occurred on PND 38.5 ± 0.1, while in DBP group it accelerated by 5.3 days on the average. At the age of 6 months, DBP-exposed animals exhibited double increase of blood plasma testosterone level as compared to controls, and hyperactive male sexual behavior in the presence of receptive female. The duration of latent periods of the first mount and the first intromission, as well as post-ejaculatory refractory period, have been shortened; the number of mounts with intromission and the number of ejaculations increased significantly. Histological examination of the testes indicated activation of Leydig cells. The female-type sexual behavior as evaluated by appearance of lordosis of orchidectomized and primed with estradiol and progesterone 10-month-old males in response to mount or approach of sexually active normal male was enhanced in DBP-group. Both 10-month-old and aging males (18 months), castrated and hormone-primed, displayed homosexual type of behavior. Prenatal low dose DBP caused in 18-month-old males premature atrophy of the testes and accessory sexual glands, increased number of Leydig cell adenomas, a twice decrease of plasma testosterone level and exhausting of sexual potency. We concluded that prenatal exposition of male rats to low dose DBP determines epigenetic alterations of programming of sex brain differentiation and regulation of testicular steroidogenesis that leads to reproductive disorders and accelerated aging of reproductive system.
Collapse
|
26
|
Curtis SW, Gerkowicz SA, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Sex-specific DNA methylation differences in people exposed to polybrominated biphenyl. Epigenomics 2020; 12:757-770. [PMID: 32496131 PMCID: PMC7607410 DOI: 10.2217/epi-2019-0179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Aim: Michigan residents were exposed to polybrominated biphenyls (PBBs) when it was accidentally added to the food supply. Highly exposed individuals report sex-specific health problems, but the underlying biological mechanism behind these different health risks is not known. Materials and methods: DNA methylation in blood from 381 women and 277 men with PBB exposure was analyzed with the MethylationEPIC BeadChip. Results: 675 CpGs were associated with PBBs levels in males, while only 17 CpGs were associated in females (false discovery rate <0.05). No CpGs were associated in both sexes. These CpGs were enriched in different functional regions and transcription factor binding sites in each sex. Conclusion: Exposure to PBBs may have sex-specific effects on the epigenome that may underlie sex-specific adverse health outcomes.
Collapse
Affiliation(s)
- Sarah W Curtis
- Genetics & Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Sabrina A Gerkowicz
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Dawayland O Cobb
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Varun Kilaru
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Pediatrics Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Science, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Muncke J, Andersson AM, Backhaus T, Boucher JM, Carney Almroth B, Castillo Castillo A, Chevrier J, Demeneix BA, Emmanuel JA, Fini JB, Gee D, Geueke B, Groh K, Heindel JJ, Houlihan J, Kassotis CD, Kwiatkowski CF, Lefferts LY, Maffini MV, Martin OV, Myers JP, Nadal A, Nerin C, Pelch KE, Fernández SR, Sargis RM, Soto AM, Trasande L, Vandenberg LN, Wagner M, Wu C, Zoeller RT, Scheringer M. Impacts of food contact chemicals on human health: a consensus statement. Environ Health 2020; 19:25. [PMID: 32122363 PMCID: PMC7053054 DOI: 10.1186/s12940-020-0572-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 05/19/2023]
Abstract
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Justin M Boucher
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Barbara A Demeneix
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - Jorge A Emmanuel
- Institute of Environmental & Marine Sciences, Silliman University, Dumaguete, Philippines
| | - Jean-Baptiste Fini
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - David Gee
- Institute of Environment, Health and Societies, Brunel University, Uxbridge, UK
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia Groh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA, USA
| | - Jane Houlihan
- Healthy Babies Bright Futures, Charlottesville, V.A., USA
| | | | | | - Lisa Y Lefferts
- Center for Science in the Public Interest, Washington, DC, USA
| | | | - Olwenn V Martin
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences, Charlottesville, Virginia, USA
- Department of Chemistry, Carnegie, Mellon University, Pittsburgh, PA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, Elche, Spain
| | | | | | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Ikhlas S, Ahmad M. Acute and sub-acute bisphenol-B exposures adversely affect sperm count and quality in adolescent male mice. CHEMOSPHERE 2020; 242:125286. [PMID: 31896186 DOI: 10.1016/j.chemosphere.2019.125286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
Bisphenol-B (BPB), an analogue of bisphenol-A is used in the plastic industry. It has been found to leach from plastic containers leading to its contamination in canned food products. Moreover, it has also been detected in human samples such as sera and urine. BPB is recognized as a potential endocrine disrupting chemical owing to its estrogenic and anti-androgenic nature. Therefore, it was pertinent to study the effect of BPB exposure during the adolescence age (5-6 weeks old) in male mice. Weekly intraperitoneal injections of 5, 10 and 15% LD50 of BPB were given for 2 weeks to acute exposure groups and for 4 weeks to sub-acute exposure groups. BPB exposure induces change in enzymatic and non-enzymatic oxidative stress markers in sperm samples. DNA damage was also observed in sperm cells on acute and sub-acute exposures. Furthermore, BPB exposure led to a marked decline in sperm count and compromised sperm morphology. Computer assisted sperm analysis (CASA) revealed a significant decrease in sperm quality and progressive motility. Thus, both the acute and sub-acute exposures of adolescent male mice to BPB adversely affect the sperms' quality, functions and morphology.
