1
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Perez SM, Elam HB, McCoy AM, Boley AM, Eassa NE, Lodge DJ. Congenital blindness does not protect against a schizophrenia-related phenotype in rodents. Schizophr Res 2023; 258:1-8. [PMID: 37364392 PMCID: PMC10529675 DOI: 10.1016/j.schres.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/11/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND In 1950, Drs. Chevigny and Braverman authored a book about people's attitudes and prejudices toward the blind, noting that out of the thousands of schizophrenia patients they and others had treated, not one was blind. This led some to the intriguing hypothesis that congenital blindness may provide protection against schizophrenia. In this study, we directly examined whether congenital blindness protects against a schizophrenia-related phenotype in the methylazoxymethanol acetate (MAM) rodent model. DESIGN Enucleation surgeries were performed on pups of MAM- or saline-treated rats on post-natal day 10. Once pups reached adulthood, male and female rats were evaluated for schizophrenia-like phenotypes using behavioral and electrophysiological measures. Consistent with previous work, MAM-treated rats display elevated dopamine neuron population activity, deficits in pre-pulse inhibition of startle, and hypersensitivity to psychomotor stimulants. RESULTS Blindness did not protect against any of the MAM-induced phenotypes. Surprisingly, blindness in saline-treated rats caused changes in behavior and dopamine neuron activity. To examine the circadian rhythms of enucleated rats, we performed non-invasive measurements of corticosterone, a steroid hormone known to vary across the light/dark period, revealing blind rats display aberrant (non-cycling) corticosterone levels. CONCLUSIONS Alterations in dopamine neuron activity and associated behaviors observed in blind rats are likely secondary to aberrant circadian regulation. This is the first preclinical study examining whether congenital blindness protects against a schizophrenia-like phenotype. While support of this hypothesis would have led to novel avenues of research and potential novel therapies, the results of current study suggest that blindness does not protect against schizophrenia.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA.
| | - Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Alexandra M McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Nicole E Eassa
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| |
Collapse
|
3
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
4
|
Giral M, Armengol C, Gavaldà A. Physiologic Effects of Housing Rats in Metabolic Cages. Comp Med 2022; 72:298-305. [PMID: 36127131 PMCID: PMC9827597 DOI: 10.30802/aalas-cm-22-000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, metabolic cages (MC) are the only way to achieve serial sampling of urine and feces in rodents. However, the use of this caging creates a dramatic change from an animal's usual microenvironment. Here we sought to examine the effect of MC on physiologic parameters that are stress-responsive in rats. We surgically implanted 8 male Wistar rats (weight, 150 to 175 g) with telemetric transmitters and allowed them to recover for at least 2 wk. At the beginning of the study, the rats were moved to conventional open-top cages, and telemetry recording was initiated. After 24 h, the rats were moved to MC or to another conventional cage and the recording continued for another 24 h. Finally, the rats were returned to their home cages, and telemetry recording was performed for a final 24 h. After 10 days, this process was then repeated, with MC and conventional assignments switched. During the 78-h monitoring period, we recorded heart rate, arterial blood pressure, locomotor activity, body weight, and food and water consumption. Heart rate and arterial blood pressure showed transient but significant changes. Locomotor activity during the dark phase was greatly decreased in MC compared with conventional cages, perhaps due to space constraints. In addition, when the rats were housed in MC, they showed a small but significant weight loss. Food consumption did not differ between housing environments, but water consumption was lower when rats were in MC. In conclusion, the housing of rats in MC for 24 h can elicit mild and reversible cardiovascular changes. This finding is consistent with European Directive 2010/63/EU, which considers short-term (less than 24 h) restraint in MC a procedure of mild severity.
Collapse
Affiliation(s)
- Marta Giral
- Animal Research Facilities,,Corresponding author.
| | | | | |
Collapse
|
5
|
Russo G, Helluy X, Behroozi M, Manahan-Vaughan D. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents. Front Neurosci 2022; 15:805679. [PMID: 34992520 PMCID: PMC8724036 DOI: 10.3389/fnins.2021.805679] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.
Collapse
Affiliation(s)
- Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
6
|
Cinque C, Williams NM, Bencini C, Cozzolino R. Adverse weather conditions reduce food availability and increase glucocorticoid metabolite levels in barn swallow nestlings. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Carlo Cinque
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Nicholas Moray Williams
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Cristina Bencini
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| | - Roberto Cozzolino
- C. Cinque (https://orcid.org/0000-0001-5612-641X) ✉ , N. M. Williams, C. Bencini and R. Cozzolino, Fondazione Ethoikos, Convento dell'Osservanza, Radicondoli, Italy
| |
Collapse
|
7
|
Sleep loss mediates the effect of stress on nitrergic signaling in female mice. Neurosci Lett 2020; 740:135362. [PMID: 33166635 PMCID: PMC10084941 DOI: 10.1016/j.neulet.2020.135362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) has been implicated as an important neurotransmitter in stress responses and sleep regulatory processes. However, the role of NO in the relationship between stress and sleep remains unclear. The medial septum (MS) and vertical diagonal band (VDB), regions of the basal forebrain involved in sleep regulation, contain nitric oxide synthase (NOS) producing neurons. Additionally, NOS neurons in the dorsal raphe nucleus (DRN) encode information about stress duration. The role of nitrergic neurons in these regions in subserving sex-specific responses to stress and sleep loss has yet to be elucidated. In this study, NADPH-d, an index of NOS activity, was used to examine the effects of acute restraint stress and sleep loss on NOS activity in the MS, VDB, and DRN. We show that NOS activity in response to restraint stress, total sleep deprivation (TSD), and partial sleep restriction (PSR) differs based on sex and region. Initial analysis showed no effect of restraint stress or TSD on NOS activity in the basal forebrain. However, investigation of each sex separately revealed that restraint stress and TSD significantly decrease NOS activity in the MS of females, but not males. Interestingly, the difference in NOS activity between restraint stress and TSD in females was not significant. Furthermore, PSR was not sufficient to affect NOS activity in males or females. These data suggest that restraint stress and sleep loss regulate NOS activation in a sex-dependent manner, and that the NOS stress response in females may be mediated by sleep loss.
