1
|
Zacharia SS, Thomas R, Johnson JT, Kapoor N, Ramanathan S, Asha HS, Cherian KE, Paul TV. Neuroendocrine challenges and clinical outcomes in men with chronic traumatic brain injury: a cross-sectional study. Pituitary 2024; 27:693-704. [PMID: 39073696 DOI: 10.1007/s11102-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Marked changes in the hypothalamic-pituitary axis have been documented in patients with traumatic brain injury (TBI). These enduring endocrine challenges could significantly influence the physical and psychological outcomes thereby impacting overall recovery. This study aimed to determine the prevalence and types of endocrine dysfunction in men with chronic TBI and to determine the association of endocrine dysfunction with clinical outcomes. METHODOLOGY A cross-sectional study that included male participants of 25-45 years (N = 66) with moderate to severe TBI within 6-24 months of injury. Serum Cortisol, Free T4, TSH, Luteinizing hormone, Testosterone, ACTH, Prolactin and IGF-1 were assessed. Glasgow Outcome Scale Extended (GOS-E) and Modified Barthel Index (MBI) scores were also assessed in them. RESULTS The study cohort comprised male patients with a mean ± age of 32.8 ± 5.7 years. Low IGF-1 levels were most commonly encountered, followed by hypogonadism. Hypopituitarism was present in 56.1%. The proportion of hypogonadism was significantly higher in the group with moderate-total dependence (13/26) as compared to the functionally independent (8/40) group (50% vs. 20%; P = 0.011). Univariate and multivariate logistic regression analysis was used to determine the factors associated with hypopituitarism, revealing that severity of injury (OR = 2.6;) and GOS-E (OR = 3.1) were significant (P < 0.10) on univariate analysis. CONCLUSIONS This study emphasizes the need to screen TBI patients for neuroendocrine dysfunction during the chronic phases and to establish screening criteria.
Collapse
Affiliation(s)
- Saumya Susan Zacharia
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Raji Thomas
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Johns T Johnson
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, 632 004, Tamil Nadu, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, 632 004, Tamil Nadu, India
| | - Saraswathi Ramanathan
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
- Department of Physical Medicine and Rehabilitation, Sheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Hesarghatta S Asha
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, 632 004, Tamil Nadu, India
| | - Kripa Elizabeth Cherian
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, 632 004, Tamil Nadu, India.
| | - Thomas V Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, 632 004, Tamil Nadu, India
| |
Collapse
|
2
|
Taylor MA, Kokiko-Cochran ON. Context is key: glucocorticoid receptor and corticosteroid therapeutics in outcomes after traumatic brain injury. Front Cell Neurosci 2024; 18:1351685. [PMID: 38529007 PMCID: PMC10961349 DOI: 10.3389/fncel.2024.1351685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health burden, and survivors suffer functional and psychiatric consequences that can persist long after injury. TBI induces a physiological stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis, but the effects of injury on the stress response become more complex in the long term. Clinical and experimental evidence suggests long lasting dysfunction of the stress response after TBI. Additionally, pre- and post-injury stress both have negative impacts on outcome following TBI. This bidirectional relationship between stress and injury impedes recovery and exacerbates TBI-induced psychiatric and cognitive dysfunction. Previous clinical and experimental studies have explored the use of synthetic glucocorticoids as a therapeutic for stress-related TBI outcomes, but these have yielded mixed results. Furthermore, long-term steroid treatment is associated with multiple negative side effects. There is a pressing need for alternative approaches that improve stress functionality after TBI. Glucocorticoid receptor (GR) has been identified as a fundamental link between stress and immune responses, and preclinical evidence suggests GR plays an important role in microglia-mediated outcomes after TBI and other neuroinflammatory conditions. In this review, we will summarize GR-mediated stress dysfunction after TBI, highlighting the role of microglia. We will discuss recent studies which target microglial GR in the context of stress and injury, and we suggest that cell-specific GR interventions may be a promising strategy for long-term TBI pathophysiology.