Collapse
Affiliation(s)
- Shoeb Ikhlas
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
29
|
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020; 16:45-57. [PMID: 31719706 PMCID: PMC6902641 DOI: 10.1038/s41574-019-0273-8] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Laura N Vandenberg
- Department of Environmental Health Science, School of Public Health and Health Sciences, University of Masschusetts, Amherst, MA, USA
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - William Goodson
- California Pacific Medical Center Research Institute, Sutter Hospital, San Francisco, CA, USA
| | - Patience Browne
- Environmental Directorate, Organisation for Economic Co-operation and Development, Paris, France
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathryn Z Guyton
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Vincent J Cogliano
- Office of the Science Advisor, United States Environmental Protection Agency, Washington, DC, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Kenneth S Korach
- Receptor Biology, Section Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Science, Durham, NC, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - R Thomas Zoeller
- Biology Department, University of Masschusetts, Amherst, MA, USA
| |
Collapse
|
30
|
Kortenkamp A. Which chemicals should be grouped together for mixture risk assessments of male reproductive disorders? Mol Cell Endocrinol 2020; 499:110581. [PMID: 31525431 DOI: 10.1016/j.mce.2019.110581] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
There is concern about cumulative exposures to compounds that disrupt male sexual differentiation in foetal life, leading to irreversible effects in adulthood, including declines in semen quality, testes non-descent, malformations of the penis and testis cancer. Traditional chemical-by-chemical risk assessment approaches cannot capture the likely cumulative health risks. Past efforts of focusing on combinations of phthalates, a subgroup of chemicals suspected of contributing to these risks, do not go far enough, as they ignore the contribution of other types of chemicals. With the aim of providing criteria for the inclusion of additional chemicals in mixture risks assessments for male reproductive health, this paper examines the mechanisms of action of various chemicals capable of disrupting male sexual differentiation. An Adverse Outcome Pathway (AOP) network for malformations of the male reproductive system is constructed that includes new findings about the role of disruptions of prostaglandin signalling. This network is used to identify pathways that converge at critical nodal points to produce down-stream adverse effects. From this knowledge, combinations of chemicals with different mechanisms of action are predicted that should result in cumulative effects. These predictions are then mapped against evidence from experimental mixture studies with relevant combinations. From the outcome of this analysis it is concluded that cumulative assessment groups for male reproductive health risks should not only include phthalates but also comprise androgen receptor (AR) antagonists, chemicals capable of disrupting steroid synthesis, InsL3 production, prostaglandin signalling and co-planar polychlorinated dibenzo-dioxins together with other dioxin-like compounds. This list goes far beyond what has been suggested previously. A minimum set of chemicals to be assessed together with phthalates includes pesticides such as vinclozolin, prochloraz, procymidone, linuron, the pain killers paracetamol, aspirin and ibuprofen, pharmaceuticals such as finasteride, ketoconazole, and the lipid-lowering drug simvastin, poly-chlorinated dibenzo-dioxins and other dioxin-like pollutants and phenolics such as bisphenol A and butylparaben. AOP network analyses are essential to overcome difficulties in establishing groupings of chemicals for mixture risk assessments that derive from a narrow focus on mechanisms and modes of action.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Institute of Environment, Health and Societies, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
31
|
Rossitto M, Ollivier M, Déjardin S, Pruvost A, Brun C, Marchive C, Nguyen AL, Ghettas A, Keime C, de Massy B, Poulat F, Philibert P, Boizet-Bonhoure B. In utero exposure to acetaminophen and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. Commun Biol 2019; 2:310. [PMID: 31428698 PMCID: PMC6692356 DOI: 10.1038/s42003-019-0552-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesic drugs, such as acetaminophen (APAP), are frequently taken during pregnancy, even in combination. However, they can favour genital malformations in newborn boys and reproductive disorders in adults. Conversely, the consequences on postnatal ovarian development and female reproductive health after in utero exposure are unknown. Here, we found that in mice, in utero exposure to therapeutic doses of the APAP-ibuprofen combination during sex determination led to delayed meiosis entry and progression in female F1 embryonic germ cells. Consequently, follicular activation was reduced in postnatal ovaries through the AKT/FOXO3 pathway, leading in F2 animals to subfertility, accelerated ovarian aging with abnormal corpus luteum persistence, due to decreased apoptosis and increased AKT-mediated luteal cell survival. Our study suggests that administration of these drugs during the critical period of sex determination could lead in humans to adverse effects that might be passed to the offspring.