Collapse
|
8
|
Subordination in female rats impedes learning as determined by a judgment bias training protocol. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Kunczik J, Barbosa Pereira C, Zieglowski L, Tolba R, Wassermann L, Häger C, Bleich A, Janssen H, Thum T, Czaplik M. Remote vitals monitoring in rodents using video recordings. BIOMEDICAL OPTICS EXPRESS 2019; 10:4422-4436. [PMID: 31565499 PMCID: PMC6757452 DOI: 10.1364/boe.10.004422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Laboratory animal research was always crucial for scientific breakthroughs in the fields of medicine and biology. Animal trials offer insights into various disease mechanisms, genetics, drug therapy and the effect of different external factors onto living organisms. However, conducting animal trials is highly controversial. To ensure high ethical standards, a number of directives have been adopted in the European Union, which seek to replace, reduce and refine animal trials. Hence, severity assessment plays an important role in today's laboratory animal research. Currently, severity of trials is assessed by highly rater dependent scoring systems. In this paper, we propose a method for unobtrusive, automated and contactless measurement of respiratory rate (RR) and heart rate (HR). We were able to extract RR and HR with an high agreement between our method and a contact-based reference method. The Root Mean Squared Error (RMSE) averaged 0.32 ± 0.11 breaths/min for RR and 1.28 ± 0.62 beats/min for HR in rats, respectively. In mice, the RMSE averaged 1.42 ± 0.97 breaths/min for RR and 1.36 ± 0.87 beats/min, respectively. In the future, these parameters can be used for new, objective scoring systems, which are not susceptible to inter-rater variability.
Collapse
Affiliation(s)
- Janosch Kunczik
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Carina Barbosa Pereira
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Leonie Zieglowski
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Laura Wassermann
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Janssen
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Excellence Cluster REBIRTH, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Czaplik
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| |
Collapse
|
10
|
Murthy S, Gould E. Early Life Stress in Rodents: Animal Models of Illness or Resilience? Front Behav Neurosci 2018; 12:157. [PMID: 30108490 PMCID: PMC6079200 DOI: 10.3389/fnbeh.2018.00157] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
11
|
Lakin R, Guzman C, Izaddoustdar F, Polidovitch N, Goodman JM, Backx PH. Changes in Heart Rate and Its Regulation by the Autonomic Nervous System Do Not Differ Between Forced and Voluntary Exercise in Mice. Front Physiol 2018; 9:841. [PMID: 30061838 PMCID: PMC6055008 DOI: 10.3389/fphys.2018.00841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Most exercise studies in mice have relied on forced training which can introduce psychological stress. Consequently, the utility of mouse models for understanding exercise-mediated effects in humans, particularly autonomic nervous system (ANS) remodeling, have been challenged. We compared the effects of voluntary free-wheel running vs. non-voluntary swimming on heart function in mice with a focus on the regulation of heart rate (HR) by the ANS. Under conditions where the total excess O2 consumption associated with exercise was comparable, the two exercise models led to similar improvements in ventricular function as well as comparable reductions in HR and its control by parasympathetic nervous activity (PNA) and sympathetic nervous activity (SNA), compared to sedentary mice. Both exercise models also increased HR variability (HRV) by similar amounts, independent of HR reductions. In all mice, HRV depended primarily on PNA, with SNA weakly affecting HRV at low frequencies. The differences in both HR and HRV between exercised vs. sedentary mice were eliminated by autonomic blockade, consistent with the similar intrinsic beating rates observed in atria isolated from exercised vs. sedentary mice. In conclusion, both forced and voluntary exercise induce comparable ventricular physiological remodeling as well as HR reductions and HR-independent enhancements of HRV which were both primarily dependent on increased PNA. New and noteworthy -No previous mouse studies have compared the effects of forced and voluntary exercise on the heart function and its modulation by the autonomic nervous system (ANS).-Both voluntary free-wheel running and forced swimming induced similar improvements in ventricular contractile function, reductions in heart rate (HR) and enhancements of HR variability (HRV).-HR regulation in exercised mice was linked to increased parasympathetic nerve activity and reduced sympathetic nerve activity.- HRV was independent of HR and depended primarily on PNA in both exercised and sedentary mice.- Complete cardiac autonomic blockade eliminated differences in both HR and HRV between exercised and sedentary mice.
Collapse
Affiliation(s)
- Robert Lakin
- Department of Exercise Sciences, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Camilo Guzman
- Department of Biology, York University, Toronto, ON, Canada
| | - Farzad Izaddoustdar
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Nazari Polidovitch
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Jack M Goodman
- Department of Exercise Sciences, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada
| | - Peter H Backx
- Division of Cardiology, Mount Sinai Hospital, University Health Network, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|