Collapse
Affiliation(s)
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Van Mieghem E, De Block C, De Herdt C. Idiopathic isolated adrenocorticotropic hormone deficiency: a systematic review of a heterogeneous and underreported disease. Pituitary 2024; 27:23-32. [PMID: 38151529 DOI: 10.1007/s11102-023-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Isolated adrenocorticotropic hormone deficiency (IAD) is considered to be a rare disease. Due to the nonspecific clinical presentation, precise data on the prevalence and incidence are lacking. In this systematic review, we aimed to analyse the clinical characteristics, association with autoimmune diseases, and management of acquired idiopathic IAD cases. A structured search was conducted after developing a search strategy combining terms for acquired (idiopathic) IAD. Articles describing an adult case with a diagnosis of ACTH deficiency using dynamic testing, no deficiency of other pituitary axes, and MRI of the brain/pituitary protocolled as normal, were included. Exclusion criteria were cases describing congenital IAD, cases with another aetiology for IAD, and articles where full text was not available. In total 42 articles were included, consisting of 85 cases of acquired idiopathic IAD. Distribution by sex was approximately equal (F:M; 47:38). Lethargy was the most common presenting symptom (38%), followed by weight loss (25%), anorexia (22%), and myalgia/arthralgia (12%). Eight cases (9.5%) presented with an Addison crisis. 31% of cases had an autoimmune disease at diagnosis of which Hashimoto hypothyroidism was the most frequent. Data about follow-up was scarce; dynamic testing was repeated in 4 cases of which 2 showed recovery of the adrenal axis. We report the largest case series of acquired idiopathic IAD to date. Our systematic review highlights the lack of a clear definition and diagnostic work-up. Based on the findings in this review a proposition is made for a flowchart to diagnose acquired idiopathic IAD.
Collapse
Affiliation(s)
- E Van Mieghem
- Department of Endocrinology, Diabetology and Metabolism, Faculty of Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium
| | - C De Block
- Department of Endocrinology, Diabetology and Metabolism, Faculty of Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
| | - C De Herdt
- Department of Endocrinology, Diabetology and Metabolism, Faculty of Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium.
| |
Collapse
|
4
|
Mahajan C, Prabhakar H, Bilotta F. Endocrine Dysfunction After Traumatic Brain Injury: An Ignored Clinical Syndrome? Neurocrit Care 2023; 39:714-723. [PMID: 36788181 PMCID: PMC10689524 DOI: 10.1007/s12028-022-01672-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023]
Abstract
Traumatic brain injury (TBI) incurs substantial health and economic burden, as it is the leading reason for death and disability globally. Endocrine abnormalities are no longer considered a rare complication of TBI. The reported prevalence is variable across studies, depending on the time frame of injury, time and type of testing, and variability in hormonal values considered normal across different studies. The present review reports evidence on the endocrine dysfunction that can occur after TBI. Several aspects, including the pathophysiological mechanisms, clinical consequences/challenges (in the acute and chronic phases), screening and diagnostic workup, principles of therapeutic management, and insights on future directions/research agenda, are presented. The management of hypopituitarism following TBI involves hormonal replacement therapy. It is essential for health care providers to be aware of this complication because at times, symptoms may be subtle and may be mistaken to be caused by brain injury itself. There is a need for stronger evidence for establishing recommendations for optimum management so that they can be incorporated as standard of care in TBI management.
Collapse
Affiliation(s)
- Charu Mahajan
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Federico Bilotta
- Department of Anesthesiology, Policlinico UmbertoI Hospital, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Devoto C, Vorn R, Mithani S, Meier TB, Lai C, Broglio SP, McAllister T, Giza CC, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz K, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, Turtzo C, Latour L, McCrea MA, Gill JM. Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts. Front Neurol 2023; 14:1202967. [PMID: 37662031 PMCID: PMC10470112 DOI: 10.3389/fneur.2023.1202967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Objective The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.