Collapse
Affiliation(s)
- Moïra Rossitto
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Margot Ollivier
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Service de Chirurgie et Urologie Pédiatrique, Hôpital Lapeyronie CHU Montpellier, Centre de Référence Maladies Rares Développement Génital, Montpellier, France
| | - Stéphanie Déjardin
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Alain Pruvost
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Christine Brun
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Candice Marchive
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Anvi Laetitia Nguyen
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Aurélie Ghettas
- Service de Pharmacologie et d’Immunoanalyse (SPI), plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, Gif sur Yvette, France
| | - Céline Keime
- IGBMC, Centre National de la Recherche Scientifique, Université de Strasbourg/INSERM, Illkirch, France
| | - Bernard de Massy
- Meiosis and Recombination, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Francis Poulat
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Pascal Philibert
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
- Département de Biochimie et Hormonologie, Hôpital Lapeyronie, CHU de Montpellier, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Development and Pathology of the Gonad, IGH, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
32
|
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front Endocrinol (Lausanne) 2019; 10:224. [PMID: 31040821 PMCID: PMC6476933 DOI: 10.3389/fendo.2019.00224] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sertoli cells are somatic cells present in seminiferous tubules which have essential roles in regulating spermatogenesis. Considering that each Sertoli cell is able to support a limited number of germ cells, the final number of Sertoli cells reached during the proliferative period determines sperm production capacity. Only immature Sertoli cells, which have not established the blood-testis barrier, proliferate. A number of hormonal cues regulate Sertoli cell proliferation. Among them, FSH, the insulin family of growth factors, activin, and cytokines action must be highlighted. It has been demonstrated that cAMP/PKA, ERK1/2, PI3K/Akt, and mTORC1/p70SK6 pathways are the main signal transduction pathways involved in Sertoli cell proliferation. Additionally, c-Myc and hypoxia inducible factor are transcription factors which participate in the induction by FSH of various genes of relevance in cell cycle progression. Cessation of proliferation is a pre-requisite to Sertoli cell maturation accompanied by the establishment of the blood-testis barrier. With respect to this barrier, the participation of androgens, estrogens, thyroid hormones, retinoic acid and opioids has been reported. Additionally, two central enzymes that are involved in sensing cell energy status have been associated with the suppression of Sertoli cell proliferation, namely AMPK and Sirtuin 1 (SIRT1). Among the molecular mechanisms involved in the cessation of proliferation and in the maturation of Sertoli cells, it is worth mentioning the up-regulation of the cell cycle inhibitors p21Cip1, p27Kip, and p19INK4, and of the gap junction protein connexin 43. A decrease in Sertoli cell proliferation due to administration of certain therapeutic drugs and exposure to xenobiotic agents before puberty has been experimentally demonstrated. This review focuses on the hormones, locally produced factors, signal transduction pathways, and molecular mechanisms controlling Sertoli cell proliferation and maturation. The comprehension of how the final number of Sertoli cells in adulthood is established constitutes a pre-requisite to understand the underlying causes responsible for the progressive decrease in sperm production that has been observed during the last 50 years in humans.
Collapse
|
33
|
Conley JM, Lambright CS, Evans N, Cardon M, Furr J, Wilson VS, Gray LE. Mixed "Antiandrogenic" Chemicals at Low Individual Doses Produce Reproductive Tract Malformations in the Male Rat. Toxicol Sci 2018; 164:166-178. [PMID: 29945228 PMCID: PMC6677127 DOI: 10.1093/toxsci/kfy069] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biomonitoring efforts have clearly shown that all humans are exposed to chemical mixtures. Of concern is whether or not exposure to mixtures during pregnancy contributes to congenital abnormalities in children even when each chemical is at an individual dose that does not affect the fetus. Here, we hypothesized that in utero exposure to a mixture of chemicals covering multiple "antiandrogenic" mechanisms of action at doses that individually have no adverse effect would result in permanent reproductive tract alterations in the male rat after birth. Pregnant dams were exposed to a range of dilutions (100%, 50%, 25%, 12.5%, 6.25%, or vehicle control) of a mixture containing pesticides, phthalates, and drugs (p, p'-DDE, linuron, prochloraz, procymidone, pyrifluquinazon, vinclozolin, finasteride, flutamide, simvastatin, and 9 phthalates [dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl]). The top dose contained each chemical at 20% of its lowest observed adverse effect level (LOAEL) for the most sensitive male reproductive alteration following in utero exposure. We found that male rat offspring displayed a variety of neonatal, pubertal, and permanent adult effects across all dose levels. Even at the lowest dose (each chemical approximately 80-fold below lowest observed adverse effect level) there were permanent reductions in several reproductive tract tissue weights. In the top dose group, 100% of male offspring displayed permanent severe birth defects including genital malformations. Despite acting via 5 different molecular initiating events, a mixture of 18 chemicals can combine to produce additive effects even when each compound is at is at a relatively low dose.
Collapse
Affiliation(s)
- Justin M. Conley
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Christy S. Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Nicki Evans
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - Johnathan Furr
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
- Southern Research, Birmingham, AL 35205
| | - Vickie S. Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| | - L. Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division, Research Triangle Park, NC 27711
| |
Collapse
|