Collapse
Affiliation(s)
- Christina Devoto
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Sara Mithani
- School of Nursing, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher C. Giza
- Departments of Pediatrics and Neurosurgery, UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kenneth L. Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Kevin Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Brooks
- Department of Orthopedics and Sports Medicine, University of Wisconsin, Madison, WI, United States
| | - Stefan Duma
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul Pasquina
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Mavroudis I, Chatzikonstantinou S, Petridis F, Palade OD, Ciobica A, Balmus IM. Functional Overlay Model of Persistent Post-Concussion Syndrome. Brain Sci 2023; 13:1028. [PMID: 37508960 PMCID: PMC10377031 DOI: 10.3390/brainsci13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Persistent post-concussion syndrome (PPCS) is a complex and debilitating condition that can develop after head concussions or mild traumatic brain injury (mTBI). PPCS is characterized by a wide range of symptoms, including headaches, dizziness, fatigue, cognitive deficits, and emotional changes, that can persist for months or even years after the initial injury. Despite extensive research, the underlying mechanisms of PPCS are still poorly understood; furthermore, there are limited resources to predict PPCS development in mTBI patients and no established treatment. Similar to PPCS, the etiology and pathogenesis of functional neurological disorders (FNDs) are not clear neither fully described. Nonspecific multifactorial interactions that were also seen in PPCS have been identified as possible predispositions for FND onset and progression. Thus, we aimed to describe a functional overlay model of PPCS that emphasizes the interplay between functional and structural factors in the development and perpetuation of PPCS symptoms. Our model suggests that the initial brain injury triggers a cascade of physiological and psychological processes that disrupt the normal functioning of the brain leading to persistent symptoms. This disruption can be compounded by pre-existing factors, such as genetics, prior injury, and psychological distress, which can increase the vulnerability to PPCS. Moreover, specific interventions, such as cognitive behavioral therapy, neurofeedback, and physical exercise can target the PPCS treatment approach. Thus, the functional overlay model of PPCS provides a new framework for understanding the complex nature of this condition and for developing more effective treatments. By identifying and targeting specific functional factors that contribute to PPCS symptoms, clinicians and researchers can improve the diagnosis, management, and ultimately, outcomes of patients with this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | | | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Octavian Dragos Palade
- Surgical Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| |
Collapse
|
7
|
Wexler TL, Reifschneider K, Backeljauw P, Cárdenas JF, Hoffman AR, Miller BS, Yuen KCJ. Growth Hormone Deficiency following Traumatic Brain Injury in Pediatric and Adolescent Patients: Presentation, Treatment, and Challenges of Transitioning from Pediatric to Adult Services. J Neurotrauma 2023. [PMID: 36825511 DOI: 10.1089/neu.2022.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) is increasingly recognized, with an incidence of approximately 110 per 100,000 in pediatric populations and 618 per 100,000 in adolescent and adult populations. TBI often leads to cognitive, behavioral, and physical consequences, including endocrinopathies. Deficiencies in anterior pituitary hormones (e.g., adrenocorticotropic hormone, thyroid-stimulating hormone, gonadotropins, and growth hormone [GH]) can negatively impact health outcomes and quality of life post-TBI. This review focuses on GH deficiency (GHD), the most common post-TBI pituitary hormone deficiency. GHD is associated with abnormal body composition, lipid metabolism, bone mineral density, executive brain functions, behavior, and height outcomes in pediatric, adolescent, and transition-age patients. Despite its relatively frequent occurrence, post-TBI GHD has not been well studied in these patients; hence, diagnostic and treatment recommendations are limited. Here, we examine the occurrence and diagnosis of TBI, retrospectively analyze post-TBI hypopituitarism and GHD prevalence rates in pediatric and adolescent patients, and discuss appropriate GHD testing strategies and GH dosage recommendations for these patients. We place particular emphasis on the ways in which testing and dosage recommendations may change during the transition phase. We conclude with a review of the challenges faced by transition-age patients and how these may be addressed to improve access to adequate healthcare. Little information is currently available to help guide patients with TBI and GHD through the transition phase and there is a risk of interrupted care; therefore, a strength of this review is its emphasis on this critical period in a patient's healthcare journey.
Collapse
Affiliation(s)
- Tamara L Wexler
- Department of Rehabilitation Medicine, NYU Langone Health, New York, New York, USA
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kent Reifschneider
- Children's Hospital of The King's Daughters, Eastern Virginia Medical Center, Norfolk, Virginia, USA
| | - Philippe Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Javier F Cárdenas
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| | - Andrew R Hoffman
- Department of Medicine, Division of Endocrinology, Metabolism and Gerontology, Stanford University School of Medicine, Stanford, California, USA
| | - Bradley S Miller
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Vlad RM, Albu AI, Nicolaescu ID, Dobritoiu R, Carsote M, Sandru F, Albu D, Păcurar D. An Approach to Traumatic Brain Injury-Related Hypopituitarism: Overcoming the Pediatric Challenges. Diagnostics (Basel) 2023; 13:diagnostics13020212. [PMID: 36673021 PMCID: PMC9857786 DOI: 10.3390/diagnostics13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism is a rare polymorphic complication of brain injury, with very little data, particularly concerning children and teenagers. This is a comprehensive review of the literature regarding this pathology, starting from a new pediatric case. The research was conducted on PubMed and included publications from the last 22 years. We identified nine original studies on the pediatric population (two case reports and seven studies; only four of these seven were prospective studies). TBI-related hypopituitarism is associated with isolated hormonal deficits ranging from 22.5% to 86% and multiple hormonal deficiencies from 5.9% to 50% in the studied pediatric population. Growth hormone (GH) deficiency is most often found, including the form with late occurrence after TBI; it was described as persistent in half of the studies. Thyroid-stimulating hormone (TSH) deficiency is identified as a distant complication following TBI; in all three studies, we identified this complication was found to be permanent. Adrenocorticotropic hormone (ACTH) deficiency did not relate to a certain type of brain trauma, and it was transient in reported cases. Hyperprolactinemia was the most frequent hormonal finding, also occurring late after injury. Central diabetes insipidus was encountered early post-TBI, typically with a transient pattern and did not relate to a particular type of injury. TBI-related hypopituitarism, although rare in children, should be taken into consideration even after a long time since the trauma. A multidisciplinary approach is needed if the patient is to safely overcome any acute condition.
Collapse
Affiliation(s)
- Raluca Maria Vlad
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (R.M.V.); (A.I.A.); Tel.: +40-722451462 (R.M.V.); +40-723886967 (A.I.A.)
| | - Alice Ioana Albu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Elias” Emergency Clinical Hospital, 011461 Bucharest, Romania
- Correspondence: (R.M.V.); (A.I.A.); Tel.: +40-722451462 (R.M.V.); +40-723886967 (A.I.A.)
| | | | - Ruxandra Dobritoiu
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Dragos Albu
- 2nd Clinical Department Obstetrics Gynecology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Păcurar
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Prencipe N, Marinelli L, Varaldo E, Cuboni D, Berton AM, Bioletto F, Bona C, Gasco V, Grottoli S. Isolated anterior pituitary dysfunction in adulthood. Front Endocrinol (Lausanne) 2023; 14:1100007. [PMID: 36967769 PMCID: PMC10032221 DOI: 10.3389/fendo.2023.1100007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypopituitarism is defined as a complete or partial deficiency in one or more pituitary hormones. Anterior hypopituitarism includes secondary adrenal insufficiency, central hypothyroidism, hypogonadotropic hypogonadism, growth hormone deficiency and prolactin deficiency. Patients with hypopituitarism suffer from an increased disability and sick days, resulting in lower health status, higher cost of care and an increased mortality. In particular during adulthood, isolated pituitary deficits are not an uncommon finding; their clinical picture is represented by vague symptoms and unclear signs, which can be difficult to properly diagnose. This often becomes a challenge for the physician. Aim of this narrative review is to analyse, for each anterior pituitary deficit, the main related etiologies, the characteristic signs and symptoms, how to properly diagnose them (suggesting an easy and reproducible step-based approach), and eventually the treatment. In adulthood, the vast majority of isolated pituitary deficits are due to pituitary tumours, head trauma, pituitary surgery and brain radiotherapy. Immune-related dysfunctions represent a growing cause of isolated pituitary deficiencies, above all secondary to use of oncological drugs such as immune checkpoint inhibitors. The diagnosis of isolated pituitary deficiencies should be based on baseline hormonal assessments and/or dynamic tests. Establishing a proper diagnosis can be quite challenging: in fact, even if the diagnostic methods are becoming increasingly refined, a considerable proportion of isolated pituitary deficits still remains without a certain cause. While isolated ACTH and TSH deficiencies always require a prompt replacement treatment, gonadal replacement therapy requires a benefit-risk evaluation based on the presence of comorbidities, age and gender of the patient; finally, the need of growth hormone replacement therapies is still a matter of debate. On the other side, prolactin replacement therapy is still not available. In conclusion, our purpose is to offer a broad evaluation from causes to therapies of isolated anterior pituitary deficits in adulthood. This review will also include the evaluation of uncommon symptoms and main etiologies, the elements of suspicion of a genetic cause and protocols for diagnosis, follow-up and treatment.
Collapse
|
10
|
Yuen KCJ, Masel B, Jaffee MS, O'Shanick G, Wexler TL, Reifschneider K, Urban RJ, Hoang S, Kelepouris N, Hoffman AR. A consensus on optimization of care in patients with growth hormone deficiency and mild traumatic brain injury. Growth Horm IGF Res 2022; 66:101495. [PMID: 35933894 DOI: 10.1016/j.ghir.2022.101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE/DESIGN Approximately 2.9 million children and adults in the US experience traumatic brain injuries (TBIs) annually, most of which are considered mild. TBI can induce varying consequences on pituitary function, with growth hormone deficiency (GHD) among the more commonly reported conditions. Panels of pediatric and adult endocrinologists, neurologists, physical medicine and rehabilitation specialists, and neuropsychologists convened in February and October 2020 to discuss ongoing challenges and provide strategies for detection and optimal management of patients with mild TBI and GHD. RESULTS Difficulties include a low rate of seeking medical attention in the population, suboptimal screening tools, cost and complexity of GHD testing, and a lack of consensus regarding when to test or retest for GHD. Additionally, referrals to endocrinologists from other specialists are uncommon. Recommendations from the panels for managing such patients included multidisciplinary guidelines on the diagnosis and management of post-TBI GHD and additional education on long-term metabolic and probable cognitive benefits of GH replacement therapy. CONCLUSION As patients of all ages with mild TBI may develop GHD and/or other pituitary deficiencies, a multidisciplinary approach to provide education to endocrinologists, neurologists, neurosurgeons, traumatologists, and other providers and guidelines for the early identification and management of persistent mild TBI-related GHD are urgently needed.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, USA
| | - Brent Masel
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael S Jaffee
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Tamara L Wexler
- Rusk Rehabilitation, NYU Langone Health, New York, NY, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kent Reifschneider
- Division of Endocrinology, Children's Hospital of The King's Daughters, Norfolk, VA, USA
| | - Randall J Urban
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Andrew R Hoffman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Aungkawattanapong N, Jakchai K, Tempark T, Bongsebandhu-Phubhakdi C. Recurrent hypoglycemic seizure as a presenting symptom of post-TBI hypopituitarism in children: a case report, review and proposed protocol. J Pediatr Endocrinol Metab 2022; 35:1078-1088. [PMID: 35860974 DOI: 10.1515/jpem-2022-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/18/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Post-traumatic brain injury hypopituitarism is a common unrecognized condition in children after head injury. Due to its similarity of clinical symptoms with those of head trauma, clinical diagnosis of post-TBI hypopituitarism is challenging. To date, there is no standardized screening protocol for children with history of brain injury. This article demonstrates a case of 14-year-old boy with severe head trauma who developed refractory seizures with episodic hypoglycemia and weight loss. We aimed to focus on the prevalence, clinical courses and clinical implementations of each hormonal axis in children with post-traumatic brain injury hypopituitarism. We also aim to raise awareness of this condition to pediatricians in light of enhancing patient care. METHODS We have searched for original articles, published in English between year 2000 and 2021. There are 20 related articles, authors reviewed all the articles independently. RESULTS Prevalence of post-traumatic hypopituitarism ranges from 5-57% in children. Growth hormone is the most commonly affected hormone. The highest prevalence is 42.3% at more than 12 months after the brain injury. The symptoms and severity range from asymptomatic to requiring long-term hormonal therapy. Although normalization of pituitary function is demonstrated at various times after the injury, hormone replacement therapy is still required in some patients. CONCLUSIONS This is the first report that demonstrates a presenting symptom of hypopituitarism mimic traumatic brain symptoms which result in it being overlooked. This case emphasizes the need to develop pituitary function screening protocols for children with TBI. We have proposed our pituitary screening protocol for children with TBI in this article.
Collapse
Affiliation(s)
- Nadvadee Aungkawattanapong
- Division of Ambulatory, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ketsuda Jakchai
- Department of Radiology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Therdpong Tempark
- Division of Ambulatory, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chansuda Bongsebandhu-Phubhakdi
- Division of Ambulatory, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
First Case of Chronic Post-Traumatic Anterior Pituitary Dysfunction in a Professional Rugby Player: A Case Report. ANNALES D'ENDOCRINOLOGIE 2022; 83:142-146. [DOI: 10.1016/j.ando.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
|
13
|
Adams A. Imaging of Skull Base Trauma: Fracture Patterns and Soft Tissue Injuries. Neuroimaging Clin N Am 2021; 31:599-620. [PMID: 34689935 DOI: 10.1016/j.nic.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This article provides an overview of the patterns of skull base trauma and provides a review of the pertinent soft tissue injuries and complications that can ensue. A brief review of skull base anatomy is provided with subsequent focus on the important findings in anterior, central, and posterior skull base trauma.
Collapse
Affiliation(s)
- Ashok Adams
- BartsHealth NHS Trust, Queen Mary University of London, Neuroradiology Department, Royal London Hospital, Whitechapel Rd, London E1 1BB, UK.
| |
Collapse
|
14
|
Carmichael J, Hicks AJ, Spitz G, Gould KR, Ponsford J. Moderators of gene-outcome associations following traumatic brain injury. Neurosci Biobehav Rev 2021; 130:107-124. [PMID: 34411558 DOI: 10.1016/j.neubiorev.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The field of genomics is the principal avenue in the ongoing development of precision/personalised medicine for a variety of health conditions. However, relating genes to outcomes is notoriously complex, especially when considering that other variables can change, or moderate, gene-outcome associations. Here, we comprehensively discuss moderation of gene-outcome associations in the context of traumatic brain injury (TBI), a common, chronically debilitating, and costly neurological condition that is under complex polygenic influence. We focus our narrative review on single nucleotide polymorphisms (SNPs) of three of the most studied genes (apolipoprotein E, brain-derived neurotrophic factor, and catechol-O-methyltransferase) and on three demographic variables believed to moderate associations between these SNPs and TBI outcomes (age, biological sex, and ethnicity). We speculate on the mechanisms which may underlie these moderating effects, drawing widely from biomolecular and behavioural research (n = 175 scientific reports) within the TBI population (n = 72) and other neurological, healthy, ageing, and psychiatric populations (n = 103). We conclude with methodological recommendations for improved exploration of moderators in future genetics research in TBI and other populations.
Collapse
Affiliation(s)
- Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate Rachel Gould
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Mechanisms of Central Hypogonadism. Int J Mol Sci 2021; 22:ijms22158217. [PMID: 34360982 PMCID: PMC8348115 DOI: 10.3390/ijms22158217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/01/2023] Open
Abstract
Reproductive function depends upon an operational hypothalamo–pituitary–gonadal (HPG) axis. Due to its role in determining survival versus reproductive strategies, the HPG axis is vulnerable to a diverse plethora of signals that ultimately manifest with Central Hypogonadism (CH) in all its many guises. Acquired CH can result from any pituitary or hypothalamic lesion, including its treatment (such as surgical resection and/or radiotherapy). The HPG axis is particularly sensitive to the suppressive effects of hyperprolactinaemia that can occur for many reasons, including prolactinomas, and as a side effect of certain drug therapies. Physiologically, prolactin (combined with the suppressive effects of autonomic neural signals from suckling) plays a key role in suppressing the gonadal axis and establishing temporary CH during lactation. Leptin is a further key endocrine regulator of the HPG axis. During starvation, hypoleptinaemia (from diminished fat stores) results in activation of hypothalamic agouti-related peptide neurons that have a dual purpose to enhance appetite (important for survival) and concomitantly suppresses GnRH neurons via effects on neural kisspeptin release. Obesity is associated with hyperleptinaemia and leptin resistance that may also suppress the HPG axis. The suppressibility of the HPG axis also leaves it vulnerable to the effects of external signals that include morphine, anabolic-androgenic steroids, physical trauma and stress, all of which are relatively common causes of CH. Finally, the HPG axis is susceptible to congenital malformations, with reports of mutations within >50 genes that manifest with congenital CH, including Kallmann Syndrome associated with hyposmia or anosmia (reduction or loss of the sense of smell due to the closely associated migration of GnRH with olfactory neurons during embryogenesis). Analogous to the HPG axis itself, patients with CH are often vulnerable, and their clinical management requires both sensitivity and empathy.
Collapse
|
16
|
Nada A, Khan U, Ahsan H. Late magnetic resonance imaging findings in trauma-induced central diabetes insipidus: Case report and review of literature. Radiol Case Rep 2021; 16:1514-1517. [PMID: 33981375 PMCID: PMC8082041 DOI: 10.1016/j.radcr.2021.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 10/28/2022] Open
Abstract
We presented the late magnetic resonance imaging characteristics in a 47-year-old male who diagnosed with a permanent trauma-induced diabetes insipidus. The patient developed polyuria following a deceleration injury which has been diagnosed as central diabetes insipidus based on the water deprivation test. Computed tomography or magnetic resonance evaluation of the pituitary gland is usually normal in such cases. Therefore, negative imaging studies do not exclude the diagnosis. However, MRI is more sensitive and can depict subtle injuries of the hypothalamus-pituitary axis in acute and late phases. The late MR imaging findings are not well established. To the best of our knowledge, this will be the first report to describe the late MR imaging features in a permanent case of trauma-induced diabetes insipidus.
Collapse
Affiliation(s)
- Ayman Nada
- Department of Radiology, University of Missouri, Columbia, MO
| | - Uzma Khan
- Department of Medicine-Endocrinology, University of Missouri, Columbia, MO
| | - Humera Ahsan
- Department of Radiology, University of Missouri, Columbia, MO
| |
Collapse
|
17
|
Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22052686. [PMID: 33799967 PMCID: PMC7961958 DOI: 10.3390/ijms22052686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.
Collapse
|
18
|
Abstract
Puberty, which in humans is considered to include both gonadarche and adrenarche, is the period of becoming capable of reproducing sexually and is recognized by maturation of the gonads and development of secondary sex characteristics. Gonadarche referring to growth and maturation of the gonads is fundamental to puberty since it encompasses increased gonadal steroid secretion and initiation of gametogenesis resulting from enhanced pituitary gonadotropin secretion, triggered in turn by robust pulsatile GnRH release from the hypothalamus. This chapter reviews the development of GnRH pulsatility from before birth until the onset of puberty. In humans, GnRH pulse generation is restrained during childhood and juvenile development. This prepubertal hiatus in hypothalamic activity is considered to result from a neurobiological brake imposed upon the GnRH pulse generator resident in the infundibular nucleus. Reactivation of the GnRH pulse generator initiates pubertal development. Current understanding of the genetics and physiology of the brake will be discussed, as will hypotheses proposed to account for timing the resurgence in pulsatile GnRH and initiation of puberty. The chapter ends with a discussion of disorders associated with precocious or delayed puberty with a focus on those with etiologies attributed to aberrant GnRH neuron anatomy or function. A pediatric approach to patients with pubertal disorders is provided and contemporary treatments for both precocious and delayed puberty outlined.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Gasco V, Cambria V, Bioletto F, Ghigo E, Grottoli S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front Endocrinol (Lausanne) 2021; 12:634415. [PMID: 33790864 PMCID: PMC8005917 DOI: 10.3389/fendo.2021.634415] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism has been recognized as a clinical entity for more than a century, with the first case being reported in 1918. However, during the 20th century hypopituitarism was considered only a rare sequela of TBI. Since 2000 several studies strongly suggest that TBI-mediated pituitary hormones deficiency may be more frequent than previously thought. Growth hormone deficiency (GHD) is the most common abnormality, followed by hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The pathophysiological mechanisms underlying pituitary damage in TBI patients include a primary injury that may lead to the direct trauma of the hypothalamus or pituitary gland; on the other hand, secondary injuries are mainly related to an interplay of a complex and ongoing cascade of specific molecular/biochemical events. The available data describe the importance of GHD after TBI and its influence in promoting neurocognitive and behavioral deficits. The poor outcomes that are seen with long standing GHD in post TBI patients could be improved by GH treatment, but to date literature data on the possible beneficial effects of GH replacement therapy in post-TBI GHD patients are currently scarce and fragmented. More studies are needed to further characterize this clinical syndrome with the purpose of establishing appropriate standards of care. The purpose of this review is to summarize the current state of knowledge about post-traumatic GH deficiency.
Collapse
|